Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (4): 403-415.DOI: 10.17521/cjpe.2023.0152 cstr: 32100.14.cjpe.2023.0152
Special Issue: 全球变化与生态系统; 生态系统碳水能量通量
• Review • Next Articles
QIN Wen-Kuan1, ZHANG Qiu-Fang1,2, AO Gu-Kai-Lin1, ZHU Biao1,*()()
Received:
2023-05-30
Accepted:
2023-12-21
Online:
2024-04-20
Published:
2024-05-11
Contact:
*(biaozhu@pku.edu.cn)
Supported by:
QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review[J]. Chin J Plant Ecol, 2024, 48(4): 403-415.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0152
Fig. 1 Experimental methods of warming. A, Laboratory incubation. B, Soil translocation. C, Open-top chamber warming. D, Infrared radiator warming. E, Heating cable warming (Zhang et al., 2016). F, Whole-soil profile warming (Qin et al., 2023). G, Whole-ecosystem warming (Courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy, https://mnspruce. ornl.gov; Hanson et al., 2017). H, Temperature gradient sampling experiments (e.g., latitudinal gradient).
[1] | Alexander JM, Diez JM, Levine JM (2015). Novel competitors shape species’ responses to climate change. Nature, 525, 515-518. |
[2] | Aronson EL, McNulty SG (2009). Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology, 149, 1791-1799. |
[3] | Bai E, Li SL, Xu WH, Li W, Dai WW, Jiang P (2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451. |
[4] | Bai TS, Tao JJ, Li Z, Shu M, Yan XB, Wang P, Ye CL, Guo H, Wang Y, Hu SJ (2019). Different microbial responses in top- and sub-soils to elevated temperature and substrate addition in a semiarid grassland on the Loess Plateau. European Journal of Soil Science, 70, 1025-1036. |
[5] |
Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
[6] | Bai YX, Peng YF, Zhou W, Xie YH, Li QL, Yang GB, Chen LY, Zhu B, Yang YH (2023). SWAMP: a new experiment for simulating permafrost warming and active layer deepening on the Tibetan Plateau. Methods in Ecology and Evolution, 14, 1732-1746. |
[7] | Batjes NH (2016). Harmonized soil property values for broad- scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61-68. |
[8] | Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560, 80-83. |
[9] |
Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, Smith MD (2014). Finding generality in ecology: a model for globally distributed experiments. Methods in Ecology and Evolution, 5, 65-73.
DOI |
[10] | Bradford MA (2013). Thermal adaptation of decomposer communities in warming soils. Frontiers in Microbiology, 4, 333. DOI: 10.3389/fmicb.2013.00333. |
[11] | Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW (2016). Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change, 6, 751-758. |
[12] |
Butler SM, Melillo JM, Johnson JE, Mohan J, Steudler PA, Lux H, Burrows E, Smith RM, Vario CL, Scott L, Hill TD, Aponte N, Bowles F (2012). Soil warming alters nitrogen cycling in a New England forest: implications for ecosystem function and structure. Oecologia, 168, 819-828.
DOI PMID |
[13] |
Carey JC, Tang J, Templer PH, Kroeger KD, Crowther TW, Burton AJ, Dukes JS, Emmett B, Frey SD, Heskel MA, Jiang L, Machmuller MB, Mohan J, Panetta AM, Reich PB, et al. (2016). Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America, 113, 13797-13802.
DOI PMID |
[14] |
Carrillo Y, Dijkstra F, LeCain D, Blumenthal D, Pendall E (2018). Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecology Letters, 21, 1639-1648.
DOI PMID |
[15] | Chen J, Luo Y, Xia J, Jiang L, Zhou X, Lu M, Liang J, Shi Z, Shelton S, Cao J (2015). Stronger warming effects on microbial abundances in colder regions. Scientific Reports, 5, 18032. DOI: 10.1038/srep18032. |
[16] |
Chen J, Luo Y, García-Palacios P, Cao J, Dacal M, Zhou X, Li J, Xia J, Niu S, Yang H, Shelton S, Guo W, van Groenigen KJ (2018). Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Global Change Biology, 24, 4816-4826.
DOI PMID |
[17] | Chen ZW, Zhao DS, Zhu Y, Zhang RD, Guo CY (2022). Response of grassland soil respiration to experimental warming: the long-term effects may be greater than we thought. Soil Biology & Biochemistry, 168, 108616. DOI: 10.1016/j.soilbio.2022.108616. |
[18] | Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, et al. (2011). Temperature and soil organic matter decomposition rates—Synthesis of current knowledge and a way forward. Global Change Biology, 17, 3392-3404. |
[19] | Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, et al. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540, 104-108. |
[20] | Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. |
[21] | Day TA, Ruhland CT, Xiong FS (2008). Warming increases aboveground plant biomass and C stocks in vascular-plant- dominated Antarctic tundra. Global Change Biology, 14, 1827-1843. |
[22] | De Boeck HJ, Vicca S, Roy J, Nijs I, Milcu A, Kreyling J, Jentsch A, Chabbi A, Campioli M, Callaghan T, Beierkuhnlein C, Beier C (2015). Global change experiments: challenges and opportunities. BioScience, 65, 922-931. |
[23] | Dove NC, Torn MS, Hart SC, Taş N (2021). Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile. Nature Communications, 12, 2089. DOI: 10.1038/s41467-021-22408-5. |
[24] | Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277-280. |
[25] | Frey SD, Lee J, Melillo JM, Six J (2013). The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change, 3, 395-398. |
[26] | Ganjurjav H, Gao Q, Gornish ES, Schwartz MW, Liang Y, Cao X, Zhang W, Zhang Y, Li W, Wan Y, Li Y, Danjiu L, Guo H, Lin E (2016). Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai- Tibetan Plateau. Agricultural and Forest Meteorology, 223, 233-240. |
[27] | Giardina CP, Litton CM, Crow SE, Asner GP (2014). Warming- related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nature Climate Change, 4, 822-827. |
[28] |
Gill AL, Finzi AC (2016). Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecology Letters, 19, 1419-1428.
DOI PMID |
[29] | Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T (2013). Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biology & Biochemistry, 58, 115-126. |
[30] | Hanson PJ, Childs KW, Wullschleger SD, Riggs JS, Thomas WK, Todd DE, Warren JM (2011). A method for experimental heating of intact soil profiles for application to climate change experiments. Global Change Biology, 17, 1083-1096. |
[31] | Hanson PJ, Riggs JS, Nettles WR, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, Warren JM, Barbier C (2017). Attaining whole- ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences, 14, 861-883. |
[32] | Harrison F (2011). Getting started with meta-analysis. Methods in Ecology and Evolution, 2, 1-10. |
[33] | He NP, Liu Y, Xu L, Wen XF, Yu GR, Sun XM (2018). Temperature sensitivity of soil organic matter decomposition: new insights into models of incubation and measurement. Acta Ecologica Sinica, 38, 4045-4051. |
[何念鹏, 刘远, 徐丽, 温学发, 于贵瑞, 孙晓敏 (2018). 土壤有机质分解的温度敏感性: 培养与测定模式. 生态学报, 38, 4045-4051.] | |
[34] |
Hicks Pries CE, Castanha C, Porras RC, Torn MS (2017). The whole-soil carbon flux in response to warming. Science, 355, 1420-1423.
DOI PMID |
[35] | IPCC (2021). Summary for policymakers// Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[36] | Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419-445. |
[37] | Jia J, Liu Z, Haghipour N, Wacker L, Zhang H, Sierra CA, Ma T, Wang Y, Chen L, Luo A, Wang Z, He J, Zhao M, Eglinton TI, Feng X (2023). Molecular 14C evidence for contrasting turnover and temperature sensitivity of soil organic matter components. Ecology Letters, 26, 778-788. |
[38] | Jian S, Li J, Wang G, Kluber LA, Schadt CW, Liang J, Mayes MA (2020). Multi-year incubation experiments boost confidence in model projections of long-term soil carbon dynamics. Nature Communications, 11, 5864. DOI: 10.1038/s41467-020-19428-y. |
[39] | Kan Z, Liu W, Liu W, He C, Bohoussou NY, Dang YP, Zhao X, Zhang H (2022). Sieving soil before incubation experiments overestimates carbon mineralization but underestimates temperature sensitivity. Science of the Total Environment, 806, 150962. DOI: 10.1016/j.scitotenv.2021.150962. |
[40] |
Keller AB, Brzostek ER, Craig ME, Fisher JB, Phillips RP (2021). Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecology Letters, 24, 626-635.
DOI PMID |
[41] | Kimball BA, Conley MM, Wang S, Lin X, Luo C, Morgan J, Smith D (2008). Infrared heater arrays for warming ecosystem field plots. Global Change Biology, 14, 309-320. |
[42] |
Klein JA, Harte J, Zhao X (2007). Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecological Applications, 17, 541-557.
DOI PMID |
[43] | Kuzyakov Y (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
[44] |
Lavallee JM, Soong JL, Cotrufo MF (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26, 261-273.
DOI PMID |
[45] | Lehmann J, Kleber M (2015). The contentious nature of soil organic matter. Nature, 528, 60-68. |
[46] | Lei J, Guo X, Zeng Y, Zhou J, Gao Q, Yang Y (2021). Temporal changes in global soil respiration since 1987. Nature Communications, 12, 403. DOI: 10.1038/s41467-020-20616-z. |
[47] | Li J, Chen YD, Gan TY, Lau NC (2018). Elevated increases in human-perceived temperature under climate warming. Nature Climate Change, 8, 43-47. |
[48] | Li J, Pei J, Pendall E, Reich PB, Noh NJ, Li B, Fang C, Nie M (2020). Rising temperature may trigger deep soil carbon loss across forest ecosystems. Advanced Science, 19, 2001242. DOI: 10.1002/advs.202001242. |
[49] | Li X, Jiang L, Meng F, Wang S, Niu H, Iler AM, Duan J, Zhang Z, Luo C, Cui S, Zhang L, Li Y, Wang Q, Zhou Y, Bao X, et al. (2016). Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nature Communications, 7, 12489. DOI: 10.1038/ncomms12489. |
[50] | Liebmann P, Wordell-Dietrich P, Kalbitz K, Mikutta R, Kalks F, Don A, Woche SK, Dsilva LR, Guggenberger G (2020). Relevance of aboveground litter for soil organic matter formation—A soil profile perspective. Biogeosciences, 17, 3099-3113. |
[51] | Litton CM, Giardina CP (2008). Below-ground carbon flux and partitioning: global patterns and response to temperature. Functional Ecology, 22, 941-954. |
[52] | Liu F, Qin S, Fang K, Chen L, Peng Y, Smith P, Yang Y (2022). Divergent changes in particulate and mineral- associated organic carbon upon permafrost thaw. Nature Communications, 13, 5073. DOI: 10.1038/s41467-022-32681-7. |
[53] |
Liu H, Mi Z, Lin L, Wang Y, Zhang Z, Zhang F, Wang H, Liu L, Zhu B, Cao G, Zhao X, Sanders NJ, Classen AT, Reich PB, He J (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI PMID |
[54] | Liu ZJ, Lin WS, Yang ZR, Lin TW, Liu XF, Chen YM, Yang YS (2017). Effects of soil warming and nitrogen deposition on available nitrogen in a young Cunninghamia lanceolata stand in mid-subtropical China. Acta Ecologica Sinica, 37, 44-53. |
[刘志江, 林伟盛, 杨舟然, 林廷武, 刘小飞, 陈岳民, 杨玉盛 (2017). 模拟增温和氮沉降对中亚热带杉木幼林土壤有效氮的影响. 生态学报, 37, 44-53.] | |
[55] |
Lu M, Zhou XH, Yang Q, Li H, Luo YQ, Fang CM, Chen JK, Yang X, Li B (2013). Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology, 94, 726-738.
PMID |
[56] | Luo Y, Ahlström A, Allison SD, Batjes NH, Brovkin V, Carvalhais N, Chappell A, Ciais P, Davidson EA, Finzi A, Georgiou K, Guenet B, Hararuk O, Harden JW, He Y, et al. (2016). Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 30, 40-56. |
[57] | Luo ZK, Luo YQ, Wang GC, Xia JY, Peng CH (2020). Warming-induced global soil carbon loss attenuated by downward carbon movement. Global Change Biology, 26, 7242-7254. |
[58] | Ma ZL, Zhao WQ (2020). Research progress on input of plant community-derived soil organic carbon and its responses to climate warming. Chinese Journal of Ecology, 39, 270-281. |
[马志良, 赵文强 (2020). 植物群落向土壤有机碳输入及其对气候变暖的响应研究进展. 生态学杂志, 39, 270-281.] | |
[59] |
Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017). Long- term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101-105.
DOI PMID |
[60] | Meng C, Tian D, Zeng H, Li Z, Chen HYH, Niu S (2020). Global meta-analysis on the responses of soil extracellular enzyme activities to warming. Science of the Total Environment, 705, 135992. DOI: 10.1016/j.scitotenv.2019.135992. |
[61] | Niu SL, Han XG, Ma KP, Wan SQ (2007). Field facilities in global warming and terrestrial ecosystem research. Journal of Plant Ecology (Chinese Version), 31, 262-271. |
[牛书丽, 韩兴国, 马克平, 万师强 (2007). 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 31, 262-271.]
DOI |
|
[62] | Nottingham AT, Meir P, Velasquez E, Turner BL (2020). Soil carbon loss by experimental warming in a tropical forest. Nature, 584, 234-237. |
[63] |
Nottingham AT, Whitaker J, Ostle NJ, Bardgett RD, McNamara NP, Fierer N, Salinas N, Ccahuana AJQ, Turner BL, Meir P (2019). Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecology Letters, 22, 1889-1899.
DOI PMID |
[64] | Pold G, Melillo JM, DeAngelis KM (2015). Two decades of warming increases diversity of a potentially lignolytic bacterial community. Frontiers in Microbiology, 6, 480. DOI: 10.3389/fmicb.2015.00480. |
[65] | Qin WK, Chen Y, Wang XD, Zhao HY, Hou YH, Zhang QF, Guo XW, Zhang ZH, Zhu B (2023). Whole-soil warming shifts species composition without affecting diversity, biomass and productivity of the plant community in an alpine meadow. Fundamental Research, 3, 160-169. |
[66] | Ren S, Ding JZ, Yan ZJ, Cao YF, Li J, Wang YH, Liu D, Zeng H, Wang T (2020). Higher temperature sensitivity of soil C release to atmosphere from northern permafrost soils as indicated by a meta-analysis. Global Biogeochemical Cycles, 34, e2020GB006688. DOI: 10.1029/2020GB006688. |
[67] | Roth VN, Lange M, Simon C, Hertkorn N, Bucher S, Goodall T, Griffiths RI, Mellado-Vázquez PG, Mommer L, Oram NJ, Weigelt A, Dittmar T, Gleixner G (2019). Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nature Geoscience, 12, 755-761. |
[68] | Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. |
[69] | Shao J, Zhou X, van Groenigen KJ, Zhou G, Zhou H, Zhou L, Lu M, Xia J, Jiang L, Hungate BA, Luo Y, He F, Thakur MP (2022). Warming effects on grassland productivity depend on plant diversity. Global Ecology and Biogeography, 31, 588-598. |
[70] | Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013). Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature, 497, 615-618. |
[71] | Soong JL, Phillips CL, Ledna C, Koven CD, Torn MS (2020). CMIP5 models predict rapid and deep soil warming over the 21st century. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005266. DOI: 10.1029/2019JG005266. |
[72] | Walker TWN, Janssens IA, Weedon JT, Sigurdsson BD, Richter A, Peñuelas J, Leblans NIW, Bahn M, Bartrons M, de Jonge C, Fuchslueger L, Gargallo-Garriga A, Gunnarsdóttir GE, Marañón-Jiménez S, Oddsdóttir ES, et al. (2020). A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology & Evolution, 4, 101-108. |
[73] | Wang C, Zhao X, Zi H, Hu L, Ade L, Wang G, Lerdau M (2017). The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau. Applied Soil Ecology, 116, 30-41. |
[74] |
Wang J, Defrenne C, McCormack ML, Yang L, Tian D, Luo Y, Hou E, Yan T, Li Z, Bu W, Chen Y, Niu S (2021). Fine-root functional trait responses to experimental warming: a global meta-analysis. New Phytologist, 230, 1856-1867.
DOI PMID |
[75] | Wang M, Guo X, Zhang S, Xiao L, Mishra U, Yang Y, Zhu B, Wang G, Mao X, Qian T, Jiang T, Shi Z, Luo Z (2022). Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nature Communications, 13, 5514. DOI: 10.1038/s41467-022-33278-w. |
[76] | Wang N, Quesada B, Xia L, Butterbach-Bahl K, Goodale CL, Kiese R (2019a). Effects of climate warming on carbon fluxes in grasslands—A global meta-analysis. Global Change Biology, 25, 1839-1851. |
[77] | Wang QK, Zhao XC, Chen LC, Yang QP, Chen S, Zhang WD (2019b). Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Functional Ecology, 33, 514-523. |
[78] |
Waring BG, Sulman BN, Reed S, Smith AP, Averill C, Creamer CA, Cusack DF, Hall SJ, Jastrow JD, Jilling A, Kemner KM, Kleber M, Liu XJA, Pett-Ridge J, Schulz M (2020). From pools to flow: the PROMISE framework for new insights on soil carbon cycling in a changing world. Global Change Biology, 26, 6631-6643.
DOI PMID |
[79] | Xu M, Li X, Kuyper TW, Xu M, Li X, Zhang J (2021). High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Biology, 27, 2061-2075. |
[80] | Xu MH, Xue X (2013). A research on summer vegetation characteristics & short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 33, 2071-2083. |
[徐满厚, 薛娴 (2013). 青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应. 生态学报, 33, 2071-2083.] | |
[81] | Xu WF, Yuan WP (2017). Responses of microbial biomass carbon and nitrogen to experimental warming: a meta- analysis. Soil Biology & Biochemistry, 115, 265-274. |
[82] | Xu WF, Yuan WP, Cui LL, Ma MN, Zhang FG (2019). Responses of soil organic carbon decomposition to warming depend on the natural warming gradient. Geoderma, 343, 10-18. |
[83] | Yin R, Qin W, Wang X, Xie D, Wang H, Zhao H, Zhang Z, He J, Schädler M, Kardol P, Eisenhauer N, Zhu B (2023). Experimental warming causes mismatches in alpine plant-microbe-fauna phenology. Nature Communications, 14, 2159. DOI: 10.1038/s41467-023-37938-3. |
[84] | Yost JL, Hartemink AE (2020). How deep is the soil studied—An analysis of four soil science journals. Plant and Soil, 452, 5-18. |
[85] |
Yue K, Fornara DA, Yang W, Peng Y, Peng C, Liu Z, Wu F (2017). Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecology Letters, 20, 663-672.
DOI PMID |
[86] | Zhang J, Kuang L, Mou Z, Kondo T, Koarashi J, Atarashi- Andoh M, Li Y, Tang X, Wang Y, Peñuelas J, Sardans J, Hui D, Lambers H, Wu W, Kaal J, et al. (2022a). Ten years of warming increased plant-derived carbon accumulation in an East Asian monsoon forest. Plant and Soil, 481, 349-365. |
[87] | Zhang QF, Lü CP, Bei ZX, Xie JS, Lü MK, Lin WS, Chen YM, Yang YS (2016). Effects of simulated warming outdoor on lipid peroxidation and protective enzyme activities in the subtropical species Cunninghamia lanceolata. Chinese Journal of Plant Ecology, 40, 1230-1237. |
[张秋芳, 吕春平, 贝昭贤, 谢锦升, 吕茂奎, 林伟盛, 陈岳民, 杨玉盛 (2016). 野外模拟增温对亚热带杉木叶片膜脂过氧化及保护酶活性的影响. 植物生态学报, 40, 1230-1237.]
DOI |
|
[88] | Zhang QF, Qin WK, Feng JG, Zhu B (2022b). Responses of soil microbial carbon use efficiency to warming: review and prospects. Soil Ecology Letters, 4, 307-318. |
[89] | Zhou J, Wen Y, Rillig MC, Shi L, Dippold MA, Zeng Z, Kuzyakov Y, Zang H, Jones DL, Blagodatskaya E (2023). Restricted power: Can microorganisms maintain soil organic matter stability under warming exceeding 2 degrees? Global Ecology and Biogeography, 32, 919-930. |
[90] |
Zhu B, Chen Y (2020). Techniques and methods for field warming manipulation experiments in terrestrial ecosystems. Chinese Journal of Plant Ecology, 44, 330-339.
DOI |
[朱彪, 陈迎 (2020). 陆地生态系统野外增温控制实验的技术与方法. 植物生态学报, 44, 330-339.]
DOI |
|
[91] |
Zhu EX, Cao ZJ, Jia J, Liu CZ, Zhang ZH, Wang H, Dai GH, He JS, Feng XJ (2021). Inactive and inefficient: warming and drought effect on microbial carbon processing in alpine grassland at depth. Global Change Biology, 27, 2241-2253.
DOI PMID |
[1] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[2] | YU Hai-Ying, YANG Li-Lin, FU Su-Jing, ZHANG Zhi-Min, YAO Qi-Fu. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests [J]. Chin J Plant Ecol, 2022, 46(12): 1573-1584. |
[3] | LI Xue-Ying, ZHU Wen-Quan, LI Pei-Xian, XIE Zhi-Ying, ZHAO Cen-Liang. Predicting phenology shifts of herbaceous plants on the Qinghai-Xizang Plateau under climate warming with the space-for-time method [J]. Chin J Plant Ecol, 2020, 44(7): 742-751. |
[4] | XIA Jian-Yang, LU Rui-Ling, ZHU Chen, CUI Er-Qian, DU Ying, HUANG Kun, SUN Bao-Yu. Response and adaptation of terrestrial ecosystem processes to climate warming [J]. Chin J Plant Ecol, 2020, 44(5): 494-514. |
[5] | ZHU Biao, CHEN Ying. Techniques and methods for field warming manipulation experiments in terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(4): 330-339. |
[6] | SHEN Jia-Yan, LI Shuai-Feng, HUANG Xiao-Bo, LEI Zhi-Quan, SHI Xing-Quan, SU Jian-Rong. Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin [J]. Chin J Plant Ecol, 2019, 43(11): 946-958. |
[7] | XI Ben-Ye, DI Nan, CAO Zhi-Guo, LIU Jin-Qiang, LI Dou-Dou, WANG Ye, LI Guang-De, DUAN Jie, JIA Li-Ming, ZHANG Rui-Na. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees [J]. Chin J Plan Ecolo, 2018, 42(9): 885-905. |
[8] | WANG Jun, WANG Guan-Qin, LI Fei, PENG Yun-Feng, YANG Gui-Biao, YU Jian-Chun, ZHOU Guo-Ying, YANG Yuan-He. Effects of short-term experimental warming on soil microbes in a typical alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 116-125. |
[9] | WANG Guan-Qin, LI Fei, PENG Yun-Feng, CHEN Yong-Liang, HAN Tian-Feng, YANG Gui-Biao, LIU Li, ZHOU Guo-Ying, YANG Yuan-He. Responses of soil N2O emissions to experimental warming regulated by soil moisture in an alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 105-115. |
[10] | Yong-Xing CHANG, Zhen-Ju CHEN, Xian-Liang ZHANG, Xue-Ping BAI, Xue-Peng ZHAO, Jun-Xia LI, Xu LU. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming [J]. Chin J Plant Ecol, 2017, 41(3): 279-289. |
[11] | Xiao-Hong LI, Jian-Cheng XU, Yi-An XIAO, Wen-Hai HU, Yu-Song CAO. Responses in allometric growth of two dominant species of subalpine meadow—Arundinella anomala and Miscanthus sinensis—to climate warming in Wugongshan Mountains, China [J]. Chin J Plant Ecol, 2016, 40(9): 871-882. |
[12] | ZHANG Wen-Tao, JIANG Yuan, WANG Ming-Chang, ZHANG Ling-Nan, DONG Man-Yu, GUO Yuan-Yuan. Responses of radial growth to climate warming in Picea meyeri trees growing at different elevations on the southern slope of Luya Mountain [J]. Chin J Plant Ecol, 2013, 37(12): 1142-1152. |
[13] | HOU Yan-Hui, ZHOU Guang-Sheng, XU Zhen-Zhu. An overview of research progress on responses of grassland ecosystems to global warming based on infrared heating experiments [J]. Chin J Plant Ecol, 2013, 37(12): 1153-1167. |
[14] | ZHANG Nai-Li, GUO Ji-Xun, WANG Xiao-Yu, MA Ke-Ping. SOIL MICROBIAL FEEDBACKS TO CLIMATE WARMING AND ATMOSPHERIC N DEPOSITION [J]. Chin J Plant Ecol, 2007, 31(2): 252-261. |
[15] | XU Xiao-Feng, TIAN Han-Qin, WAN Shi-Qiang. CLIMATE WARMING IMPACTS ON CARBON CYCLING IN TERRESTRIAL ECOSYSTEMS [J]. Chin J Plant Ecol, 2007, 31(2): 175-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn