Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (1): 105-115.DOI: 10.17521/cjpe.2017.0164
Special Issue: 全球变化与生态系统; 青藏高原植物生态学:植物-土壤-微生物; 生态系统碳水能量通量
• Research Articles • Previous Articles Next Articles
WANG Guan-Qin1,2,LI Fei1,2,PENG Yun-Feng1,CHEN Yong-Liang1,HAN Tian-Feng1,YANG Gui-Biao1,2,LIU Li1,2,ZHOU Guo-Ying3,YANG Yuan-He1,2,*()
Online:
2018-01-20
Published:
2018-01-18
Contact:
Yuan-He YANG
Supported by:
WANG Guan-Qin, LI Fei, PENG Yun-Feng, CHEN Yong-Liang, HAN Tian-Feng, YANG Gui-Biao, LIU Li, ZHOU Guo-Ying, YANG Yuan-He. Responses of soil N2O emissions to experimental warming regulated by soil moisture in an alpine steppe[J]. Chin J Plan Ecolo, 2018, 42(1): 105-115.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0164
年份 Year | 处理 Treatment | 氨态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3- -N (mg·kg-1) | 土壤无机氮 SIN (mg·kg-1) | 微生物生物量碳 MBC (mg·kg-1) | 微生物生物量氮 MBN (mg·kg-1) |
---|---|---|---|---|---|---|
2014 | 对照 Control | 1.8 ± 0.38 | 25.0 ± 1.6 | 26.8 ± 1.7 | 890.4 ± 23.7 | 91.6 ± 4.0 |
增温 Warming | 3.0 ± 0.60* | 23.5 ± 1.3 | 26.5 ± 1.5 | 801.9 ± 40.8* | 68.2 ± 5.8** | |
2015 | 对照 Control | 2.2 ± 0.25 | 5.96 ± 0.4 | 8.20 ± 0.5 | 732.6 ± 11.3 | 42.2 ± 1.5 |
增温 Warming | 3.0 ± 0.19* | 4.04 ± 0.4** | 7.02 ± 0.3* | 720.1 ± 18.6 | 41.3 ± 2.4 |
年份 Year | 处理 Treatment | 氨态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3- -N (mg·kg-1) | 土壤无机氮 SIN (mg·kg-1) | 微生物生物量碳 MBC (mg·kg-1) | 微生物生物量氮 MBN (mg·kg-1) |
---|---|---|---|---|---|---|
2014 | 对照 Control | 1.8 ± 0.38 | 25.0 ± 1.6 | 26.8 ± 1.7 | 890.4 ± 23.7 | 91.6 ± 4.0 |
增温 Warming | 3.0 ± 0.60* | 23.5 ± 1.3 | 26.5 ± 1.5 | 801.9 ± 40.8* | 68.2 ± 5.8** | |
2015 | 对照 Control | 2.2 ± 0.25 | 5.96 ± 0.4 | 8.20 ± 0.5 | 732.6 ± 11.3 | 42.2 ± 1.5 |
增温 Warming | 3.0 ± 0.19* | 4.04 ± 0.4** | 7.02 ± 0.3* | 720.1 ± 18.6 | 41.3 ± 2.4 |
Fig. 3 N2O fluxes under control and warming treatments during the growing seasons of 2014(A) and 2015 (B), (mean ± SE). *, p < 0.05. C, control; W, warming.
来源 Source | 2014 | 2015 | ||||
---|---|---|---|---|---|---|
df | F | p | df | F | p | |
增温 Warming (W) | 1 | 0.41 | 0.53 | 1 | 0.05 | 0.83 |
日期 Date (T) | 22 | 2.16 | 0.00** | 18 | 2.05 | 0.00** |
T × W | 22 | 0.40 | 0.99 | 18 | 1.32 | 0.17 |
Table 2 Results of repeated measures ANOVA on the effects of warming (W), measuring date (T), and their interactions (T × W) on soil N2O flux
来源 Source | 2014 | 2015 | ||||
---|---|---|---|---|---|---|
df | F | p | df | F | p | |
增温 Warming (W) | 1 | 0.41 | 0.53 | 1 | 0.05 | 0.83 |
日期 Date (T) | 22 | 2.16 | 0.00** | 18 | 2.05 | 0.00** |
T × W | 22 | 0.40 | 0.99 | 18 | 1.32 | 0.17 |
Fig. 4 Warming effects on the abundance of AOA-amoA and AOB-amoA during the growing seasons of 2014 (A) and 2015 (B) (mean ± SE). AOA, ammonia-oxidizing archaea; AOB, ammonia-oxidizing bacteria.
Fig. 5 Relationships among warming induced changes (warming-control) in soil N2O fluxes, soil temperature and soil moisture. A, soil moisture and temperature; B, N2O and soil temperature; C, N2O and soil moisture.
Appendix II Soil temperature and moisture in control and warming treatments during the growing seasons A, Soil temperature in 2014. B, Soil temperature in 2015. C, Soil moisture in 2014. D, Soil moisture in 2015.
Appendix III Relationships of changes in soil N2O flux with changes in edaphic variables, microbial properties, AOA and AOB A, NH4+-N. B, NO3--N. C, Microbial biomass carbon (MBC). D, Microbial biomass nitrogen (MBN). E, Soil inorganic carbon (SIN). F, Ammonia-oxidizing archaea (AOA). G, Ammonia-oxidizing bacteria (AOB).
[1] |
Bijoor NS, Czimczik CI, Pataki DE, Billings SA ( 2008). Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawn. Global Change Biology, 14, 2119-2131.
DOI URL |
[2] |
Brookes PC, Landman A, Pruden G, Jenkinson DS ( 1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842.
DOI URL |
[3] |
Brzostek ER, Blair JM, Dukes JS, Frey SD, Hobbie SE, Melillo JM, Mitchell RJ, Pendall E, Reich PB, Shaver GR ( 2012). The effect of experimental warming and precipitation change on proteolytic enzyme activity: Positive feedbacks to nitrogen availability are not universal. Global Change Biology, 18, 2617-2625.
DOI URL |
[4] |
Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S ( 2013). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20130122. DOI: 10.1098/rstb.2013.0122.
DOI URL |
[5] |
Cantarel AAM, Bloor JMG, Pommier T, Guillaumaud N, Moirot C, Soussana JF, Poly F ( 2012). Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem. Global Change Biology, 18, 2520-2531.
DOI URL |
[6] | Chapin III FS, Matson PA, Vitousek PM ( 2011). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[7] |
Chapin III FS, Shaver GR ( 1985). Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology, 66, 564-576.
DOI URL |
[8] |
Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M ( 2007). Soils, a sink for N2O? A review. Global Change Biology, 13, 1-17.
DOI URL |
[9] |
Chen H, Zhu Q, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH ( 2013 a). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19, 2940-2955.
DOI URL PMID |
[10] |
Chen YL, Xu ZW, Hu HW, Hu YJ, Hao ZP, Jiang Y, Chen BD ( 2013 b). Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Applied Soil Ecology, 68, 36-45.
DOI URL |
[11] |
Daebeler A, Bodelier PLE, Hefting MM, Rütting T, Laanbroek HJ, Jia Z ( 2017). Soil warming and fertilization altered rates of nitrogen transformation processes and selected for adapted ammonia-oxidizing archaea in sub-arctic grassland soil. Soil Biology & Biochemistry, 107, 114-124.
DOI URL |
[12] |
Ding JZ, Li F, Yang GB, Chen LY, Zhang B, Liu L, Fang K, Qin SQ, Chen YL, Peng YF, Ji C, He H, Smith P, Yang YH ( 2016). The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores. Global Change Biology, 22, 2688-2701.
DOI URL PMID |
[13] |
Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, van Amstel A, Pol-Van Dasselaar AV, Soussana JF, Jones M, Clifton-Brown J, Raschi A, Horvath L, Neftel A, Jocher M, Ammann C, Leifeld J, Fuhrer J, Calanca P, Thalman E, Pilegaard K, Di Marco C, Campbell C, Nemitz E, Hargreaves KJ, Levy PE, Ball BC, Jones SK, Van De Bulk WCM, Groot T, Blom M, Domingues R, Kasper G, Allard V, Ceschia E, Cellier P, Laville P, Henault C, Bizouard F, Abdalla M, Williams M, Baronti S, Berretti F, Grosz B ( 2007). Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agriculture Ecosystems & Environment, 121, 135-152.
DOI URL |
[14] |
Gu JX, Yuan MX, Liu JX, Hao YX, Zhou YT, Qu D, Yang XY ( 2017). Trade-off between soil organic carbon sequestration and nitrous oxide emissions from winter wheat-?summer maize rotations: Implications of a 25-year fertilization experiment in Northwestern China. Science of the Total Environment, 595, 371-379.
DOI URL PMID |
[15] | Guo LY, Shi F, Yang LY ( 2011). Advances in functional genes and molecular ecology in denitrifiers. Microbiology China, 38, 583-590. |
[ 郭丽芸, 时飞, 杨柳燕 ( 2011). 反硝化菌功能基因及其分子生态学研究进展. 微生物学通报, 38, 583-590.] | |
[16] |
Hu HW, Trivedi P, He JZ, Singh BK ( 2017). Microbial nitrous oxide emissions in dryland ecosystems: Mechanisms, microbiome and mitigation. Environmental Microbiology, 19, 4808-4828.
DOI URL PMID |
[17] |
Hu YG, Chang XF, Lin XW, Wang YF, Wang SP, Duan JC, Zhang ZH, Yang XX, Luo CY, Xu GP, Zhao XQ ( 2010). Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan Plateau. Soil Biology & Biochemistry, 42, 944-952.
DOI URL |
[18] |
Huang JX, Xiong DC, Liu XF, Yang ZJ, Xie JS, Yang YS ( 2017). Effects of warming on soil organic carbon mineralization: A review. Acta Ecologica Sinica, 37, 12-24.
DOI URL |
[ 黄锦学, 熊德成, 刘小飞, 杨智杰, 谢锦升, 杨玉盛 ( 2017). 增温对土壤有机碳矿化的影响研究综述. 生态学报, 37, 12-24.]
DOI URL |
|
[19] | IPCC (Intergovernmental Panel on Climate Change) ( 2013). Climate Change 2013: the Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[20] |
Kaufman M ( 1994). Soil-atmosphere exchange in nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochemical Cycles, 8, 399-410.
DOI URL PMID |
[21] |
Liu LT, Hu CS, Yang PP, Ju ZQ, Olesen JE, Tang JW ( 2016). Experimental warming-driven soil drying reduced N2O emissions from fertilized crop rotations of winter wheat-soybean/fallow, 2009-2014. Agriculture, Ecosystems & Environment, 219, 71-82.
DOI URL |
[22] |
Liu XH, Shao XM, Wang L, Liang E, Qin DH, Ren JW ( 2008). Response and dendroclimatic implications of δ 13C in tree rings to increasing drought on the northeastern Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 113, 112-118.
DOI URL |
[23] |
Liu ZH, Li DH ( 2015). Ammonia-oxidizing archaea and their contribution to global nitrogen cycling: A review. Microbiology China, 42, 774-782.
DOI URL |
[ 刘正辉, 李德豪 ( 2015). 氨氧化古菌及其对氮循环贡献的研究进展. 微生物学通报, 42, 774-782.]
DOI URL |
|
[24] |
Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Quero JL, Garcia-Gomez M, Gallardo A, Ulrich W, Bowker MA, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitan J, Gutierrez JR, Huber- Sannwald E, Jankju M, Mau RL, Miriti M, Naseri K, Ospina A, Stavi I, Wang DL, Woods NN, Yuan X, Zaady E, Singh BK ( 2015). Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 112, 15684-15689.
DOI URL PMID |
[25] |
Maljanen M, Yli-Moijala H, Biasi C, Leblans NIW, de Boeck HJ, Bjarnadóttir B, Sigurdsson BD ( 2017). The emissions of nitrous oxide and methane from natural soil temperature gradients in a volcanic area in southwest Iceland. Soil Biology & Biochemistry, 109, 70-80.
DOI URL |
[26] | Mosier AR, Parton WJ, Martin RE, Valentine DW, Ojima DS, Schimel DS, Burke IC, Adair EC, Del Grosso SJ ( 2008). Soil-atmosphere exchange of trace gases in the Colorado shortgrass steppe. In: Lauenroth WK,? Burke IC eds. Ecology of the Shortgrass Steppe: A Long Term Perspective. Oxford University Press, Oxford. |
[27] |
Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Yang YH ( 2017). Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology, 23, 5249-5259.
DOI URL PMID |
[28] |
Ravishankara A, Daniel JS, Portmann RW ( 2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st Century. Science, 326, 123-125.
DOI URL |
[29] |
Robertson GP ( 1982). Nitrification in forested ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 296, 445-457.
DOI URL |
[30] | Rotthauwe JH, Witzel KP, Liesack W ( 1997). The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-?oxidizing populations. Applied & Environmental Microbiology, 63, 4704-4712. |
[31] |
Shi FS, Chen H, Chen HF, Wu Y, Wu N ( 2012). The combined effects of warming and drying suppress CO2 and N2O emission rates in an alpine meadow of the eastern Tibetan Plateau. Ecological Research, 27, 725-733.
DOI URL |
[32] |
Sistla SA, Rastetter EB, Schimel JP ( 2014). Responses of a tundra system to warming using SCAMPS: A stoichiometrically coupled, acclimating microbe-plant-soil model. Ecological Monographs, 84, 151-170.
DOI URL |
[33] |
Stewart KJ, Brummell ME, Farrell RE, Siciliano SD ( 2012). N2O flux from plant-soil systems in polar deserts switch between sources and sinks under different light conditions. Soil Biology & Biochemistry, 48, 69-77.
DOI URL |
[34] |
Szukics U, Abell GC, H?dl V, Mitter B, Sessitsch A, Hackl E, Zechmeister-Boltenstern S ( 2010). Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiology Ecology, 72, 395-406.
DOI URL PMID |
[35] |
Tang XL, Liu SG, Zhou GY, Zhang DQ, Zhou CY ( 2006). Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Global Change Biology, 12, 546-560.
DOI URL |
[36] |
Tischer A, Potthast K, Hamer U ( 2014). Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 175, 375-393.
DOI URL PMID |
[37] |
Vance ED, Brookes PC, Jenkinson DS ( 1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
DOI URL |
[38] |
Voigt C, Lamprecht RE, Marushchak ME, Lind SE, Novakovskiy A, Aurela M, Martikainen PJ, Biasi C ( 2016). Warming of subarctic tundra increases emissions of all three important greenhouse gases—Carbon dioxide, methane, and nitrous oxide. Global Change Biology, 23, 3121-3138.
DOI URL PMID |
[39] |
Wang J, Zhang JB, Müller C, Cai ZC ( 2016). Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Soils and Sediments, 17, 423-431.
DOI URL |
[40] |
Wang WL, Kong WD, Zeng H ( 2015). A meta-analysis of responses of soil microbes to warming. Journal of Agro-Environment Science, 34, 2169-2175.
DOI URL |
[ 王文立, 孔维栋, 曾辉 ( 2015). 土壤微生物对增温响应的Meta分析. 农业环境科学学报, 34, 2169-2175.]
DOI URL |
|
[41] |
Ward SE, Ostle NJ, Oakley S, Quirk H, Henrys PA, Bardgett RD ( 2013). Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecology Letters, 16, 1285-1293.
DOI URL PMID |
[42] | Wu JS, Lin QM, Huang QY, Xiao HA ( 2006). Soil Microbial Biomass——Methods and Application. China Meteorological Press, Beijing. |
[ 吴金水, 林启美, 黄巧云, 肖和艾 ( 2006). 土壤微生物生物量测定方法及其应用. 气象出版社, 北京.] | |
[43] |
Xu BX, Hu YG, Zhang ZS, Chen YL, Peng Z, Li G ( 2014). Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region. Chinese Journal of Plant Ecology, 38, 809-820.
DOI URL |
[ 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚 ( 2014). 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报, 38, 809-820.]
DOI URL |
|
[44] |
Xu XY, Liu XR, Li Y, Ran Y, Liu YP, Zhang QC, Li Z, He Y, Xu JM, Di HJ ( 2017). Legacy effects of simulated short-term climate change on ammonia oxidisers, denitrifiers, and nitrous oxide emissions in an acid soil. Environmental Science and Pollution Research, 24, 11639-11649.
DOI URL PMID |
[45] |
Yan JH, Zhang W, Wang KY, Qin F, Wang WT, Dai HT, Li PX ( 2014). Responses of CO2, N2O and CH4 fluxes between atmosphere and forest soil to changes in multiple environmental conditions. Global Change Biology, 20, 300-312.
DOI URL |
[46] |
Zhang XZ, Shen ZX, Fu G ( 2015). A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 87, 32-38.
DOI URL |
[1] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[2] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[3] | YU Hai-Ying, YANG Li-Lin, FU Su-Jing, ZHANG Zhi-Min, YAO Qi-Fu. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests [J]. Chin J Plant Ecol, 2022, 46(12): 1573-1584. |
[4] | GAO De-Cai, BAI E. Influencing factors of soil nitrous oxide emission during freeze-thaw cycles [J]. Chin J Plant Ecol, 2021, 45(9): 1006-1023. |
[5] | LI Xue-Ying, ZHU Wen-Quan, LI Pei-Xian, XIE Zhi-Ying, ZHAO Cen-Liang. Predicting phenology shifts of herbaceous plants on the Qinghai-Xizang Plateau under climate warming with the space-for-time method [J]. Chin J Plant Ecol, 2020, 44(7): 742-751. |
[6] | XIA Jian-Yang, LU Rui-Ling, ZHU Chen, CUI Er-Qian, DU Ying, HUANG Kun, SUN Bao-Yu. Response and adaptation of terrestrial ecosystem processes to climate warming [J]. Chin J Plant Ecol, 2020, 44(5): 494-514. |
[7] | SHEN Jia-Yan, LI Shuai-Feng, HUANG Xiao-Bo, LEI Zhi-Quan, SHI Xing-Quan, SU Jian-Rong. Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin [J]. Chin J Plant Ecol, 2019, 43(11): 946-958. |
[8] | WANG Jun, WANG Guan-Qin, LI Fei, PENG Yun-Feng, YANG Gui-Biao, YU Jian-Chun, ZHOU Guo-Ying, YANG Yuan-He. Effects of short-term experimental warming on soil microbes in a typical alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 116-125. |
[9] | SONG Wen-Qi, ZHU Liang-Jun, ZHANG Xu, WANG Xiao-Chun, ZHANG Yuan-Dong. Comparison of growth-climate relationship of Sabina przewalskii at different timberlines along a precipitation gradient in the northeast Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2018, 42(1): 66-77. |
[10] | Yong-Xing CHANG, Zhen-Ju CHEN, Xian-Liang ZHANG, Xue-Ping BAI, Xue-Peng ZHAO, Jun-Xia LI, Xu LU. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming [J]. Chin J Plant Ecol, 2017, 41(3): 279-289. |
[11] | Xiao-Hong LI, Jian-Cheng XU, Yi-An XIAO, Wen-Hai HU, Yu-Song CAO. Responses in allometric growth of two dominant species of subalpine meadow—Arundinella anomala and Miscanthus sinensis—to climate warming in Wugongshan Mountains, China [J]. Chin J Plant Ecol, 2016, 40(9): 871-882. |
[12] | ZHANG Wen-Tao, JIANG Yuan, WANG Ming-Chang, ZHANG Ling-Nan, DONG Man-Yu, GUO Yuan-Yuan. Responses of radial growth to climate warming in Picea meyeri trees growing at different elevations on the southern slope of Luya Mountain [J]. Chin J Plant Ecol, 2013, 37(12): 1142-1152. |
[13] | HOU Yan-Hui, ZHOU Guang-Sheng, XU Zhen-Zhu. An overview of research progress on responses of grassland ecosystems to global warming based on infrared heating experiments [J]. Chin J Plant Ecol, 2013, 37(12): 1153-1167. |
[14] | ZHANG Nai-Li, GUO Ji-Xun, WANG Xiao-Yu, MA Ke-Ping. SOIL MICROBIAL FEEDBACKS TO CLIMATE WARMING AND ATMOSPHERIC N DEPOSITION [J]. Chin J Plant Ecol, 2007, 31(2): 252-261. |
[15] | XU Xiao-Feng, TIAN Han-Qin, WAN Shi-Qiang. CLIMATE WARMING IMPACTS ON CARBON CYCLING IN TERRESTRIAL ECOSYSTEMS [J]. Chin J Plant Ecol, 2007, 31(2): 175-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn