Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (12): 1061-1078.DOI: 10.17521/cjpe.2019.0257
• Research Articles • Previous Articles Next Articles
YUAN Dan-Yang1,2,ZHU Liang-Jun1,2,ZHANG Yuan-Dong3,LI Zong-Shan4,ZHAO Hui-Ying5,WANG Xiao-Chun1,2,*()
Received:
2019-09-27
Accepted:
2019-12-05
Online:
2019-12-20
Published:
2020-01-19
Contact:
WANG Xiao-Chun ORCID:0000-0002-8897-5077
Supported by:
YUAN Dan-Yang, ZHU Liang-Jun, ZHANG Yuan-Dong, LI Zong-Shan, ZHAO Hui-Ying, WANG Xiao-Chun. Comparison of elevational changes in relationships of blue intensity and ring width index in Picea jezoensis with climatic responses in Laobai Mountain of Jilin, China[J]. Chin J Plant Ecol, 2019, 43(12): 1061-1078.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0257
Fig. 1 Locations of sampling sites and meteorological station in Laobai Mountain. L900, low elevation; L1200, middle elevation; L1500, high elevation.
Fig. 2 Trend of changes in mean monthly temperature (T), mean monthly minimum temperature (Tmin), mean monthly maximum temperature (Tmax), total precipitation (P), relative humidity (RH) and standardized precipitation evapotranspiration index (SPEI) in Jiaohe meteorological station during 1951-2015. A, Trend of monthly change. B, Trend of annual change. *, correlation is significant at the 0.05 level; **, correlation is significant at the 0.01 level. Dash is piecewise fitted linear regression line of the meteorological data.
样点编码 Site code | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 样本数 Core number | 年表长度 Chronology length |
---|---|---|---|---|---|
L900 | 44.08° | 128.03° | 908 | 40 | 1801-2015 |
L1200 | 44.10° | 128.05° | 1 194 | 40 | 1670-2015 |
L1500 | 44.10° | 128.05° | 1 506 | 40 | 1794-2015 |
Table 1 Information of the sampling sites and chronologies in Picea Jezoensis in Laobai Mountain
样点编码 Site code | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 样本数 Core number | 年表长度 Chronology length |
---|---|---|---|---|---|
L900 | 44.08° | 128.03° | 908 | 40 | 1801-2015 |
L1200 | 44.10° | 128.05° | 1 194 | 40 | 1670-2015 |
L1500 | 44.10° | 128.05° | 1 506 | 40 | 1794-2015 |
Fig. 3 Measurement of blue intensity (BI) and ring width in Picea jezoensis in Laobai Mountain. A, CooRecorder blue intensity generation window. B, Detailed measurement process. d, depth; f, offest; R, ring width; w, width.
Fig. 4 Variation in the blue intensity (BI) and ring width index (RWI) in Picea jezoensis at different elevations in Laibai Mountain over the recent 200 years. A, Low elevation. B, Middle elevation. C, High elevation.
L-BI | L-RWI | M-BI | M-RWI | H-BI | |
---|---|---|---|---|---|
L-RWI | 0.15 | ||||
M-BI | 0.49** | -0.28** | |||
M-RWI | 0.24** | 0.21* | 0.39** | ||
H-BI | 0.42** | -0.40** | 0.77** | 0.14 | |
H-RWI | 0.16 | -0.05 | 0.21* | 0.35** | 0.40** |
Table 2 Correlation coefficients between the standard chronologies of blue intensity (BI) and ring width index (RWI) at low (L), middle (M) and high (H) elevations in Picea jezoensis in Laobai Mountain
L-BI | L-RWI | M-BI | M-RWI | H-BI | |
---|---|---|---|---|---|
L-RWI | 0.15 | ||||
M-BI | 0.49** | -0.28** | |||
M-RWI | 0.24** | 0.21* | 0.39** | ||
H-BI | 0.42** | -0.40** | 0.77** | 0.14 | |
H-RWI | 0.16 | -0.05 | 0.21* | 0.35** | 0.40** |
Fig. 5 Standard chronologies of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and their correlation coefficients with monthly climatic factors at low (L), middle (M) and high (H) elevations in Laobai Mountain. A, Precipitation. B, Relative humidity. C, Mean monthly temperature. D, Minimum mean monthly temperature. E, Maximum mean monthly temperature. F, Standardized precipitation evapotranspiration index. p, previous year; *, the correlation is significant at the 0.05 level.
Fig. 6 Standard chronologies of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and their correlation coefficients with seasonal climatic factors at low (L), middle (M) and high (H) elevations in Laobai Mountain. A, Precipitation. B, Relative humidity. C, Mean seasonal temperature. D, Minimum mean seasonal temperature. E, Maximum mean seasonal temperature. F, Standardized precipitation evapotranspiration index. *, the correlation is significant at the 0.05 level. SPR, spring; SUM, summer; AUT, autumn; GS, growing season; AN, annual.
Fig. 7 Moving correlation analysis between the standard chronologies of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and summer precipitation at low (L)(A), middle (M)(B) and high (H)(C) elevations in Laobai Mountain and the standard deviations of the moving correlation coefficients. Dotted line represents 95% confidence level; r, moving correlation coefficient; **, the correlation is significant at the 0.01 level.
Fig. 8 Moving correlation analysis between the standard chronologies of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and summer maximum temperature at low (L)(A), middle (M)(B) and high (H)(C) elevations in Laobai Mountain and the standard deviations of the moving correlation coefficients. Dotted line represents 95% confidence level; r, moving correlation coefficient; **, the correlation is significant at the 0.01 level.
Fig. 9 Moving correlation analysis between the standard chronologies of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and summer Standardized Precipitation Evapotranspiration Index (SPEI) at low (L)(A), middle (M)(B) and high (H)(C) elevations in Laobai Mountain and the standard deviations of the moving correlation coefficients. Dotted line represents 95% confidence level; r, moving correlation coefficient; **, the correlation is significant at the 0.01 level.
Fig. 10 Correlation coefficients between average chronology of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and summer climatic factors at low, middle and high elevations in Laobai Mountain. SPEI, Standard Precipitation Evapotranspiration Index. Correlation with the significance of p > 0.01 level was mask out; the red dot is the sample area.
[1] |
Babst F, Wright WE, Szejner P, Wells L, Belmecheri S, Monson RK ( 2016). Blue intensity parameters derived from Ponderosa pine tree rings characterize intra-annual density fluctuations and reveal seasonally divergent water limitations. Trees, 30, 1403-1415.
DOI URL PMID |
[2] | Björklund J, Gunnarson BE, Seftigen K, Zhang P, Linderholm HW ( 2015). Using adjusted Blue Intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia. The Holocene, 25, 547-556. |
[3] | Björklund JA, Gunnarson BE, Seftigen K, Esper J, Linderholm HW ( 2014). Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Climate of the Past, 10, 877-885. |
[4] | Björklund JA, Gunnarson BE, Seftigen K, Esper J, Linderholm HW ( 2013). Is blue intensity ready to replace maximum latewood density as a strong temperature proxy? A tree-ring case study on Scots pine from northern Sweden. Climate of the Past Discussions, 9, 5227-5261. |
[5] | Briffa KR, Melvin TM (2010). A closer look at regional curve standardization of tree-ring records: Justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes MK, Swetnam TW, Diaz HF eds. Dendroclimatology. Springer, Dordrecht. 113-145. |
[6] |
Brookhouse M, Graham R ( 2016). Application of the minimum blue-intensity technique to a southern-hemisphere conifer. Tree-Ring Research, 72, 103-107.
DOI URL |
[7] | Buckley BM, Hansen KG, Griffin KL, Schmiege S, Oelkers R, DʼArrigo RD, Stahle DK, Davi N, Nguyen TQT, Le CN, Wilson RJS ( 2018). Blue intensity from a tropical conifer’s annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia, 50, 10-22. |
[8] |
Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J ( 2007). Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiology, 27, 689-702.
DOI URL PMID |
[9] | Büntgen U, Frank DC, Nievergelt D, Esper J ( 2006). Summer temperature variations in the European Alps, A.D. 755-2004. Journal of Climate, 19, 5606-5623. |
[10] | Campbell R, McCarroll D, Loader NJ, Grudd H, Robertson I, Jalkanen R ( 2007). Blue intensity in Pinus sylvestris tree-rings: Developing a new palaeoclimate proxy. The Holocene, 17, 821-828. |
[11] | Campbell R, McCarroll D, Robertson I, Loader NJ, Grudd H, Gunnarson B ( 2011). Blue intensity in Pinus sylvestris tree rings: A manual for a new palaeoclimate proxy. Tree-Ring Research, 67, 127-134. |
[12] | Chen F, Yuan YJ, Wei WS, Yu SL, Fan ZA, Zhang RB, Zhang TW, Li Q, Shang HM ( 2012). Temperature reconstruction from tree-ring maximum latewood density of Qinghai spruce in middle Hexi Corridor, China. Theoretical and Applied Climatology, 107, 633-643. |
[13] | Chen F, Yuan YJ, Wei WS, Yu SL, Shang HM, Zhang TW, Zhang RB, Wang HQ ( 2017). Air temperature from May through August in northern Xinjiang reconstructed from multi-site tree-ring density. Journal of Glaciology and Geocryology, 39(1), 43-53. |
[ 陈峰, 袁玉江, 魏文寿, 喻树龙, 尚华明, 张同文, 张瑞波, 王慧琴 ( 2017). 利用年轮密度重建新疆北部5-8月温度变化. 冰川冻土, 39(1), 43-53.] | |
[14] | Dolgova E ( 2016). June-September temperature reconstruction in the Northern Caucasus based on blue intensity data. Dendrochronologia, 39, 17-23. |
[15] | Duan JP ( 2015). Advances in tree-ring density study. Quaternary Sciences, 35, 1271-1282. |
[ 段建平 ( 2015). 树木年轮密度研究进展. 第四纪研究, 35, 1271-1282.] | |
[16] | Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege A, Büntgen U ( 2012). Orbital forcing of tree- ring data. Nature Climate Change, 2, 862-866. |
[17] | Fan ZX, Bräuning A, Yang B, Cao KF ( 2009). Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global and Planetary Change, 65(1-2), 1-11. |
[18] | Fritts HC (1976). Tree Rings and Climate. Academic Press, London. |
[19] | Fuentes M, Salo R, Björklund J, Seftigen K, Zhang P, Gunnarson B, Aravena JC, Linderholm HW ( 2017). A 970-year- long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings. The Holocene, 28, 254-266. |
[20] |
Gao LS, Wang XM, Zhao XH ( 2011). Response of Pinus koraiensis and Picea jezoensis var. komarovii to climate in the transition zone of Changbai Mountain, China. Chinese Journal of Plant Ecology, 35, 27-34.
DOI URL |
[ 高露双, 王晓明, 赵秀海 ( 2011). 长白山过渡带红松和鱼鳞云杉径向生长对气候因子的响应. 植物生态学报, 35, 27-34.]
DOI URL |
|
[21] |
Gindl W, Grabner M, Wimmer R ( 2000). The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 14, 409-414.
URL PMID |
[22] |
Heeter KJ, Harley GL, van de Gevel SL, White PB ( 2019). Blue intensity as a temperature proxy in the eastern United States: A pilot study from a southern disjunct population of Picea rubens (Sarg.). Dendrochronologia, 55, 105-109.
DOI URL |
[23] |
Holmes RL ( 1983). Computer-assisted quality control in tree- ring dating and measurement. Tree-Ring Bulletin, 43, 69-75.
DOI URL PMID |
[24] | Hughes MK ( 2001). An improved reconstruction of summer temperature at Srinagar, Kashmir since 1660 AD, based on tree-ring-width and maximum latewood density of Abies pindrow [Royle] Spach. Palaeobotanist, 50, 13-19. |
[25] | Kaczka RJ, Spyt B, Janecka K, Beil I, Büntgen U, Scharnweber T, Nievergelt D, Wilmking M ( 2018). Different maximum latewood density and blue intensity measurements techniques reveal similar results. Dendrochronologia, 49, 94-101. |
[26] | Lange PW ( 1954). The distribution of lignin in the cell wall of normal and reaction wood from spruce and a few hardwoods. Svensk Papperstidn, 57, 525-532. |
[27] |
Li GQ, Bai F, Sang WG ( 2011). Different responses of radial growth to climate warming in Pinus koraiensis and Picea jezoensis var. komarovii at their upper elevational limits in Changbai Mountain, China. Chinese Journal of Plant Ecology, 35, 500-511.
DOI URL |
[ 李广起, 白帆, 桑卫国 ( 2011). 长白山红松和鱼鳞云杉在分布上限的径向生长对气候变暖的不同响应. 植物生态学报, 35, 500-511.]
DOI URL |
|
[28] |
Linderholm HW, Björklund J, Seftigen K, Gunnarson BE, Fuentes M ( 2015). Fennoscandia revisited: A spatially improved tree-ring reconstruction of summer temperatures for the last 900 years. Climate Dynamics, 45, 933-947.
DOI URL |
[29] |
Luckman BH, Wilson RJS ( 2005). Summer temperatures in the Canadian Rockies during the last millennium: A revised record. Climate Dynamics, 24, 131-144.
DOI URL |
[30] |
McCarroll D, Pettigrew E, Luckman A, Guibal F, Edouard JL ( 2002). Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings. Arctic, Antarctic, and Alpine Research, 34, 450-453.
DOI URL |
[31] |
Nagavciuc V, Roibu CC, Ionita M, Mursa A, Cotos MG, Popa I ( 2019). Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania. Dendrochronologia, 54, 56-63.
DOI URL |
[32] | Österreicher A, Weber G, Leuenberger M, Nicolussi K ( 2015). Exploring blue intensity comparison of blue intensity and MXD data from Alpine spruce trees. Tree Rings in Archaeology, Climatology and Ecology, 13, 56-61. |
[33] |
Rydval M, Larsson LÅ, McGlynn L, Gunnarson BE, Loader NJ, Young GHF, Wilson R ( 2014). Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland. Dendrochronologia, 32, 191-204.
DOI URL |
[34] |
Sheppard PR, Graumlich LJ, Conkey LE ( 1996). Reflected-light image analysis of conifer tree rings for reconstructing climate. The Holocene, 6, 62-68.
DOI URL |
[35] | Sheppard PR, Wiedenhoeft A ( 2007). An advancement in removing extraneous color from wood for low-magnification reflected-light image analysis of conifer tree rings. Wood and Fiber Science, 39, 173-183. |
[36] | Sidor CG, Popa I, Vlad R, Cherubini P ( 2015). Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees, 29, 985-997. |
[37] | Stokes MA, Smiley TL (1968). An Introduction to Tree-ring Dating. University of Arizona Press, Tucson. |
[38] |
Vicente-Serrano SM, Beguería S, López-Moreno JI ( 2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696-1718.
DOI URL |
[39] | Wang SL, Zhao Y, Gai XR, Wang XY, Yu DP, Zhou WM, Zhou L, Dai LM ( 2017). Response of radial growth of Picea jezoensis var. komarovii to climate factors along an altitudinal gradient on Changbai Mountain, Northeast China. Chinese Journal of Ecology, 36, 3131-3137. |
[ 王守乐, 赵媛, 盖学瑞, 王晓雨, 于大炮, 周旺明, 周莉, 代力民 ( 2017). 长白山鱼鳞云杉径向生长对气候响应的海拔差异. 生态学杂志, 36, 3131-3137.] | |
[40] | Wang T, Yu D, Li JF, Ma KP ( 2003). Advances in research on the relationship between climatic change and tree-ring width. Acta Photoecologia Sinica, 27, 23-33. |
[ 王婷, 于丹, 李江风, 马克平 ( 2003). 树木年轮宽度与气候变化关系研究进展. 植物生态学报, 27, 23-33.] | |
[41] |
Wang XC, Pederson N, Chen ZJ, Lawton K, Zhu C, Han SJ ( 2019). Recent rising temperatures drive younger and southern Korean pine growth decline. Science of the Total Environment, 649, 1105-1116.
DOI URL PMID |
[42] |
Wang H, Shao XM, Fang XQ, Jiang Y, Liu CL, Qiao Q ( 2017). Relationships between tree-ring cell features of Pinus koraiensis and climate factors in the Changbai Mountains, Northeastern China. Journal of Forestry Research, 28, 105-114.
DOI URL |
[43] | Wang XC, Zhang XQ, Zhu JH, Hou ZH, Chai ZL ( 2009). Research on relationship between tree-ring and global warming. World Forestry Research, 22(6), 38-42. |
[ 王晓春, 张小全, 朱建华, 侯振宏, 柴正礼 ( 2009). 树木年轮与全球变暖的关系研究进展. 世界林业研究, 22(6), 38-42.] | |
[44] |
Wilson R, Anchukaitis K, Andreu-Hayles L, Cook E, D’Arrigo R, Davi N, Haberbauer L, Krusic P, Luckman B, Morimoto D, Oelkers R, Wiles G, Wood C ( 2019). Improved dendroclimatic calibration using blue intensity in the southern Yukon. The Holocene, 29, 1817-1830.
DOI URL |
[45] |
Wilson R, DʼArrigo R, Andreu-Hayles L, Oelkers R, Wiles G, Anchukaitis K, Davi N ( 2017). Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska. Climate of the Past, 13, 1007-1022.
DOI URL |
[46] | Yang YK, Huang Q, Liu Y, Wang YM, Bai T, Wang WK ( 2012). Response analysis between climate factors and the density of wood growth of Picea crassifolia. Journal of Xi’an University of Technology, 28, 432-438. |
[ 杨银科, 黄强, 刘禹, 王义民, 白涛, 王文科 ( 2012). 云杉树轮生长密度对气候要素的响应分析. 西安理工大学学报, 28, 432-438.] | |
[47] |
Yanosky TM, Robinove CJ ( 1986). Digital image measurement of the area and anatomical structure of tree rings. Canadian Journal of Botany, 64, 2896-2902.
DOI URL |
[48] |
Yu J, Liu QJ, Zhou G, Meng SW, Zhou H, Xu ZZ, Shi JN, Du WX ( 2017). Response of radial growth of Pinus koraiensis and Picea jezoensis to climate change in Xiaoxing’anling Mountains, Northeast China. Chinese Journal of Applied Ecology, 28, 3451-3460.
DOI URL PMID |
[ 于健, 刘琪璟, 周光, 孟盛旺, 周华, 徐振招, 史景宁, 杜文先 ( 2017). 小兴安岭红松和鱼鳞云杉径向生长对气候变化的响应. 应用生态学报, 28, 3451-3460.]
DOI URL PMID |
|
[49] | Zhang P, Ionita M, Lohmann G, Chen DL, Linderholm HW ( 2017). Can tree-ring density data reflect summer temperature extremes and associated circulation patterns over Fennoscandia? Climate Dynamics, 49, 2721-2736. |
[50] | Zhang Y, Fang KY, Zhou FF, Dong ZP, Gan ZF, Li DW ( 2016). A study on the inter-annual latewood growth of Pinus massoniana in fuzhou. Journal of Subtropical Resources and Environment, 11, 59-64. |
[ 张雨, 方克艳, 周非飞, 董志鹏, 甘展峰, 李大稳 ( 2016). 福州马尾松年内晚材生长动态观测研究. 亚热带资源与环境学报, 11, 59-64]. | |
[51] | Zhu LJ, Cooper DJ, Yang JW, Zhang X, Wang XC ( 2018). Rapid warming induces the contrasting growth of Yezo spruce (Picea jezoensis var. microsperma) at two elevation gradient sites of northeast China. Dendrochronologia, 50, 52-63. |
[52] |
Zhu LJ, Li ZS, Wang XC ( 2017). Anatomical characteristics of xylem in tree rings and its relationship with environments. Chinese Journal of Plant Ecology, 41, 238-251.
DOI URL |
[ 朱良军, 李宗善, 王晓春 ( 2017). 树轮木质部解剖特征及其与环境变化的关系. 植物生态学报, 41, 238-251.]
DOI URL |
[1] | WANG Wen-Wei, HAN Wei-Peng, LIU Wen-Wen. Short-term response of leaf functional traits of the invasive plant Spartina alterniflora to a tidal gradient in coastal wetlands [J]. Chin J Plant Ecol, 2023, 47(2): 216-226. |
[2] | XIE Meng-Yi, FENG Xiu-Xiu, MA Huan-Fei, HU Han, WANG Jie-Ying, GUO Yao-Xin, REN Cheng-Jie, WANG Jun, ZHAO Fa-Zhu. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains [J]. Chin J Plant Ecol, 2020, 44(8): 885-894. |
[3] | LI Lei, WANG Yi-Feng, GOU Wen-Xia, MA Wen-Mei, JIANG Chun-Ling. Response of resource allocation of Saussurea leontodontoides during its fruiting stage to the elevation [J]. Chin J Plant Ecol, 2020, 44(11): 1164-1171. |
[4] | CHEN Yu-Han, LUO Yi-Fu, SUN Xin-Sheng, WEI Guan-Wen, HUANG Wen-Jun, LUO Fang-Li, YU Fei-Hai. Effects of waterlogging and increased soil nutrients on growth and reproduction of Polygonum hydropiper in the hydro-fluctuation belt of the Three Gorges Reservoir Region [J]. Chin J Plant Ecol, 2020, 44(11): 1184-1194. |
[5] | SHEN Jia-Yan, LI Shuai-Feng, HUANG Xiao-Bo, LEI Zhi-Quan, SHI Xing-Quan, SU Jian-Rong. Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin [J]. Chin J Plant Ecol, 2019, 43(11): 946-958. |
[6] | Ming-Fei ZHAO, Feng XUE, Yu-Hang WANG, Guo-Yi WANG, Kai-Xiong XING, Mu-Yi KANG, Jing-Lan WANG. Phylogenetic structure and diversity of herbaceous communities in the conifer forests along an elevational gradient in Luya Mountain, Shanxi, China [J]. Chin J Plan Ecolo, 2017, 41(7): 707-715. |
[7] | Dao-Xin LI, Guo LI, Ze-Hao SHEN, Shen-Dong XU, Qing-Yu HAN, Gong-Fang WANG, Feng-Lei TIAN. Growth-form regulates the altitudinal variation of interspecific seed mass of woody plants in Mt. Dalaoling, the Three Gorges Region, China [J]. Chin J Plant Ecol, 2017, 41(5): 539-548. |
[8] | Ming-Zhe MA, Guo-Zhen SHEN, Gao-Ming XIONG, Chang-Ming ZHAO, Wen-Ting XU, You-Bing ZHOU, Zong-Qiang XIE. Characteristic and representativeness of the vertical vegetation zonation along the altitudinal gradient in Shennongjia Natural Heritage [J]. Chin J Plant Ecol, 2017, 41(11): 1127-1139. |
[9] | WANG Yi-Feng,JIN Jie,HOU Hong-Hong,ZHAO Bo,CAO Jia-Hao,LI Xiao-Jiao. Changes in flowering resource allocation of Saussurea dzeurensis with elevations [J]. Chin J Plan Ecolo, 2015, 39(9): 901-908. |
[10] | DING Wen-Hui,JIANG Jun-Yan,LI Xiu-Zhen,HUANG Xing,LI Xi-Zhi,ZHOU Yun-Xuan,TANG Chen-Dong. Spatial distribution of species and influencing factors across salt marsh in southern Chongming Dongtan [J]. Chin J Plan Ecolo, 2015, 39(7): 704-716. |
[11] | WANG Biao,JIANG Yuan,WANG Ming-Chang,DONG Man-Yu,ZHANG Yi-Ping. Variations of non-structural carbohydrate concentration of Picea meyeri at different elevations of Luya Mountain, China [J]. Chin J Plan Ecolo, 2015, 39(7): 746-752. |
[12] | ZHU Liang-Jun,JIN Guang-Ze,WANG Xiao-Chun. Reconstruction of disturbance history of a typical broad-leaved Pinus koraiensis forest and mechanisms of disturbance occurrence [J]. Chin J Plan Ecolo, 2015, 39(2): 125-139. |
[13] | ZHANG Qian,ZHAO Cheng-Zhang,DONG Xiao-Gang,MA Xiao-Li,HOU Zhao-Jiang,LI Yu. Trade-off between the biomass and number of flowers in Stellera chamaejasme along an elevation gradient in a degraded alpine grassland [J]. Chin J Plant Ecol, 2014, 38(5): 452-459. |
[14] | WANG Yi-Feng, YUE Yong-Cheng. Effects of resource allocation and floral traits on the number and mass of Saussurea undulata seeds from different elevations in eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2014, 38(4): 366-374. |
[15] | WU Ze-Yan,LIN Wen-Xiong,CHEN Zhi-Fang,FANG Chang-Xun,ZHANG Zhi-Xing,WU Lin-Kun,ZHOU Ming-Ming,CHEN Ting. Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest [J]. Chin J Plant Ecol, 2013, 37(5): 397-406. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn