Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (1): 116-125.DOI: 10.17521/cjpe.2017.0297
Special Issue: 全球变化与生态系统; 青藏高原植物生态学:植物-土壤-微生物; 微生物生态学
• Research Articles • Previous Articles Next Articles
WANG Jun1,2,WANG Guan-Qin1,2,LI Fei1,2,PENG Yun-Feng1,YANG Gui-Biao1,2,YU Jian-Chun1,2,ZHOU Guo-Ying3,YANG Yuan-He1,2,*()
Online:
2018-01-20
Published:
2018-03-08
Contact:
Yuan-He YANG
Supported by:
WANG Jun, WANG Guan-Qin, LI Fei, PENG Yun-Feng, YANG Gui-Biao, YU Jian-Chun, ZHOU Guo-Ying, YANG Yuan-He. Effects of short-term experimental warming on soil microbes in a typical alpine steppe[J]. Chin J Plan Ecolo, 2018, 42(1): 116-125.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0297
土壤因子 Soil factors | 2015年 | 2016年 | |||
---|---|---|---|---|---|
对照 Control | 增温 Warming | 对照 Control | 增温 Warming | ||
土壤温度 Soil temperature (℃) | 12.80 ± 0.30 | 14.40 ± 0.20** | 13.90 ± 0.20 | 15.40 ± 0.30** | |
土壤含水量(体积分数) Soil moisture (volume fraction) | 13.20 ± 1.80 | 9.80 ± 1.10** | 15.60 ± 1.80 | 13.30 ± 1.20* | |
有机碳含量 Soil organic carbon content (%) | 3.20 ± 0.20 | 3.20 ± 0.20 | 3.30 ± 0.10 | 3.32 ± 0.10 | |
总碳含量 Total carbon content (%) | 4.50 ± 0.20 | 4.40 ± 0.20 | 4.20 ± 0.10 | 4.50 ± 0.10 | |
全氮含量 Total nitrogen content (%) | 0.38 ± 0.02 | 0.38 ± 0.02 | 0.38 ± 0.01 | 0.38 ± 0.01 | |
碳氮比 | 8.50 ± 0.20 | 8.60 ± 0.20 | 8.70 ± 0.20 | 8.80 ± 0.20 | |
归一化植被指数 Normalized difference vegetation index | 0.27 ± 0.01 | 0.26 ± 0.01 | 0.18 ± 0.02 | 0.19 ± 0.02 |
Table 1 Short-term warming effects on soil physicochemical properties and standing vegetation
土壤因子 Soil factors | 2015年 | 2016年 | |||
---|---|---|---|---|---|
对照 Control | 增温 Warming | 对照 Control | 增温 Warming | ||
土壤温度 Soil temperature (℃) | 12.80 ± 0.30 | 14.40 ± 0.20** | 13.90 ± 0.20 | 15.40 ± 0.30** | |
土壤含水量(体积分数) Soil moisture (volume fraction) | 13.20 ± 1.80 | 9.80 ± 1.10** | 15.60 ± 1.80 | 13.30 ± 1.20* | |
有机碳含量 Soil organic carbon content (%) | 3.20 ± 0.20 | 3.20 ± 0.20 | 3.30 ± 0.10 | 3.32 ± 0.10 | |
总碳含量 Total carbon content (%) | 4.50 ± 0.20 | 4.40 ± 0.20 | 4.20 ± 0.10 | 4.50 ± 0.10 | |
全氮含量 Total nitrogen content (%) | 0.38 ± 0.02 | 0.38 ± 0.02 | 0.38 ± 0.01 | 0.38 ± 0.01 | |
碳氮比 | 8.50 ± 0.20 | 8.60 ± 0.20 | 8.70 ± 0.20 | 8.80 ± 0.20 | |
归一化植被指数 Normalized difference vegetation index | 0.27 ± 0.01 | 0.26 ± 0.01 | 0.18 ± 0.02 | 0.19 ± 0.02 |
Fig. 1 Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass C:N under control and warming treatment during the growing season (August) in 2015 (A) and 2016 (B), as well as the relationships between MBC and MBN (mean ± SD). The gray bars and cycles represent warming treatments. The white bars and cycles represent control treatments.
Fig. 2 Effects of short-term experimental warming on different soil microbial groups (mean ± SD). A, In 2015. B, In 2016. AMF, arbuscular mycorrhizal fungi; G+, gram-positive bacteria; G-, gram-negative bacteria; F/B, ratio of fungi and bacteria; G+/G-, ratio of gram-positive bacteria and gram-negative bacteria; S/M, ratio of saturated PLFAs and monosaturated PLFAs.
微生物群落 Microbial community | T | W | W × T |
---|---|---|---|
细菌 Bacteria | 159.90** | 0.11 | 4.30* |
革兰氏阳性菌 Gram-positive bacteria | 173.66** | 0.93 | 2.56 |
革兰氏阴性菌 Gram-negative bacteria | 67.70** | 0.00 | 2.50 |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 7.20* | 8.49* | 0.03 |
真菌 Fungi | 2.12 | 0.18 | 2.13 |
放线菌 Actinomycetes | 24.28** | 5.37* | 0.02 |
真菌细菌比 Fungi/Bacteria | 123.85** | 0.15 | 0.01 |
G+/G- Gram-positive bacteria/Gram-negative bacteria | 0.27 | 0.45 | 0.28 |
饱和与不饱和脂肪酸比 Saturated PLFAs / Monosaturated PLFAs | 7.13* | 2.24 | 0.86 |
磷脂脂肪酸总量 Total phospholipid fatty acids | 157.39** | 1.67 | 1.08 |
Table 2 Results (F values) of two-way ANOVA on the effects of short-term warming (W), sampling date (T), and their interactions (W × T) on microbial community
微生物群落 Microbial community | T | W | W × T |
---|---|---|---|
细菌 Bacteria | 159.90** | 0.11 | 4.30* |
革兰氏阳性菌 Gram-positive bacteria | 173.66** | 0.93 | 2.56 |
革兰氏阴性菌 Gram-negative bacteria | 67.70** | 0.00 | 2.50 |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 7.20* | 8.49* | 0.03 |
真菌 Fungi | 2.12 | 0.18 | 2.13 |
放线菌 Actinomycetes | 24.28** | 5.37* | 0.02 |
真菌细菌比 Fungi/Bacteria | 123.85** | 0.15 | 0.01 |
G+/G- Gram-positive bacteria/Gram-negative bacteria | 0.27 | 0.45 | 0.28 |
饱和与不饱和脂肪酸比 Saturated PLFAs / Monosaturated PLFAs | 7.13* | 2.24 | 0.86 |
磷脂脂肪酸总量 Total phospholipid fatty acids | 157.39** | 1.67 | 1.08 |
Fig. 4 Redundancy analysis of soil microbial community to soil environmental parameters. AMF, arbuscular mycorrhizal fungi; G+, gram-positive bacteria; G-, gram-negative bacteria; F/B, ratio of fungi and bacteria; G+/G-, ratio of gram-positive bacteria and gram-negative bacteria; SM, soil moisture; ST, soil temperature; TN, total nitrogen content.
Fig. 5 Relationships among warming-induced changes (warming-control) in microbial biomass carbon, soil temperature (A) and soil moisture (B), and the effects of short-term warming on soil temperature and moisture.
[1] |
Birgander J, Rousk J, Olsson PA ( 2017). Warmer winters increase the rhizosphere carbon flow to mycorrhizal fungi more than to other microorganisms in a temperate grassland. Global Change Biology, 23, 5372-5382.
DOI URL PMID |
[2] |
Bossio DA, Scow KM, Gunapala N, Graham KJ ( 1998). Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology, 36, 1-12.
DOI URL PMID |
[3] |
Brockett BFT, Prescott CE, Grayston SJ ( 2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogelimatic zones in western Canada. Soil Biology & Biochemistry, 44, 9-20.
DOI URL |
[4] |
Brookes PC, Landman A, Pruden G, Jenkinson DS ( 1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842.
DOI URL |
[5] |
Chen H, Zhu Q, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH ( 2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19, 2940-2955.
DOI URL PMID |
[6] |
Chen YL, Ding JZ, Peng YF, Li F, Yang GB, Liu L, Qin SQ, Fang K, Yang YH ( 2016). Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. Journal of Biogeography, 43, 2027-2039.
DOI URL |
[7] |
Cheng L, Zhang NF, Yuan MT, Xiao J, Qin YJ, Deng Y, Tu QC, Xue K, Van Nostrand JD, Wu LY, He ZL, Zhou XH, Leigh MB, Konstantinidis KT, Schuur EA, Luo YQ, Tiedje JM, Zhou JZ ( 2017). Warming enhances old organic carbon decomposition through altering functional microbial communities. The ISME Journal, 11, 1825-1835.
DOI URL PMID |
[8] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK ( 2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. DOI: 10.1038/ncomms10541.
DOI URL PMID |
[9] |
Ding JZ, Li F, Yang GB, Chen LY, Zhang B, Liu L, Fang K, Qin SQ, Chen YL, Peng YF, Ji C, He H, Smith P, Yang YH ( 2016). The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores. Global Change Biology, 22, 2688-2701.
DOI URL PMID |
[10] | Duan MJ, Gao QZ, Wan YF, Li Y, Guo YQ, Danjiu LB, Luosang JS ( 2010). Effect of grazing on community characteristics and species diversity of Stipa purpurea alpine grassland in Northern Tibet. Acta Ecologica Sinica, 30, 3892-3900. |
[ 段敏杰, 高清竹, 万运帆, 李玉娥, 郭亚奇, 旦久罗布, 洛桑加措 ( 2010). 放牧对藏北紫花针茅高寒草原植物群落特征的影响. 生态学报, 30, 3892-3900.] | |
[11] |
Friedlingstein P ( 2015). Carbon cycle feedbacks and future climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, DOI: 10.1098/rsta.2014.0421.
DOI URL PMID |
[12] |
Frosteg?rd A, B??th E ( 1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology & Fertility of Soils, 22, 59-65.
DOI |
[13] |
Frosteg?rd A, B??th E, Tunlio A ( 1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25, 723-730.
DOI URL |
[14] |
Frosteg?rd A, Tunlid A, B??th E ( 2011). Use and misuse of PLFA measurements in soils. Soil Biology & Biochemistry, 43, 1621-1625.
DOI URL |
[15] |
Griffiths BS, Philippot L ( 2013). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 37, 112-129.
DOI URL PMID |
[16] |
He JZ, Li J, Zheng YM ( 2013). Thoughts on the microbial diversity-stability relationship in soil ecosystems. Biodiversity Science, 21, 411-420.
DOI URL |
[ 贺纪正, 李晶, 郑袁明 ( 2013). 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 21, 411-420.]
DOI URL |
|
[17] |
Hicks PCE, Castanha C, Porras R, Torn MS ( 2017). The whole-soil carbon flux in response to warming. Science, 355, 1420-1423.
DOI URL PMID |
[18] |
Hopkins FM, Filley TR, Gleixner G, Lange M, Top SM, Trumbore SE ( 2014). Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biology & Biochemistry, 76, 57-69.
DOI URL |
[19] | IPCC (Intergovernmental Panel on Climate Change) ( 2013). Climate Change 2013: the Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[20] | Kroppenstedt RM ( 1985). Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin D eds. Chemical Methods in Bacterial Systematics. Academic Press, London, UK. |
[21] |
Lehmann J, Kleber M ( 2015). The contentious nature of soil organic matter. Nature, 528, 60.
DOI URL PMID |
[22] | Li SQ, Ren SJ, Li SX ( 2004). Seasonal change of soil microbial biomass and the relationship between soil microbial biomass and soil moisture and temperature. Plant Nutrition and Fertilizer Science, 10, 18-23. |
[ 李世清, 任书杰, 李生秀 ( 2004). 土壤微生物体氮的季节性变化及其与土壤水分和温度的关系. 植物营养与肥料学报, 10, 18-23.] | |
[23] |
Liu XD, Chen BD ( 2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742.
DOI URL |
[24] |
Luo YQ, Sherry R, Zhou XH, Wan SQ ( 2009). Terrestrial carbon-cycle feedback to climate warming: Experimental evidence on plant regulation and impacts of biofuel feedstock harvest. GCB Bioenergy, 1, 62-74.
DOI URL |
[25] |
Margesin R, Jud M, Tscherko D, Schinner F ( 2009). Microbial communities and activities in alpine and subalpine soils. FEMS Microbiology Ecology, 67, 208-218.
DOI URL PMID |
[26] | Miller DJ ( 2005). The Tibetan Steppe. In: Suttie JM, Reynolds SG, Batello C eds. Grasslands of the World. UN Food and Agriculture Organization, Rome. |
[27] |
Moore-Kucera J, Dick RP ( 2008). PLFA profiling of microbial community structure and seasonal shifts in soils of a douglas-fir chronosequence. Microbial Ecology, 55, 500-511.
DOI URL |
[28] |
Nazaries L, Tottey W, Robinson L, Khachane A, Abu Al-Soud W, Sorensen S, Singh BK ( 2015). Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming. Soil Biology & Biochemistry, 89, 123-134.
DOI URL |
[29] |
Olsson PA ( 1999). Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, 29, 303-310.
DOI URL |
[30] |
Pailler A, Vennetier M, Torre F, Ripert C, Guiral D ( 2014). Forest soil microbial functional patterns and response to a drought and warming event: Key role of climate-plant-soil interactions at a regional scale. Soil Biology & Biochemistry, 70, 1-4.
DOI URL |
[31] |
Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Yang YH ( 2017). Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology, 23, 5249-5259.
DOI URL PMID |
[32] |
Rinnan R, Michelsen A, Baath E, Jonasson S ( 2007). Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 13, 28-39.
DOI URL |
[33] |
Romero-Olivares AL, Allison SD, Treseder KK ( 2017). Soil microbes and their response to experimental warming over time: A meta-analysis of field studies. Soil Biology & Biochemistry, 107, 32-40.
DOI URL |
[34] |
Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE ( 2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
DOI URL PMID |
[35] |
Sheik CS, Beasley WH, Elshahed MS, Zhou XH, Luo YQ, Krumholz LR ( 2011). Effect of warming and drought on grassland microbial communities. The ISME Journal, 5, 1692-1700.
DOI URL PMID |
[36] | Shen JP, He JZ ( 2011). Responses of microbes-mediated carbon and nitrogen cycles to global climate change. Acta Ecologica Sinica, 31, 2957-2967. |
[ 沈菊培, 贺纪正 ( 2011). 微生物介导的碳氮循环过程对全球气候变化的响应. 生态学报, 31, 2957-2967.] | |
[37] |
Smith P, Fang C ( 2010). Carbon cycle: A warm response by soils. Nature, 464, 499-500.
DOI URL PMID |
[38] |
Tischer A, Potthast K, Hamer U ( 2014). Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 175, 375-393.
DOI URL PMID |
[39] |
Vance ED, Brookes PC, Jenkinson DS ( 1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
DOI URL |
[40] |
Wang WL, Kong WD, Zeng H ( 2015). A meta-analysis of responses of soil microbes to warming. Journal of Agro-Environment Science, 34, 2169-2175.
DOI URL |
[ 王文立, 孔维栋, 曾辉 ( 2015). 土壤微生物对增温响应的Meta分析. 农业环境科学学报, 34, 2169-2175.]
DOI URL |
|
[41] |
Weedon JT, Kowalchuk GA, Aerts R, Hal VJ, Logtestijn VR, Ta? N, R?ling WFM, Bodegom VPM ( 2012). Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biology, 18, 138-150.
DOI URL |
[42] |
Wolf S, Keenan TF, Fisher JB, Baldocchi DD, Desai AR, Richardson AD, Scott RL, Law BE, Litvak ME, Brunsell NA ( 2016). Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the National Academy of Sciences of the United States of America, 113, 5880-5885.
DOI URL PMID |
[43] | Wu JS, Lin QM, Huang QY, Xiao HA ( 2006). Soil Microbial Biomass—Methods and Application. China Meteorological Press, Beijing. |
[ 吴金水, 林启美, 黄巧云, 肖和艾 ( 2006). 土壤微生物生物量测定方法及其应用. 气象出版社, 北京.] | |
[44] |
Xue K, Yuan MT, Shi ZJ, Qin YJ, Deng Y, Cheng L, Wu LY, He ZL, Van Nostrand JD, Bracho R, Natali S, Schuur EAG, Luo CW, Konstantinidis KT, Wang Q, Cole JR, Tiedje JM, Luo YQ, Zhou JZ ( 2016 a). Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 6, 595-600.
DOI URL |
[45] |
Xue K, Yuan MT, Xie JP, Li DJ, Qin YJ, Hale L, Wu LY, Deng Y, He ZL, Van Nostrand JD ( 2016 b). Annual removal of aboveground plant biomass alters soil microbial responses to warming. mBio, 7. e00976-16, DOI: 10.1128/ mBio.00976-16.
DOI URL PMID |
[46] | Yang L, Chen YM, He RL, Deng CC, Liu JW, Liu Y ( 2016). Responses of soil microbial community structure and function to simulated warming in alpine forest. Chinese Journal of Applied Ecology, 27, 2855-2863. |
[ 杨林, 陈亚梅, 和润莲, 邓长春, 刘军伟, 刘洋 ( 2016). 高山森林土壤微生物群落结构和功能对模拟增温的响应. 应用生态学报, 27, 2855-2863.] | |
[47] |
Yang YQ, Li XL, Kong XX, Ma L, Hu XY, Yang YP ( 2015). Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau. Functional & Integrative Genomics, 15, 295-307.
DOI URL PMID |
[48] |
Zeglin LH, Bottomley PJ, Jumpponen A, Rice CW, Arango M, Lindsley A, Mcgowan A, Mfombep P, Myrold DD ( 2013). Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology, 94, 2334.
DOI URL PMID |
[49] |
Zhang NL, Wan SQ, Guo JX, Han GD, Gutknecht J, Schmid B, Yu L, Liu WX, Bi J, Wang Z, Ma KP ( 2015 a). Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biology & Biochemistry, 89, 12-23.
DOI URL |
[50] |
Zhang XZ, Shen ZX, Fu G ( 2015 b). A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 87, 32-38.
DOI URL |
[51] |
Zhou JZ, Xue K, Xie JP, Deng Y, Wu LY, Cheng XL, Fei SF, Deng SP, He ZL, van Nostrand JD, Luo YQ ( 2011). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2, 106-110.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn