Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (8): 891-902.DOI: 10.17521/cjpe.2021.0085
Special Issue: 微生物生态学
• Research Articles • Previous Articles Next Articles
MAO Jin1, DUO Ying1, DENG Jun2, CHENG Jie3, CHENG Ji-Min4, PENG Chang-Hui4,5, GUO Liang4,6,*()
Received:
2021-03-12
Revised:
2021-05-26
Online:
2021-08-20
Published:
2021-05-29
Contact:
GUO Liang
Supported by:
MAO Jin, DUO Ying, DENG Jun, CHENG Jie, CHENG Ji-Min, PENG Chang-Hui, GUO Liang. Influences of warming and snow reduction in winter on soil nutrients and bacterial communities composition in a typical grassland of the Loess Plateau[J]. Chin J Plant Ecol, 2021, 45(8): 891-902.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0085
Fig. 2 Influence of different treatments on the soil temperature and relative humidity underground 5 cm from November 2018 to March 2019. CK, control; S, snow reduction; W, warming; WS, interaction of warming and snow reduction.
处理 Treatment | 年份-月份 Year-month | 冻融循环次数 Numbers of freeze-thaw cycle | 总计 Sum |
---|---|---|---|
对照 CK | 2018-11 | 2 | 29 |
2018-12 | 0 | ||
2019-01 | 0 | ||
2019-02 | 8 | ||
2019-03 | 19 | ||
增温 W | 2018-11 | 7 | 53 |
2018-12 | 22 | ||
2019-01 | 0 | ||
2019-02 | 24 | ||
2019-03 | 0 | ||
减雪 S | 2018-11 | 8 | 51 |
2018-12 | 21 | ||
2019-01 | 9 | ||
2019-02 | 13 | ||
2019-03 | 0 | ||
互作 WS | 2018-11 | 2 | 61 |
2018-12 | 16 | ||
2019-01 | 14 | ||
2019-02 | 23 | ||
2019-03 | 6 |
Table 1 Comparison of the numbers of soil freeze-thaw cycles under different treatments in winter
处理 Treatment | 年份-月份 Year-month | 冻融循环次数 Numbers of freeze-thaw cycle | 总计 Sum |
---|---|---|---|
对照 CK | 2018-11 | 2 | 29 |
2018-12 | 0 | ||
2019-01 | 0 | ||
2019-02 | 8 | ||
2019-03 | 19 | ||
增温 W | 2018-11 | 7 | 53 |
2018-12 | 22 | ||
2019-01 | 0 | ||
2019-02 | 24 | ||
2019-03 | 0 | ||
减雪 S | 2018-11 | 8 | 51 |
2018-12 | 21 | ||
2019-01 | 9 | ||
2019-02 | 13 | ||
2019-03 | 0 | ||
互作 WS | 2018-11 | 2 | 61 |
2018-12 | 16 | ||
2019-01 | 14 | ||
2019-02 | 23 | ||
2019-03 | 6 |
土壤指标 Soil indicator | 对照 CK | 增温 W | 减雪 S | 互作 WS | F | p |
---|---|---|---|---|---|---|
土壤有机碳含量 SOC content (g·kg-1) | 23.66 ± 1.87b | 30.92 ± 0.28a | 25.00 ± 0.94b | 25.15 ± 1.09b | 7.39 | * |
全氮含量 TN content (g·kg-1) | 2.47 ± 0.06c | 3.03 ± 0.03a | 2.97 ± 0.03a | 2.71 ± 0.02b | 47.28 | *** |
速效磷含量 AP content (mg·kg-1) | 3.30 ± 0.15c | 3.97 ± 0.15ab | 4.17 ± 0.03a | 3.53 ± 0.2bc | 7.23 | * |
硝态氮含量 NO- 3-N content (mg·kg-1) | 6.33 ± 0.41a | 4.37 ± 0.12b | 6.40 ± 0.55a | 4.83 ± 0.24b | 7.93 | ** |
铵态氮含量 NH+ 4-N content (mg·kg-1) | 3.90 ± 0.41b | 4.03 ± 0.12b | 3.33 ± 0.55b | 5.83 ± 0.24a | 4.73 | * |
pH | 7.51 ± 0.02a | 7.51 ± 0.01a | 7.48 ± 0a | 7.52 ± 0.02a | 1.54 | NS |
微生物生物量碳含量 MBC content (mg·kg-1) | 820.08 ± 23.97b | 951.73 ± 6.91a | 807.58 ± 48.58b | 696.02 ± 17.49c | 13.33 | ** |
微生物生物量氮含量 MBN content (mg·kg-1) | 63.48 ± 1.51a | 67.57 ± 2.57a | 61.39 ± 9.10a | 54.60 ± 1.26a | 1.26 | NS |
β-1,4-葡萄糖苷酶活性 BG activity (nmol·g-1·h-1) | 203.37 ± 16.45a | 211.55 ± 13.82a | 197.87 ± 16.04ab | 157.08 ± 4.32b | 3.19 | NS |
β-1,4-N-乙酰基氨基葡萄糖苷酶活性 NAG activity (nmol·g-1·h-1) | 76.85 ± 1.67a | 70.94 ± 2.33a | 74.33 ± 5.31a | 56.33 ± 1.63b | 8.64 | ** |
碱性磷酸酶活性 AKP activity (nmol·g-1·h-1) | 656.61 ± 14.04a | 642.68 ± 46.49a | 586.07 ± 30.72ab | 539.64 ± 4.12b | 3.60 | NS |
Table 2 Comparison of soil physical and chemical properties and enzyme activities under different treatments (means ± SD, n = 4)
土壤指标 Soil indicator | 对照 CK | 增温 W | 减雪 S | 互作 WS | F | p |
---|---|---|---|---|---|---|
土壤有机碳含量 SOC content (g·kg-1) | 23.66 ± 1.87b | 30.92 ± 0.28a | 25.00 ± 0.94b | 25.15 ± 1.09b | 7.39 | * |
全氮含量 TN content (g·kg-1) | 2.47 ± 0.06c | 3.03 ± 0.03a | 2.97 ± 0.03a | 2.71 ± 0.02b | 47.28 | *** |
速效磷含量 AP content (mg·kg-1) | 3.30 ± 0.15c | 3.97 ± 0.15ab | 4.17 ± 0.03a | 3.53 ± 0.2bc | 7.23 | * |
硝态氮含量 NO- 3-N content (mg·kg-1) | 6.33 ± 0.41a | 4.37 ± 0.12b | 6.40 ± 0.55a | 4.83 ± 0.24b | 7.93 | ** |
铵态氮含量 NH+ 4-N content (mg·kg-1) | 3.90 ± 0.41b | 4.03 ± 0.12b | 3.33 ± 0.55b | 5.83 ± 0.24a | 4.73 | * |
pH | 7.51 ± 0.02a | 7.51 ± 0.01a | 7.48 ± 0a | 7.52 ± 0.02a | 1.54 | NS |
微生物生物量碳含量 MBC content (mg·kg-1) | 820.08 ± 23.97b | 951.73 ± 6.91a | 807.58 ± 48.58b | 696.02 ± 17.49c | 13.33 | ** |
微生物生物量氮含量 MBN content (mg·kg-1) | 63.48 ± 1.51a | 67.57 ± 2.57a | 61.39 ± 9.10a | 54.60 ± 1.26a | 1.26 | NS |
β-1,4-葡萄糖苷酶活性 BG activity (nmol·g-1·h-1) | 203.37 ± 16.45a | 211.55 ± 13.82a | 197.87 ± 16.04ab | 157.08 ± 4.32b | 3.19 | NS |
β-1,4-N-乙酰基氨基葡萄糖苷酶活性 NAG activity (nmol·g-1·h-1) | 76.85 ± 1.67a | 70.94 ± 2.33a | 74.33 ± 5.31a | 56.33 ± 1.63b | 8.64 | ** |
碱性磷酸酶活性 AKP activity (nmol·g-1·h-1) | 656.61 ± 14.04a | 642.68 ± 46.49a | 586.07 ± 30.72ab | 539.64 ± 4.12b | 3.60 | NS |
Fig. 3 Comparison of soil bacterial diversity under different treatments. CK, control; S, snow reduction; W, warming; WS, interaction of warming and snow reduction. Different lowercase letters indicate significant differences among different treatments (p < 0.05).
Fig. 4 Comparison of the relative abundance of soil bacteria at different taxonomic levels under different experimental treatments. A, Relative abundance of bacteria at phylum level. B, Relative abundance of bacteria at class level. CK, control; S, snow reduction; W, warming; WS, interaction of warming and snow reduction. Different lowercase letters of the same taxon indicate significant differences in abundance between different treatments (p < 0.05). The lowercase letters are marked in the center of the corresponding bar graph of taxon relative abundance.
Fig. 5 Redundancy analysis (RDA) of soil bacterial communities and soil physical and chemical properties. CK, control; S, snow reduction; W, warming; WS, interaction of warming and snow reduction. AP, available phosphorus content; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; SOC, soil organic carbon content; TN, total nitrogen content. The blue arrows indicate the distribution of soil bacterial populations at the phylum level, and the red arrows indicate environmental factors.
Sha. | Chao1 | Ric. | Aci. | Pro. | Act. | Gem. | Chl. | Pla. | Rok. | Ver. | Bac. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | 0.23 | -0.26 | -0.06 | -0.36 | 0.19 | 0.36 | -0.16 | -0.09 | -0.13 | -0.14 | 0.19 | 0.22 |
TN | 0.12 | -0.14 | -0.07 | -0.23 | 0.36 | 0.17 | -0.42 | -0.05 | -0.05 | 0.21 | -0.09 | 0.00 |
AP | 0.15 | 0.11 | 0.19 | 0.43 | 0.46 | -0.28 | -0.32 | -0.10 | -0.11 | 0.32 | 0.11 | -0.02 |
NO- 3-N | 0.47 | 0.80* | 0.78** | 0.54* | 0.32 | -0.02 | -0.08 | -0.48 | -0.16 | -0.22 | -0.23 | -0.11 |
NH+ 4-N | -0.58* | -0.45 | -0.55* | -0.27 | -0.25 | -0.20 | -0.06 | 0.65** | -0.02 | 0.39 | 0.48 | 0.09 |
pH | -0.08 | -0.10 | -0.19 | 0.01 | 0.02 | -0.27 | -0.01 | -0.14 | 0.54* | -0.10 | -0.35 | 0.35 |
MBC | 0.56* | 0.22 | 0.43 | -0.07 | 0.38 | 0.43 | -0.02 | -0.54* | -0.14 | -0.43 | -0.15 | 0.25 |
MBN | 0.63** | 0.27 | 0.51* | -0.16 | 0.70** | 0.16 | -0.33 | -0.40 | 0.04 | -0.26 | -0.20 | 0.40 |
BG | 0.77** | 0.42 | 0.70** | 0.06 | 0.47 | 0.27 | -0.11 | -0.62* | 0.02 | -0.47 | -0.24 | 0.25 |
NAG | 0.49 | 0.31 | 0.54* | 0.38 | 0.42 | -0.01 | 0.05 | -0.41 | -0.12 | -0.19 | -0.20 | 0.04 |
AKP | 0.56* | 0.35 | 0.49 | -0.02 | 0.18 | 0.51* | 0.22 | -0.61* | -0.25 | -0.66** | -0.05 | 0.21 |
Table 3 Pearson correlation coefficients of soil bacterial diversity and abundance of various taxon with soil physical and chemical properties and enzyme activities
Sha. | Chao1 | Ric. | Aci. | Pro. | Act. | Gem. | Chl. | Pla. | Rok. | Ver. | Bac. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | 0.23 | -0.26 | -0.06 | -0.36 | 0.19 | 0.36 | -0.16 | -0.09 | -0.13 | -0.14 | 0.19 | 0.22 |
TN | 0.12 | -0.14 | -0.07 | -0.23 | 0.36 | 0.17 | -0.42 | -0.05 | -0.05 | 0.21 | -0.09 | 0.00 |
AP | 0.15 | 0.11 | 0.19 | 0.43 | 0.46 | -0.28 | -0.32 | -0.10 | -0.11 | 0.32 | 0.11 | -0.02 |
NO- 3-N | 0.47 | 0.80* | 0.78** | 0.54* | 0.32 | -0.02 | -0.08 | -0.48 | -0.16 | -0.22 | -0.23 | -0.11 |
NH+ 4-N | -0.58* | -0.45 | -0.55* | -0.27 | -0.25 | -0.20 | -0.06 | 0.65** | -0.02 | 0.39 | 0.48 | 0.09 |
pH | -0.08 | -0.10 | -0.19 | 0.01 | 0.02 | -0.27 | -0.01 | -0.14 | 0.54* | -0.10 | -0.35 | 0.35 |
MBC | 0.56* | 0.22 | 0.43 | -0.07 | 0.38 | 0.43 | -0.02 | -0.54* | -0.14 | -0.43 | -0.15 | 0.25 |
MBN | 0.63** | 0.27 | 0.51* | -0.16 | 0.70** | 0.16 | -0.33 | -0.40 | 0.04 | -0.26 | -0.20 | 0.40 |
BG | 0.77** | 0.42 | 0.70** | 0.06 | 0.47 | 0.27 | -0.11 | -0.62* | 0.02 | -0.47 | -0.24 | 0.25 |
NAG | 0.49 | 0.31 | 0.54* | 0.38 | 0.42 | -0.01 | 0.05 | -0.41 | -0.12 | -0.19 | -0.20 | 0.04 |
AKP | 0.56* | 0.35 | 0.49 | -0.02 | 0.18 | 0.51* | 0.22 | -0.61* | -0.25 | -0.66** | -0.05 | 0.21 |
Fig. 6 Potential influencing paths of soil warming, snow reduction and interactions between the above two treatments on soil microbial community, enzyme activity, and nutrient availability. SOC, soil organic carbon; TN, soil total nitrogen. The thick red arrow in the figure represents the change in the content or frequency of the index.
[1] | Bai E, Li SL, Xu WH, Li W, Dai WW, Jiang P (2013). A meta- analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451. |
[2] | Bao SD (2000). Agrochemical Analysis of Soil. Agricultural Press, Beijing. 30-83. |
[ 鲍士旦 (2000). 土壤农化分析. 农业出版社, 北京. 30-83.] | |
[3] | Bardgett RD, Freeman C, Ostle NJ (2008). Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805-814. |
[4] | Blankinship JC, Hart SC (2012). Consequences of manipulated snow cover on soil gaseous emission and N retention in the growing season: a meta-analysis. Ecosphere, 3, 1-20. |
[5] | Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336. |
[6] | Chaer GM, Myrold DD, Bottomley PJ (2009). A soil quality index based on the equilibrium between soil organic matter and biochemical properties of undisturbed coniferous forest soils of the Pacific Northwest. Soil Biology & Biochemistry, 41, 822-830. |
[7] | Cheng JM (2014). Grassland Ecosystem of the Loess Plateau in China—Yunwushan National Nature Reserve. Science Press, Beijing. |
[ 程积民 (2014). 黄土高原草原生态系统研究——云雾山国家级自然保护区. 科学出版社, 北京.] | |
[8] | Chinnadurai C, Gopalaswamy G, Balachandar D (2014). Impact of long-term organic and inorganic nutrient managements on the biological properties and eubacterial community diversity of the Indian semi-arid Alfisol. Archives of Agronomy and Soil Science, 60, 531-548. |
[9] | DeForest JL, Smemo KA, Burke DJ, Elliott HL, Becker JC (2012). Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests. Biogeochemistry, 109, 189-202. |
[10] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. DOI: 10.1038/ncomms10541.
DOI |
[11] | Durán J, Morse JL, Groffman PM, Campbell JL, Christenson LM, Driscoll CT, Fahey TJ, Fisk MC, Mitchell MJ, Templer PH (2014). Winter climate change affects growing- season soil microbial biomass and activity in northern hardwood forests. Global Change Biology, 20, 3568-3577. |
[12] | Edgar RC (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996-998. |
[13] | Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K, Reich PB (2013). Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proceedings of the National Academy of Sciences of the United States of America, 110, 6889-6894. |
[14] | Freppaz M, Williams BL, Edwards AC, Scalenghe R, Zanini E (2007). Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability. Applied Soil Ecology, 35, 247-255. |
[15] | Grimm NB, Chapin III FS, Bierwagen B, Gonzalez P, Groffman PM, Luo YQ, Melton F, Nadelhoffer K, Pairis A, Raymond PA, Schimel J, Williamson CE (2013). The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 11, 474-482. |
[16] | Guo L, Cheng J, Luedeling E, Koerner SE, He JS, Xu J, Gang C, Li W, Luo R, Peng C (2017). Critical climate periods for grassland productivity on China’s Loess Plateau. Agricultural and Forest Meteorology, 233, 101-109. |
[17] | Hardy JP, Groffman PM, Fitzhugh RD, Henry KS, Welman AT, Demers JD, Fahey TJ, Driscoll CT, Tierney GL, Nolan S (2001). Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry, 56, 151-174. |
[18] | Hudson JMG, Henry GHR (2009). Increased plant biomass in a High Arctic heath community from 1981 to 2008. Ecology, 90, 2657-2663. |
[19] | IPCC (2014). The Physical Science Basis—Summary for Policymakers. Contribution of WG1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[20] | Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484. |
[21] | Kreyling J, Beierkuhnlein C, Jentsch A (2010). Effects of soil freeze-thaw cycles differ between experimental plant communities. Basic and Applied Ecology, 11, 65-75. |
[22] | Larsen KS, Jonasson S, Michelsen A (2002). Repeated freeze- thaw cycles and their effects on biological processes in two arctic ecosystem types. Applied Soil Ecology, 21, 187-195. |
[23] | Li W, Wu J, Bai E, Guan D, Wang A, Yuan F, Wang S, Jin C (2016). Response of terrestrial nitrogen dynamics to snow cover change: a meta-analysis of experimental manipulation. Soil Biology & Biochemistry, 100, 51-58. |
[24] | Lladó S, Žifčáková L, Větrovský T, Eichlerová I, Baldrian P (2016). Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biology and Fertility of Soils, 52, 251-260. |
[25] | López-Aizpún M, Arango-Mora C, Santamaría C, Lasheras E, Santamaría JM, Ciganda VS, Cárdenas LM, Elustondo D (2018). Atmospheric ammonia concentration modulates soil enzyme and microbial activity in an oak forest affecting soil microbial biomass. Soil Biology & Biochemistry, 116, 378-387. |
[26] | Luo Y, Wan S, Hui D, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625. |
[27] | Magoč T, Salzberg SL (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957-2963. |
[28] | Marx MC, Wood M, Jarvis SC (2001). A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology & Biochemistry, 33, 1633-1640. |
[29] | Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173-2176. |
[30] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. |
[ 牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.] | |
[31] | Peng SS, Piao SL, Ciais P, Fang JY, Wang XH (2010). Change in winter snow depth and its impacts on vegetation in China. Global Change Biology, 16, 3004-3013. |
[32] | Qin DH (2014). Climate change science and sustainable development. Progress in Geography, 33, 874-883. |
[ 秦大河 (2014). 气候变化科学与人类可持续发展. 地理科学进展, 33, 874-883.] | |
[33] | Reinmann AB, Susser JR, Demaria EMC, Templer PH (2019). Declines in northern forest tree growth following snowpack decline and soil freezing. Global Change Biology, 25, 420-430. |
[34] |
Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. DOI: 10.7717/peerj.2584.
DOI |
[35] | Romero-Olivares AL, Allison SD, Treseder KK (2017). Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biology & Biochemistry, 107, 32-40. |
[36] | Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, Meyer AF, Martin AM (2007). Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology, 88, 1379-1385. |
[37] | Schuerings J, Jentsch A, Walter J, Kreyling J (2014). Winter warming pulses differently affect plant performance in temperate heathland and grassland communities. Ecological Research, 29, 561-570. |
[38] | Shen JP, He JZ (2011). Responses of microbes-mediated carbon and nitrogen cycles to global climate change. Acta Ecologica Sinica, 31, 2957-2967. |
[ 沈菊培, 贺纪正 (2011). 微生物介导的碳氮循环过程对全球气候变化的响应. 生态学报, 31, 2957-2967.] | |
[39] | Sjursen H, Michelsen A, Holmstrup M (2005). Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil. Applied Soil Ecology, 28, 79-93. |
[40] | Song Y, Zou YC, Wang GP, Yu XF (2017). Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: a meta-analysis. Soil Biology & Biochemistry, 109, 35-49. |
[41] | Sorensen PO, Finzi AC, Giasson MA, Reinmann AB, Sanders- DeMott R, Templer PH, Biochemistry (2018). Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming. Soil Biology & Biochemistry, 116, 39-47. |
[42] | Sulkava P, Huhta V (2003). Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil. Applied Soil Ecology, 22, 225-239. |
[43] | Tan B, Wu FZ, Yang WQ, Yang YL, Wang A, Kang LN (2011). Effects of snow pack removal on the dynamics of winter-time soil temperature, carbon, nitrogen, and phosphorus in alpine forests of west Sichuan. Chinese Journal of Applied Ecology, 22, 2553-2559. |
[ 谭波, 吴福忠, 杨万勤, 杨玉莲, 王奥, 康丽娜 (2011). 雪被去除对川西高山森林冬季土壤温度及碳、氮、磷动态的影响. 应用生态学报, 22, 2553-2559.] | |
[44] | Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT, Yavitt JB (2003). Environmental control of fine root dynamics in a northern hardwood forest. Global Change Biology, 9, 670-679. |
[45] | Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT (2001). Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochemistry, 56, 175-190. |
[46] | Torres IF, Bastida F, Hernández T, Albaladejo J, García C (2015). Enzyme activity, microbial biomass and community structure in a long-term restored soil under semi-arid conditions. Soil Research, 53, 553-560. |
[47] | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707. |
[48] | Wang N, Wang S, Gao Q, Zhao LP, Tian T, Zhang JJ (2014). Effect of nitrogen application levels on microbiological characteristics of soils with different fertility basics. Journal of Soil and Water Conservation, 28, 148-152. |
[ 王楠, 王帅, 高强, 赵兰坡, 田特, 张晋京 (2014). 施氮水平对不同肥力土壤微生物学特性的影响. 水土保持学报, 28, 148-152.] | |
[49] | Wang Q, Garrity GM, Tiedje JM, Cole JR (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261-5267. |
[50] | Wang Y, Liu JS, Wang GP, Zhou WM (2007). Study on the effect of freezing and thawing action to soil physical and chemical characteristics. Geography and Geo-information Science, 23, 91-96. |
[ 王洋, 刘景双, 王国平, 周旺明 (2007). 冻融作用与土壤理化效应的关系研究. 地理与地理信息科学, 23, 91-96.] | |
[51] | Weintraub SR, Wieder WR, Cleveland CC, Townsend AR (2013). Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest. Biogeochemistry, 114, 313-326. |
[52] | Xiao W, Chen X, Jing X, Zhu BA (2018). A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biology & Biochemistry, 123, 21-32. |
[53] |
Yu XJ, Yang JS, Wang ET, Li BZ, Yuan HL (2015). Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves. Frontiers in Microbiology, 6, 867. DOI: 10.3389/fmicb.2015.00867.
DOI |
[54] | Yue H, Wang M, Wang S, Gilbert JA, Sun X, Wu L, Lin Q, Hu Y, Li X, He Z, Zhou J, Yang Y (2015). The microbe- mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. The ISME Journal, 9, 2012-2020. |
[55] | Zhou W, Chen H, Zhou L, Lewis BJ, Ye Y, Tian J, Li G, Dai L (2011). Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain. Annals of Forest Science, 68, 943-951. |
[1] | LONG Ji-Lan, JIANG Zheng, LIU Ding-Qin, MIAO Yu-Xuan, ZHOU Ling-Yan, FENG Ying, PEI Jia-Ning, LIU Rui-Qiang, ZHOU Xu-Hui, FU Yu-Ling. Effects of drought on plant root exudates and associated rhizosphere priming effect: review and prospect [J]. Chin J Plant Ecol, 2024, 48(7): 817-827. |
[2] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[3] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[4] | SUONAN Ji, LI Bo-Wen, LÜ Wang-Wang, WANG Wen-Ying, LA Ben, LU Xu-Wei, SONGZHA Cuo, CHEN Cheng-Hao, MIAO Qi, SUN Fang-Hui, WANG Shi-Ping. Changes of phenological sequence of Potentilla saundersiana and its frost resistance under the scenarios of warming and increasing precipitation [J]. Chin J Plant Ecol, 2024, 48(2): 158-170. |
[5] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[6] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[7] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[8] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[9] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[10] | GUO Min, LUO Lin, LIANG Jin, WANG Yan-Jie, ZHAO Chun-Zhang. Effects of freeze-thaw changes on soil physicochemical properties and enzyme activities in root zone of Picea asperata and Fargesia nitida under subalpine forests of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 882-894. |
[11] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[12] | Dilixiadanmu TASHENMAIMAITI, LIU Hui-Liang. Review of research on germination heterochrony of desert annual plants [J]. Chin J Plant Ecol, 2023, 47(12): 1611-1628. |
[13] | CHEN Xin-Yi, WU Chen, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root phenology of forests: a review [J]. Chin J Plant Ecol, 2023, 47(11): 1471-1482. |
[14] | SUN Cai-Li, QIU Mo-Sheng, HUANG Chao-Xiang, WANG Yi-Wei. Characteristics of soil extracellular enzyme activities and their stoichiometry during rocky desertification in southwestern Guizhou, China [J]. Chin J Plant Ecol, 2022, 46(7): 834-845. |
[15] | WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands [J]. Chin J Plant Ecol, 2022, 46(4): 461-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn