Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (11): 1184-1194.DOI: 10.17521/cjpe.2020.0159
• Research Articles • Previous Articles
CHEN Yu-Han1, LUO Yi-Fu1, SUN Xin-Sheng1, WEI Guan-Wen1, HUANG Wen-Jun2, LUO Fang-Li1,*(), YU Fei-Hai3
Received:
2020-05-18
Accepted:
2020-09-12
Online:
2020-11-20
Published:
2020-11-02
Contact:
LUO Fang-Li
Supported by:
CHEN Yu-Han, LUO Yi-Fu, SUN Xin-Sheng, WEI Guan-Wen, HUANG Wen-Jun, LUO Fang-Li, YU Fei-Hai. Effects of waterlogging and increased soil nutrients on growth and reproduction of Polygonum hydropiper in the hydro-fluctuation belt of the Three Gorges Reservoir Region[J]. Chin J Plant Ecol, 2020, 44(11): 1184-1194.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0159
Fig. 1 Length (A) and width (B) of functional leaf, main stem length (C), node number of main stem (D), total node number (E), and total branch number (F) of Polygonum hydropiper from high and low elevations under different waterlogging (W) and soil nutrients (N) treatments (mean ± SE). **, p < 0.01; *, p < 0.05; #, 0.05 ≤ p < 0.1.
性状 Trait | 根部水淹 Waterlogging (W) | 养分 Nutrient (N) | 高程 Elevation (E) | E × W | E × N | W × N | W × N × E |
---|---|---|---|---|---|---|---|
形态性状 Morphological trait | |||||||
功能叶长 Length of functional leaf | 7.91** | 0.99 | 0.45 | 0.31 | 0.01 | 0.11 | 0.01 |
功能叶宽 Width of functional leaf | 3.97* | 0.01 | 0.80 | 0.02 | 0.07 | 0.21 | 0.00 |
主茎长 Main stem length | 0.07 | 1.45 | 1.98 | 0.39 | 0.38 | 0.16 | 0.05 |
主茎节数 Node number of main stem | 0.36 | 2.41 | 0.17 | 0.28 | 2.22 | 1.09 | 0.00 |
总节数 Total node number | 2.74 | 3.04# | 1.14 | 2.17 | 1.45 | 0.64 | 0.01 |
总分枝数 Total branch number | 2.97# | 3.87# | 0.55 | 2.18 | 0.55 | 0.55 | 0.06 |
生物量性状 Biomass trait | |||||||
根生物量 Root biomass | 2.58 | 5.08* | 3.03# | 0.84 | 0.20 | 4.28* | 0.71 |
茎生物量 Stem biomass | 1.88 | 0.86 | 1.27 | 2.71 | 0.34 | 2.26 | 0.05 |
叶生物量 Leaf biomass | 3.55# | 0.74 | 5.44* | 0.72 | 0.19 | 2.70 | 0.00 |
总生物量 Total biomass | 6.74* | 2.87# | 0.46 | 2.43 | 0.52 | 1.20 | 0.14 |
繁殖性状 Reproductive trait | |||||||
始花时间 First flowering time | 0.37 | 0.09 | 4.05* | 0.00 | 0.58 | 0.33 | 0.17 |
花生物量 Flower biomass | 10.44** | 2.98# | 2.59 | 0.14 | 1.57 | 1.47 | 0.16 |
繁殖分配 Reproduction allocation | 2.36 | 0.44 | 6.75* | 0.50 | 0.23 | 2.48 | 0.30 |
Table 1 Effects of waterlogging, soil nutrients, and elevation on morphological, biomass, and reproductive traits of Polygonum hydropiper
性状 Trait | 根部水淹 Waterlogging (W) | 养分 Nutrient (N) | 高程 Elevation (E) | E × W | E × N | W × N | W × N × E |
---|---|---|---|---|---|---|---|
形态性状 Morphological trait | |||||||
功能叶长 Length of functional leaf | 7.91** | 0.99 | 0.45 | 0.31 | 0.01 | 0.11 | 0.01 |
功能叶宽 Width of functional leaf | 3.97* | 0.01 | 0.80 | 0.02 | 0.07 | 0.21 | 0.00 |
主茎长 Main stem length | 0.07 | 1.45 | 1.98 | 0.39 | 0.38 | 0.16 | 0.05 |
主茎节数 Node number of main stem | 0.36 | 2.41 | 0.17 | 0.28 | 2.22 | 1.09 | 0.00 |
总节数 Total node number | 2.74 | 3.04# | 1.14 | 2.17 | 1.45 | 0.64 | 0.01 |
总分枝数 Total branch number | 2.97# | 3.87# | 0.55 | 2.18 | 0.55 | 0.55 | 0.06 |
生物量性状 Biomass trait | |||||||
根生物量 Root biomass | 2.58 | 5.08* | 3.03# | 0.84 | 0.20 | 4.28* | 0.71 |
茎生物量 Stem biomass | 1.88 | 0.86 | 1.27 | 2.71 | 0.34 | 2.26 | 0.05 |
叶生物量 Leaf biomass | 3.55# | 0.74 | 5.44* | 0.72 | 0.19 | 2.70 | 0.00 |
总生物量 Total biomass | 6.74* | 2.87# | 0.46 | 2.43 | 0.52 | 1.20 | 0.14 |
繁殖性状 Reproductive trait | |||||||
始花时间 First flowering time | 0.37 | 0.09 | 4.05* | 0.00 | 0.58 | 0.33 | 0.17 |
花生物量 Flower biomass | 10.44** | 2.98# | 2.59 | 0.14 | 1.57 | 1.47 | 0.16 |
繁殖分配 Reproduction allocation | 2.36 | 0.44 | 6.75* | 0.50 | 0.23 | 2.48 | 0.30 |
Fig. 2 Root biomass (A), stem biomass (B), leaf biomass (C), and total biomass (D) of Polygonum hydropiper from high and low elevations (E) under different waterlogging (W) and soil nutrients (N) treatments (mean ± SE). *, p < 0.05; #, 0.05 ≤ p < 0.1.
Fig. 3 First flowering time (A), flower biomass (B), and reproduction allocation (C) of Polygonum hydropiper from high and low elevation (E) under different waterlogging (W) and soil nutrients (N) treatments (mean ± SE). **, p < 0.01; *, p < 0.05; #, 0.05 ≤ p < 0.1.
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|
1.00 | 2.65 | 2.46 | 2.34 | 1.32 | 1.31 | 1.54 | 1.51 | 1.91 | 1.23 |
1.38 | 3.04 | 2.49 | 2.46 | 1.50 | 1.34 | 1.55 | 1.31 | 1.65 | 1.06 |
1.91 | 4.00 | 2.70 | 3.15 | 1.62 | 3.80 | 2.47 | 1.25 | 1.48 | 1.02 |
Supplement I Water-level rise rate caused by the high flow of the Three Gorges Reservoir from 2009 to 2018 (m·d-1)
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|
1.00 | 2.65 | 2.46 | 2.34 | 1.32 | 1.31 | 1.54 | 1.51 | 1.91 | 1.23 |
1.38 | 3.04 | 2.49 | 2.46 | 1.50 | 1.34 | 1.55 | 1.31 | 1.65 | 1.06 |
1.91 | 4.00 | 2.70 | 3.15 | 1.62 | 3.80 | 2.47 | 1.25 | 1.48 | 1.02 |
[1] |
Abbott JM, Stachowicz JJ (2016). The relative importance of trait vs. genetic differentiation for the outcome of interactions among plant genotypes. Ecology, 97, 84-94.
URL PMID |
[2] |
Ayi QL, Zeng B, Yang K, Lin F, Zhang XP, van Bodegom PM, Cornelissen JHC (2019). Similar growth performance but contrasting biomass allocation of root-flooded terrestrial plant Alternanthera philoxeroides (Mart.) Griseb. in response to nutrient versus dissolved oxygen stress. Frontiers in Plant Science, 10, 111. DOI: 10.3389/fpls.2019.00111.
URL PMID |
[3] | Barker HL, Holeski LM, Lindroth RL (2019). Independent and interactive effects of plant genotype and environment on plant traits and insect herbivore performance: a meta-analysis with Salicaceae. Functional Ecology, 33, 422-435. |
[4] | Chen FQ, Guan SP, Ma YR, Xie ZQ, Lü K, Huang YW, Jia GM (2019a). Impact of regulated water level fluctuations on the sexual reproduction of remnant Myricaria laxiflora populations. Global Ecology and Conservation, 18, e00628. DOI: 10.1016/j.gecco.2019.e00628. |
[5] | Chen FQ, Li Y, Qie GW, Xu WN (2008). The morphological responses and endurance of Polygonum hydropiper to flooding stress. Journal of Wuhan Botanical Research, 26, 142-146. |
[ 陈芳清, 李永, 郄光武, 许文年 (2008). 水蓼对水淹胁迫的耐受能力和形态学响应. 武汉植物学研究, 26, 142-146.] | |
[6] | Chen FQ, Xie ZQ (2007). Reproductive allocation, seed dispersal and germination of Myricaria laxiflora, an endangered species in the Three Gorges Reservoir area. Plant Ecology, 191, 67-75. |
[7] | Chen FQ, Xie ZQ (2011). Ecophysiological Response of Two Herbaceous Species to Flooding Implication for Ecological Restoration of Vegetation on Water-level-fluctuating Zone. International Conference on Electronics, Communications and Control (ICECC). Ningbo, China. 4260-4263. |
[8] | Chen FQ, Zhang M, Wu Y, Huang YW (2020). Seed rain and seed bank of a draw-down zone and their similarities to vegetation under the regulated water-level fluctuation in Xiangxi River. Journal of Freshwater Ecology, 35, 57-71. |
[9] | Chen XS, Deng ZM, Xie YH, Li F, Li X (2014). Differential growth and vegetative reproduction by two co-occurring emergent macrophytes along a water table gradient. Pakistan Journal of Botany, 46, 881-886. |
[10] |
Chen XS, Li YF, Cai YH, Xie YH, Deng ZM, Li F, Hou ZY (2019b). Differential strategies to tolerate flooding in Polygonum hydropiper plants originating from low- and high-elevation habitats. Frontiers in Plant Science, 9, 1970. DOI: 10.3389/fpls.2018.01970.
URL PMID |
[11] | Cheng RM, Liu ZB, Xiao WF, Wang N, Wang XR, Shen YF (2017). Changes of soil chemical properties in typical hydro-fluctuation belt of Three Gorges Reservoir. Scientia Silvae Sinicae, 53(2), 19-25. |
[ 程瑞梅, 刘泽彬, 肖文发, 王娜, 王晓荣, 沈雅飞 (2017). 三峡库区典型消落带土壤化学性质变化. 林业科学, 53(2), 19-25.] | |
[12] |
Colmer TD, Voesenek LACJ (2009). Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology, 36, 665-681.
URL PMID |
[13] | Du H, Zhang XP, Zeng B (2016). Dissolved oxygen in water affects the tolerance of two terrestrial plants, Alternanthera philoxeroides and Hemarthria altissima, to complete submergence. Acta Ecologica Sinica, 36, 7562-7569. |
[ 杜珲, 张小萍, 曾波 (2016). 水体溶氧影响陆生植物喜旱莲子草(Alternanthera philoxeroides)和牛鞭草(Hemarthria altissima)对完全水淹的耐受力. 生态学报, 36, 7562-7569.] | |
[14] | Fan DY, Xiong GM, Zhang AY, Liu X, Xie ZQ, Li ZJ (2015). Effect of water-lever regulation on species selection for ecological restoration practice in the water-level fluctuation zone of Three Gorges Reservoir. Chinese Journal of Plant Ecology, 39, 416-432. |
[ 樊大勇, 熊高明, 张爱英, 刘曦, 谢宗强, 李兆佳 (2015). 三峡库区水位调度对消落带生态修复中物种筛选实践的影响. 植物生态学报, 39, 416-432.] | |
[15] | Fan SF, Yu HH, Liu CH, Yu D, Han YQ, Wang LG (2015). The effects of complete submergence on the morphological and biomass allocation response of the invasive plant Alternanthera philoxeroides. Hydrobiologia, 746, 159-169. |
[16] | Fan XL, Yang TH, Gao HY, Zhang ZS, Yang C, Liu MJ (2014). Effect of oxygen on the damage of photosynthetic apparatus in plant leaves induced by dark-submergence. Plant Physiology Journal, 50, 542-548. |
[ 樊杏利, 杨天慧, 高辉远, 张子山, 杨程, 刘美君 (2014). 氧气在黑暗-水淹诱导植物叶片光合机构损伤中的作用. 植物生理学报, 50, 542-548.] | |
[17] | Gu YB, Pan YW, Chen FY, Lou YJ, Tang ZH (2019). Effects of water level and nitrogen concentration on growth and biomass allocation of Scirpus nipponicus seedlings. Chinese Journal of Ecology, 38, 2302-2309. |
[ 古勇波, 潘艳文, 陈方圆, 娄彦景, 唐占辉 (2019). 水位和氮浓度对三江藨草幼苗生长和生物量分配的影响. 生态学杂志, 38, 2302-2309.] | |
[18] | Guo Y, Yang S, Shen YF, Xiao WF, Cheng RM (2019). Study on the natural distribution characteristics and community species diversity of existing plants in the Three Gorges Reservoir. Acta Ecologica Sinica, 39, 4255-4265. |
[ 郭燕, 杨邵, 沈雅飞, 肖文发, 程瑞梅 (2019). 三峡水库消落带现存植物自然分布特征与群落物种多样性研究. 生态学报, 39, 4255-4265.] | |
[19] | He RT, Yang K, Zeng B, Li R, Niu HG, Shi SH, Ayi QL, Su XL (2020). Distribution pattern of vegetation in water-level fluctuation zone of the Three Gorges Reservoir as affected by differential flooding regimes. Acta Ecologica Sinica, 40, 834-842. |
[ 何蕊廷, 杨康, 曾波, 李瑞, 牛汉刚, 史邵华, 阿依巧丽, 苏晓磊 (2020). 三峡水库消落区植被在差异性水淹环境中的分布格局. 生态学报, 40, 834-842.] | |
[20] | Heydel F, Engels JG, Feigs JT, Vásquez E, Rudolph B, Rohwer JG, Jensen K (2017). Adaptation to tidal flooding and rapid genetic divergence between a narrow endemic grass species and its widespread congener lead to an early stage of ecological speciation. Perspectives in Plant Ecology, Evolution and Systematics, 27, 57-67. |
[21] |
Hong M, Guo QS, Nie BH, Kang Y, Pei SX, Jin JQ, Wang XF (2011). Responses of Cynodon dactylon population in hydro-fluctuation belt of Three Gorges Reservoir area to flooding-drying habitat change. Chinese Journal of Applied Ecology, 22, 2829-2835.
URL PMID |
[ 洪明, 郭泉水, 聂必红, 康义, 裴顺祥, 金江群, 王祥福 (2011). 三峡库区消落带狗牙根种群对水陆生境变化的响应. 应用生态学报, 22, 2829-2835.]
PMID |
|
[22] | Hua JF, Han LW, Wang ZQ, Gu CS, Yin YL (2017). Morpho-anatomical and photosynthetic responses of Taxodium hybrid ‘Zhongshanshan’ 406 to prolonged flooding. Flora, 231, 29-37. |
[23] | Lei B, Wang YC, You YF, Zhang S, Yang CH (2014). Diversity and structure of herbaceous plant community in typical water-level-fluctuation zone with different spacing elevations in Three Gorges Reservior. Journal of Lake Sciences, 26, 600-606. |
[ 雷波, 王业春, 由永飞, 张晟, 杨春华 (2014). 三峡水库不同间距高程消落带草本植物群落物种多样性与结构特征. 湖泊科学, 26, 600-606.] | |
[24] | Lenssen JPM, van Kleunen M, Fischer M, de Kroon H (2004). Local adaptation of the clonal plant Ranunculus reptans to flooding along a small-scale gradient. Journal of Ecology, 92, 696-706. |
[25] | Li AR (1998). Flora of China: Volume 25th, 1st Fascicle. Science Press, Beijing. 27. |
[ 李安仁 (1998). 中国植物志: 第25卷第1分册. 科学出版社, 北京. 27.] | |
[26] | Li QH, Liu SP, Zhi CY, Li XF, Chen FF, Zeng QK (2013). Adaptation mechanism of three herbs in the water-level- fluctuation-zone of reservoir to complete submergence. Journal of Tropical and Subtropical Botany, 21, 459-465. |
[ 李秋华, 刘送平, 支崇远, 李小峰, 陈峰峰, 曾庆凯 (2013). 三种水库消落带草本植物对完全水淹的适应机制研究. 热带亚热带植物学报, 21, 459-465.] | |
[27] | Li XX, Li CX, Song H, Yuan ZX (2019). Effects of flooding and planting density on the photosynthesis of Hemarthria compressa and Cynodon dactylon cottage seedlings. Acta Prataculturae Sinica, 28, 197-206. |
[ 李晓雪, 李昌晓, 宋虹, 袁中勋 (2019). 水淹和密度配置对牛鞭草与狗牙根扦插苗光合作用的影响. 草业学报, 28, 197-206.] | |
[28] | Li YF, Chen XS, Xiang WH, Xie YH (2016). Effects of water levels on the growth and reproductive characteristics of Carex brevicuspis growing on sites with different elevations. Acta Ecologica Sinica, 36, 1959-1966. |
[ 李亚芳, 陈心胜, 项文化, 谢永宏 (2016). 不同高程短尖苔草对水位变化的生长及繁殖响应. 生态学报, 36, 1959-1966.] | |
[29] | Liu WW, Wang J, Wang Y, Yang F (2012). The differences of plant community diversity among the different altitudes in the water-level-fluctuating zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 32, 5454-5466. |
[ 刘维暐, 王杰, 王勇, 杨帆 (2012). 三峡水库消落区不同海拔高度的植物群落多样性差异. 生态学报, 32, 5454-5466.] | |
[30] | Liu ZB, Cheng RM, Xiao WF, Wang RL, Feng XH, Wang XR (2013). Effect of waterlogging on photosynthetic and physioecological characteristics of plants. World Forestry Research, 26, 33-38. |
[ 刘泽彬, 程瑞梅, 肖文发, 王瑞丽, 封晓辉, 王晓荣 (2013). 水淹胁迫对植物光合生理生态的影响. 世界林业研究, 26, 33-38.] | |
[31] | Luo MJ, Zhang SG, Cui LJ, Tan FL, Huang YR (2012). Response of growth and biomass allocation of Aegiceras corniculatum to waterlogging stress. Journal of Zhejiang Forestry Science and Technology, 32, 15-19. |
[ 罗美娟, 张守攻, 崔丽娟, 谭芳林, 黄雍容 (2012). 桐花树幼苗生长与生物量分配对淹水胁迫的响应. 浙江林业科技, 32, 15-19.] | |
[32] | Mony C, Mercier E, Bonis A, Bouzillé JB (2010). Reproductive strategies may explain plant tolerance to inundation: a mesocosm experiment using six marsh species. Aquatic Botany, 92, 99-104. |
[33] | Nam JM, Kim JH, Kim JG (2017). Effects of light intensity and plant density on growth and reproduction of the amphicarpic annual Persicaria thunbergii. Aquatic Botany, 142, 119-122. |
[34] |
Pan Y, Xie YH, Deng ZM, Tang Y, Pan DD (2014). High water level impedes the adaptation of Polygonum hydropiper to deep burial: responses of biomass allocation and root morphology. Scientific Reports, 4, 5612. DOI: 10.1038/srep05612.
URL PMID |
[35] | Park H, Kim JG (2020). Temporal and spatial variations of vegetation in a riparian zone of South Korea. Journal of Ecology and Environment, 44, 9. DOI: 10.1186/s41610-020-00152-z. |
[36] |
Phukan UJ, Mishra S, Shukla RK (2016). Waterlogging and submergence stress: affects and acclimation. Critical Reviews in Biotechnology, 36, 956-966.
URL PMID |
[37] | Qin HW, Gao F, Liu ZX, Li HL, Zheng LD, Su HY, Meng JM (2017). Effects of light intensity on the growth and physiology of Cynodon dactylon seedlings under water submerged environment. Acta Agrestia Sinica, 25, 675-679. |
[ 秦洪文, 高芳, 刘正学, 李洪林, 郑丽丹, 苏华英, 孟佳媚 (2017). 水淹环境下光强对狗牙根幼苗生长及生理的影响. 草地学报, 25, 675-679.] | |
[38] |
Schaff SD, Pezeshki SR, Shields FD (2003). Effects of soil conditions on survival and growth of black willow cuttings. Environmental Management, 31, 748-763.
URL PMID |
[39] |
Soininen EM, Bråthen KA, Jusdado JGH, Reidinger S, Hartley SE (2013). More than herbivory: levels of silica-based defences in grasses vary with plant species, genotype and location. Oikos, 122, 30-41.
DOI URL |
[40] | Striker GG, Manzur ME, Grimoldi AA (2011). Increasing defoliation frequency constrains regrowth of the forage legume Lotus tenuis under flooding. The role of crown reserves. Plant and Soil, 343, 261-272. |
[41] | Su XL, Nilsson C, Pilotto F, Liu SP, Shi SH, Zeng B (2017). Soil erosion and deposition in the new shorelines of the Three Gorges Reservoir. Science of the Total Environment, 599-600, 1485-1492. |
[42] | Su XL, Zeng B, Huang WJ, Xu SJ, Lei ST (2012). Effects of the Three Gorges Dam on preupland and preriparian drawdown zones vegetation in the upper watershed of the Yangtze River, P. R. China. Ecological Engineering, 44, 123-127. |
[43] | Su XL, Zeng B, Lin F, Qiao P, Ayi QL, Huang WJ (2016). How does long-term complete submergence influence sex ratio and resource allocation of a dioecious shrub, Salix variegata Franch.? Ecological Engineering, 87, 218-223. |
[44] | Su XL, Zeng B, Qiao P, Ayi QL, Huang WJ (2010). The effects of winter water submergence on flowering phenology and reproductive allocation of Salix variegata Franch. in Three Gorges reservoir region. Acta Ecologica Sinica, 30, 2585-2592. |
[ 苏晓磊, 曾波, 乔普, 阿依巧丽, 黄文军 (2010). 冬季水淹对秋华柳的开花物候及繁殖分配的影响. 生态学报, 30, 2585-2592.] | |
[45] | Tao M, Bao DC, Jiang MX (2011). Effects of submergence on seed germination of nine annual plant species in the Three Gorges Reservoir region and their implication to vegetation restoration. Acta Ecologica Sinica, 31, 906-913. |
[ 陶敏, 鲍大川, 江明喜 (2011). 三峡库区9种植物种子萌发特性及其在植被恢复中的意义. 生态学报, 31, 906-913.] | |
[46] |
Villellas J, García MB (2018). Life-history trade-offs vary with resource availability across the geographic range of a widespread plant. Plant Biology, 20, 483-489.
URL PMID |
[47] | Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM (2006). How plants cope with complete submergence. New Phytologist, 170, 213-226. |
[48] | Wang C, Fang F, Yuan ZY, Zhang R, Zhang W, Guo JS (2020). Spatial variations of soil phosphorus forms and the risks of phosphorus release in the water-level fluctuation zone in a tributary of the Three Gorges Reservoir. Science of the Total Environment, 699, 134124. DOI: 10.1016/j.scitotenv. 2019.134124. |
[49] | Wang P, Zhang Q, Xu YS, Yu FH (2016). Effects of water level fluctuation on the growth of submerged macrophyte communities. Flora, 223, 83-89. |
[50] | Wang YC, Lei B, Zhang S (2012). Differences in vegetation and soil characteristics at different water-level altitudes in the drawdown areas of Three Gorges Reservoir area. Journal of Lake Sciences, 24, 206-212. |
[ 王业春, 雷波, 张晟 (2012). 三峡库区消落带不同水位高程植被和土壤特征差异. 湖泊科学, 24, 206-212.] | |
[51] | Wang YJ, Chen FQ, Zhang M, Chen SH (2016a). Response of soil nutrient levels and spatial distribution to water-level fluctuation on the shanmu riverbanks in the Three Gorges Reservoir area. Journal of Hydroecology, 37, 56-61. |
[ 王娅儆, 陈芳清, 张淼, 陈韶华 (2016a). 三峡库区水位消涨对杉木溪消落带土壤性质的影响. 水生态学杂志, 37, 56-61.] | |
[52] | Wang YJ, Chen FQ, Zhang M, Wu Y, Chen SH (2016b). Characteristics of soil nutrient and spatial distribution on riparian zone restored by different vegetation restoration methods at Wanzhou section in the Three Gorges Reservoir area, China. Journal of Agricultural Resources and Environment, 33, 127-133. |
[ 王娅儆, 陈芳清, 张淼, 吴阳, 陈韶华 (2016b). 不同植被恢复模式下三峡库区万州段消落带土壤养分及其空间分布特征. 农业资源与环境学报, 33, 127-133.] | |
[53] |
Wei GW, Sun XS, Chen YH, Luo FL, Yu FH (2020). Growth and reproductive responses of Polygonum hydropiper populations to elevational difference associated with flooding. Global Ecology and Conservation, 23, e01156. DOI: 10.1016/j.gecco.2020.e01156.
URL PMID |
[54] | Wu JG, Huang JH, Han XG, Gao XM, He FL, Jiang MX, Jiang ZG, Primack RB, Shen ZH (2004). The Three Gorges Dam: an ecological perspective. Frontiers in Ecology and the Environment, 2, 241-248. |
[55] | Xing W, Yin M, Lü Q, Hu Y, Liu CP, Zhang JJ (2014). Oxygen solubility, diffusion coefficient, and solution viscosity// Xing W, Yin GP, Zhang JJ. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Elsevier, Amsterdam. 1-31. |
[56] | Xu JP, Zhang XP, Zeng B, Yuan SH, Liu JH, Liu MZ (2014). Effects of light and dissolved oxygen on the phenotypic plasticity of Alternanthera philoxeroides in submergence conditions. Acta Ecologica Sinica, 34, 258-268. |
[ 许建平, 张小萍, 曾波, 袁慎鸿, 刘建辉, 刘明智 (2014). 完全水淹环境中光照和溶氧对喜旱莲子草表型可塑性的影响. 生态学报, 34, 258-268.] | |
[57] | Xu JY, Chen HM, Wang XL (2016). A review on water depth effect on the growth and reproduction of plants in the wetlands. Wetland Science, 14, 725-732. |
[ 徐金英, 陈海梅, 王晓龙 (2016). 水深对湿地植物生长和繁殖影响研究进展. 湿地科学, 14, 725-732.] | |
[58] |
Yan H, Liu RQ, Liu ZN, Wang X, Luo WB, Sheng LX (2015). Growth and physiological responses to water depths in Carex schmidtii meinsh. PLOS ONE, 10, e0128176. DOI: 10.1371/journal.pone.0128176.
URL PMID |
[59] | Ye C, Chen CR, Butler OM, Rashti MR, Esfandbod M, Du M, Zhang QF (2019). Spatial and temporal dynamics of nutrients in riparian soils after nine years of operation of the Three Gorges Reservoir, China. Science of the Total Environment, 664, 841-850. |
[60] |
Ye XQ, Zeng B, Meng JL, Wu M, Zhang XP (2018). Responses in shoot elongation, carbohydrate utilization and growth recovery of an invasive species to submergence at different water temperatures. Scientific Reports, 8, 306. DOI: 10.1038/s41598-017-18735-7.
URL PMID |
[61] | You YF, Yang CH, Lei B, Zhang S, Wang YC, Liu JH (2017). Effect of water level regulation on vegetation characteristics in the water-level-fluctuation zone of the Three Gorges Reservoir. Chinese Journal of Applied and Environmental Biology, 23, 1103-1109. |
[ 由永飞, 杨春华, 雷波, 张晟, 王业春, 刘建辉 (2017). 水位调节对三峡水库消落带植被群落特征的影响. 应用与环境生物学报, 23, 1103-1109.] | |
[62] | Yuan SH, Zeng B, Su XL, Xu JP (2014). Effect of water-level fluctuation discrepancy on the composition of different annuals in Three Gorges Reservoir drawdown zone. Acta Ecologica Sinica, 34, 6481-6488. |
[ 袁慎鸿, 曾波, 苏晓磊, 许建平 (2014). 水位节律差异对三峡水库消落区不同物候类型1年生植物物种构成的影响. 生态学报, 34, 6481-6488.] | |
[63] | Zhang AY, Xiong GM, Fan DY, Yang D, Xie ZQ (2018). Effects of Three Gorges Dam on riparian vascular plants of the main stream of Yangtze River. Resources and Environment in the Yangtze Basin, 27, 145-156. |
[ 张爱英, 熊高明, 樊大勇, 杨丹, 谢宗强 (2018). 三峡水库蓄水对长江干流河岸植物组成的影响. 长江流域资源与环境, 27, 145-156.] | |
[64] | Zhang Q, Peters JL, Visser EJW, de Kroon H, Huber H (2016). Hydrologically contrasting environments induce genetic but not phenotypic differentiation in Solanum dulcamara. Journal of Ecology, 104, 1649-1661. |
[65] | Zhang Y, Cai JG, Sun OW, Shi JJ (2019). Research on photosynthetic responses mechanisms of Hydrangea macrophylla under waterlogging stress. Journal of Nuclear Agricultural Sciences, 33, 808-815. |
[ 章毅, 蔡建国, 孙欧文, 施健健 (2019). 水淹胁迫下绣球光合响应机制的研究. 核农学报, 33, 808-815.] | |
[66] | Zhang ZY, Cheng YC, Cheng L, Wan CY, Li JB (2016). Characteristics of vegetation and soil in the water level fluctuation zone of the Wanzhou region of Three Gorges Reservoir. Journal of Hydroecology, 37, 24-33. |
[ 张志永, 程郁春, 程丽, 万成炎, 李金波 (2016). 三峡库区万州段消落带植被及土壤理化特征分析. 水生态学杂志, 37, 24-33.] | |
[67] | Zhao Q, Chen JB (2018). Study and practice on ecological restoration strategy of the hydro-fluctuation belt in the Three Gorges Reservoir area. Journal of Anhui Agricultural Sciences, 46, 5-7. |
[ 赵琴, 陈教斌 (2018). 三峡库区消落带生态修复策略研究与实践. 安徽农业科学, 46, 5-7.] | |
[68] |
Zhou WG, Chen F, Meng YJ, Chandrasekaran U, Luo XF, Yang WY, Shu K (2020). Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiology and Biochemistry, 148, 228-236.
DOI URL PMID |
[69] | Zhu Q, Zhang ZY, Hu HQ, Wan CY, Hu L, Liu H (2014). Soil property changes under drain-flooding condition in Xiaojiang water-level-fluctuating belt of the Three-Gorge- Reservoir region. Soils, 46, 927-932. |
[ 朱强, 张志永, 胡红青, 万成炎, 胡莲, 刘晖 (2014). 淹没-出露条件下三峡水库小江消落带土壤性质变化研究. 土壤, 46, 927-932.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn