Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (8): 875-884.DOI: 10.17521/cjpe.2019.0369
Special Issue: 全球变化与生态系统; 微生物生态学
• Research Articles • Previous Articles Next Articles
LUO Lin1,3, HUANG Yan1,3, LIANG Jin1, WANG En-Tao4, HU Jun1, HE He-Liang1,3, ZHAO Chun-Zhang2,*()
Received:
2019-12-31
Accepted:
2020-03-25
Online:
2020-08-20
Published:
2020-07-03
Contact:
ZHAO Chun-Zhang
Supported by:
LUO Lin, HUANG Yan, LIANG Jin, WANG En-Tao, HU Jun, HE He-Liang, ZHAO Chun-Zhang. Effects of plant interspecific interaction and warming on soil microbial community in root zone soil of two dominant tree species in the subalpine coniferous forest in southwestern China[J]. Chin J Plant Ecol, 2020, 44(8): 875-884.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0369
Fig. 1 Contents of phospholipid fatty acids (PLFAs) (mean ± SE) in root zone soil of different planting treatments with/ without warming. A, The content of total and bacteria PLFAs. B, The content of PLFAs of gram-negative bacteria (GN) and gram-positive bacteria (GP). C, The content of PLFAs of fungi (F) and actinomycetes (AC). U, unwarming; W, warming. C, unplanted area; Y, Picea asperata; L, Abies faxoniana; H, mixed; Fp, plant types effect; Fw, warming effect; Fp × w, plant types × warming interaction effect; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05. Different lowercase letters indicate significant differences in PLFAs content in root zone of different planting treatments with and without warming (p < 0.05). * under the column indicates a significant difference in the t-test (p < 0.05).
Fig. 2 Effects of different planting treatments and warming on phospholipid fatty acids (PLFAs) content of microbial community (mean ± SE). Different lowercase letters indicate significant differences in PLFAs cotent in root zone of different planting treatments with and without warming (p < 0.05). U, unwarming; W, warming. C, unplanted area; Y, Picea asperata; L, Abies faxoniana; H, mixed.
Fig. 3 Effects of different planting treatments and warming on soil microbial community structure. U-C, unwarming-empty area; U-H, unwarming-mixed area; U-L, unwarming-Abies faxoniana; U-Y, unwarming-Picea asperata; W-C, warming- empty area; W-H, warming-mixed area; W-L, warming-Abies faxoniana; W-Y, warming-Picea asperata.
Fig. 4 The GP/GN and F/B ratios (mean ± SE) in root zone soil of different planting treatments with and without warming. GN, gram-negative bacteria; GP, gram-positive bacteria. F, fungi; B, bacteria. U, unwarming; W, warming. C, unplanted area; Y, Picea asperata; L, Abies faxoniana; H, mixed. Fp, plant types effect; Fw, warming effect; Fp × w, plant types × warming interaction effect; **, p < 0.01; ***, p < 0.001; ns, p > 0.05. Different lowercase letters indicate significant differences in the GP/GN and F/B in root zone of different planting treatments under unwarming and warming (p < 0.05). * under the column indicates a significant difference in the t-test (p < 0.05).
土壤因子 Soil factor | 处理 Treatment | C (mean ± SD) | Y (mean ± SD) | L (mean ± SD) | H (mean ± SD) | P | W | P × W |
---|---|---|---|---|---|---|---|---|
pH | U | 7.69 ± 0.02b | 7.80 ± 0.04a | 7.70 ± 0.02b | 7.81 ± 0.02a | 10.82*** | 1.08 | 4.65* |
W | 7.81 ± 0.02a* | 7.81 ± 0.01a | 7.67 ± 0.02b | 7.78 ± 0.03a | ||||
SM (%) | U | 30.80 ± 0.00bc | 29.60 ± 0.01c | 34.86 ± 0.01a | 32.11 ± 0.00b | 9.51*** | 637.00*** | 41.51*** |
W | 0.27 ± 0.00a* | 0.24 ± 0.00b* | 0.22 ± 0.00c* | 0.23 ± 0.01bc* | ||||
TN (mg·kg-1) | U | 2.90 ± 0.04ab | 2.93 ± 0.15ab | 3.15 ± 0.17a | 2.70 ± 0.04b | 0.66 | 7.31* | 2.28 |
W | 2.64 ± 0.15a | 2.63 ± 0.11a | 2.66 ± 0.08a* | 2.79 ± 0.08a | ||||
TC (mg·kg-1) | U | 29.86 ± 0.37a | 31.59 ± 0.91a | 32.38 ± 1.35a | 30.06 ± 0.63a | 1.81 | 12.54** | 1.10 |
W | 28.37 ± 1.04a | 28.55 ± 0.36a* | 29.51 ± 0.22a | 29.48 ± 0.76a | ||||
NH4+-N (mg·kg-1) | U | 11.29 ± 1.17a | 12.70 ± 1.08a | 9.93 ± 0.38a | 11.48 ± 1.07a | 3.09 | 0.02 | 2.91 |
W | 11.03 ± 0.38b | 9.93 ± 0.51b | 8.93 ± 0.21b | 15.06 ± 2.36a | ||||
NO3--N (mg·kg-1) | U | 5.76 ± 0.17b | 8.07 ± 0.38a | 7.82 ± 0.31a | 6.35 ± 0.26b | 108.88*** | 945.64*** | 53.29*** |
W | 13.39 ± 0.27b* | 15.06 ± 0.07a* | 13.69 ± 0.07b* | 8.10 ± 0.32c* | ||||
TC/TN | U | 10.31 ± 0.19b | 10.80 ± 0.38ab | 10.29 ± 0.12b | 11.15 ± 0.18a | 0.50 | 0.87 | 2.42 |
W | 10.77 ± 0.30a | 10.90 ± 0.38a | 11.11 ± 0.34a | 10.57 ± 0.03a |
Table 1 Effects of different planting treatments and warming on soil physicochemical properties
土壤因子 Soil factor | 处理 Treatment | C (mean ± SD) | Y (mean ± SD) | L (mean ± SD) | H (mean ± SD) | P | W | P × W |
---|---|---|---|---|---|---|---|---|
pH | U | 7.69 ± 0.02b | 7.80 ± 0.04a | 7.70 ± 0.02b | 7.81 ± 0.02a | 10.82*** | 1.08 | 4.65* |
W | 7.81 ± 0.02a* | 7.81 ± 0.01a | 7.67 ± 0.02b | 7.78 ± 0.03a | ||||
SM (%) | U | 30.80 ± 0.00bc | 29.60 ± 0.01c | 34.86 ± 0.01a | 32.11 ± 0.00b | 9.51*** | 637.00*** | 41.51*** |
W | 0.27 ± 0.00a* | 0.24 ± 0.00b* | 0.22 ± 0.00c* | 0.23 ± 0.01bc* | ||||
TN (mg·kg-1) | U | 2.90 ± 0.04ab | 2.93 ± 0.15ab | 3.15 ± 0.17a | 2.70 ± 0.04b | 0.66 | 7.31* | 2.28 |
W | 2.64 ± 0.15a | 2.63 ± 0.11a | 2.66 ± 0.08a* | 2.79 ± 0.08a | ||||
TC (mg·kg-1) | U | 29.86 ± 0.37a | 31.59 ± 0.91a | 32.38 ± 1.35a | 30.06 ± 0.63a | 1.81 | 12.54** | 1.10 |
W | 28.37 ± 1.04a | 28.55 ± 0.36a* | 29.51 ± 0.22a | 29.48 ± 0.76a | ||||
NH4+-N (mg·kg-1) | U | 11.29 ± 1.17a | 12.70 ± 1.08a | 9.93 ± 0.38a | 11.48 ± 1.07a | 3.09 | 0.02 | 2.91 |
W | 11.03 ± 0.38b | 9.93 ± 0.51b | 8.93 ± 0.21b | 15.06 ± 2.36a | ||||
NO3--N (mg·kg-1) | U | 5.76 ± 0.17b | 8.07 ± 0.38a | 7.82 ± 0.31a | 6.35 ± 0.26b | 108.88*** | 945.64*** | 53.29*** |
W | 13.39 ± 0.27b* | 15.06 ± 0.07a* | 13.69 ± 0.07b* | 8.10 ± 0.32c* | ||||
TC/TN | U | 10.31 ± 0.19b | 10.80 ± 0.38ab | 10.29 ± 0.12b | 11.15 ± 0.18a | 0.50 | 0.87 | 2.42 |
W | 10.77 ± 0.30a | 10.90 ± 0.38a | 11.11 ± 0.34a | 10.57 ± 0.03a |
pH | SM (%) | TN | TC | NH4+-N | NO3--N | TC/TN | |
---|---|---|---|---|---|---|---|
Total | 0.05 | 0.33 | 0.25 | 0.47* | -0.22 | 0.01 | 0.16 |
B | 0.01 | 0.36 | 0.30 | 0.50* | -0.23 | -0.02 | 0.12 |
GP | 0.04 | 0.44* | 0.36 | 0.53** | -0.27 | -0.05 | 0.04 |
GN | 0.00 | 0.32 | 0.27 | 0.49* | -0.21 | -0.01 | 0.15 |
F | 0.35 | 0.08 | -0.04 | 0.21 | -0.07 | 0.18 | 0.37 |
AC | 0.21 | 0.03 | 0.12 | 0.31 | -0.08 | 0.16 | 0.20 |
F/B | 0.64*** | -0.38 | -0.46* | -0.31 | 0.21 | 0.41* | 0.45* |
GP/GN | 0.12 | 0.13 | 0.01 | -0.23 | -0.07 | -0.10 | -0.29 |
Table 2 Pearson correlation coefficients between microbial community phospholipid fatty acids (PLFAs) and environmental factors
pH | SM (%) | TN | TC | NH4+-N | NO3--N | TC/TN | |
---|---|---|---|---|---|---|---|
Total | 0.05 | 0.33 | 0.25 | 0.47* | -0.22 | 0.01 | 0.16 |
B | 0.01 | 0.36 | 0.30 | 0.50* | -0.23 | -0.02 | 0.12 |
GP | 0.04 | 0.44* | 0.36 | 0.53** | -0.27 | -0.05 | 0.04 |
GN | 0.00 | 0.32 | 0.27 | 0.49* | -0.21 | -0.01 | 0.15 |
F | 0.35 | 0.08 | -0.04 | 0.21 | -0.07 | 0.18 | 0.37 |
AC | 0.21 | 0.03 | 0.12 | 0.31 | -0.08 | 0.16 | 0.20 |
F/B | 0.64*** | -0.38 | -0.46* | -0.31 | 0.21 | 0.41* | 0.45* |
GP/GN | 0.12 | 0.13 | 0.01 | -0.23 | -0.07 | -0.10 | -0.29 |
[1] |
Allison SD, Treseder KK (2008). Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 14, 2898-2909.
DOI URL |
[2] |
Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology and Evolution, 29, 692-699.
DOI URL PMID |
[3] |
Brockett BFT, Prescott CE, Grayston SJ (2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology & Biochemistry, 44, 9-20.
DOI URL |
[4] |
D’Amore DV, Hennon PE, Schaberg PG, Hawley GJ (2009). Adaptation to exploit nitrate in surface soils predisposes yellow-cedar to climate-induced decline while enhancing the survival of western redcedar: a new hypothesis. Forest Ecology and Management, 258, 2261-2268.
DOI URL |
[5] |
DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, Melillo J, Frey SD (2015). Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology, 6, 104. DOI: 10.3389/fmicb.2015.00104.
DOI URL PMID |
[6] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. DOI: 10.1038/ncomms10541.
DOI URL PMID |
[7] |
Falkowski PG, Fenchel T, Delong EF (2008). The microbial engines that drive Earthʼs biogeochemical cycles. Science, 320, 1034-1039.
DOI URL PMID |
[8] |
Grayston SJ, Vaughan D, Jones D (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5, 29-56.
DOI URL |
[9] |
Gunina A, Smith AR, Godbold DL, Jones DL, Kuzyakov Y (2017). Response of soil microbial community to afforestation with pure and mixed species. Plant and Soil, 412, 357-368.
DOI URL |
[10] |
Guo QX, Yan LJ, Korpelainen H, Niinemets Ü, Li CY (2019). Plant-plant interactions and N fertilization shape soil bacterial and fungal communities. Soil Biology & Biochemistry, 128, 127-138.
DOI URL |
[11] |
Hackl E, Pfeffer M, Donat C, Bachmann C, Zechmeister Boltenstern S (2005). Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biology & Biochemistry, 37, 661-671.
DOI URL |
[12] | IPCC (2013). Climate Change 2013: The Physical Science Basis//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[13] |
Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB (2011). Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biology & Biochemistry, 43, 2184-2193.
DOI URL |
[14] |
Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist, 187, 843-858.
DOI URL |
[15] |
Kumar M, Männistö MK, van Elsas JD, Nissinen RM (2016). Plants impact structure and function of bacterial communities in Arctic soils. Plant and Soil, 399, 319-332.
DOI URL |
[16] | Li YJ, Zhu LY, Yin HJ, Liu Q, Jiang XM, Zhao CZ (2015). Effects of 3-year continuous night-time warming and nitrogen fertilization on ectomycorrhizae of Picea asperata and the ectomycorrhizal fungal diversity. Acta Ecologica Sinica, 35, 2967-2977. |
[ 李月蛟, 朱利英, 尹华军, 刘庆, 蒋先敏, 赵春章 (2015). 连续三年夜间增温和施氮对云杉外生菌根及菌根真菌多样性的影响. 生态学报, 35, 2967-2977.] | |
[17] | Liu Q, Wu Y, He H (2001). Ecological problems of subalpine coniferous forest in the southwest of China. World Science and Technology Research and Development, 23, 63-69. |
[ 刘庆, 吴彦, 何海 (2001). 中国西南亚高山针叶林的生态学问题. 世界科技研究与发展, 23, 63-69.] | |
[18] |
Lladó S, López-Mondéjar R, Baldrian P (2018). Drivers of microbial community structure in forest soils. Applied Microbiology and Biotechnology, 102, 4331-4338.
DOI URL PMID |
[19] | Lu RK (2000). Soil Agricultural Chemical Analysis Method. University of Chinese Academy of Sciences, Beijing. |
[ 鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[20] |
Macdonald CA, Thomas N, Robinson L, Tate KR, Ross DJ, Dando J, Singh BK (2009). Physiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with Pinus radiata. Soil Biology & Biochemistry, 41, 1642-1651.
DOI URL |
[21] |
Majdi H, Öhrvik J (2004). Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden. Global Change Biology, 10, 182-188.
DOI URL |
[22] |
Marschner P, Crowley D, Yang CH (2004). Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil, 261, 199-208.
DOI URL |
[23] |
Nakadai T, Yokozawa M, Ikeda H, Koizumi H (2002). Diurnal changes of carbon dioxide flux from bare soil in agricultural field in Japan. Applied Soil Ecology, 19, 161-171.
DOI URL |
[24] |
Nazaries L, Tottey W, Robinson L, Khachane A, Al-Soud WA, Sørensen S, Singh BK (2015). Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming. Soil Biology & Biochemistry, 89, 123-134.
DOI URL |
[25] |
Rui J, Li J, Wang S, An J, Liu WT, Lin Q, Yang Y, He Z, Li X (2015). Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau. Applied and Environmental Microbiology, 81, 6070-6077.
DOI URL PMID |
[26] |
Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S (2011). Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology & Biochemistry, 43, 1417-1425.
DOI URL PMID |
[27] |
Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR (2011). Effect of warming and drought on grassland microbial communities. The ISME Journal, 5, 1692-1700.
DOI URL PMID |
[28] | Shen JP, He JZ (2011). Responses of microbes-mediated carbon and nitrogen cycles to global climate change. Acta Ecologica Sinica, 31, 2957-2967. |
[ 沈菊培, 贺纪正 (2011). 生态学报, 31, 2957-2967.] | |
[29] |
Song CQ, Wu JS, Lu YH, Shen QR, He JZ, Huang QY, Jia ZJ, Leng SY, Zhu YG (2013). Advances of soil microbiology in the last decade in China. Advances in Earth Science, 28, 1087-1105.
DOI URL |
[ 宋长青, 吴金水, 陆雅海, 沈其荣, 贺纪正, 黄巧云, 贾仲君, 冷疏影, 朱永官 (2013). 中国土壤微生物学研究10年回顾. 地球科学进展, 28, 1087-1105.] | |
[30] |
Sun DD, Li YJ, Zhao WQ, Zhang ZL, Li DD, Zhao CZ, Liu Q (2016). Effects of experimental warming on soil microbial communities in two contrasting subalpine forest ecosystems, eastern Tibetan Plateau, China. Journal of Mountain Science, 13, 1442-1452.
DOI URL |
[31] |
Treseder KK, Allen EB, Egerton-Warburton LM, Hart MM, Klironomos JN, Maherali H, Tedersoo L (2018). Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: a trait-based predictive framework. Journal of Ecology, 106, 480-489.
DOI URL |
[32] |
Urbanová M, Šnajdr J, Baldrian P (2015). Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology & Biochemistry, 84, 53-64.
DOI URL |
[33] |
Uroz S, Oger P, Tisserand E, Cébron A, Turpault MP, Buée M, De Boer W, Leveau JHJ, Frey-Klett P (2016). Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Scientific Reports, 6, 27756. DOI: 10.1038/srep27756.
DOI URL PMID |
[34] |
van der Wal A, van Veen JA, Smant W, Boschker HTS, Bloem J, Kardol P, van der Putten WH, de Boer W (2006). Fungal biomass development in a chronosequence of land abandonment. Soil Biology & Biochemistry, 38, 51-60.
DOI URL |
[35] |
Wan XH, Huang ZQ, He ZM, Yu ZP, Wang MH, Davis MR, Yang YS (2015). Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant and Soil, 387, 103-116.
DOI URL |
[36] |
Wang CT, Zhao XQ, Zi HB, Hu L, Ade L, Wang GX, Lerdau M (2017). The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau. Applied Soil Ecology, 116, 30-41.
DOI URL |
[37] |
White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40, 51-62.
DOI URL PMID |
[38] |
Willers C, van Rensburg PJ, Claassens S (2015). Phospholipid fatty acid profiling of microbial communities—A review of interpretations and recent applications. Journal of Applied Microbiology, 119, 1207-1218.
DOI URL PMID |
[39] |
Wu YB, Zhang J, Deng YC, Wu J, Wang SP, Tang YH, Cui XY (2014). Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 215, 1057-1066.
DOI URL |
[40] |
Yin HJ, Chen Z, Liu Q (2012a). Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China. Soil Biology & Biochemistry, 50, 77-84.
DOI URL |
[41] |
Yin HJ, Li YF, Xiao J, Xu ZF, Cheng XY, Liu Q (2013a). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology, 19, 2158-2167.
DOI URL |
[42] |
Yin HJ, Xiao J, Li YF, Chen Z, Cheng XY, Zhao CZ, Liu Q (2013b). Warming effects on root morphological and physiological traits: the potential consequences on soil C dynamics as altered root exudation. Agricultural and Forest Meteorology, 180, 287-296.
DOI URL |
[43] |
Yin HJ, Xu ZF, Chen Z, Wei YY, Liu Q (2012b). Nitrogen transformation in the rhizospheres of two subalpine coniferous species under experimental warming. Applied Soil Ecology, 59, 60-67.
DOI URL |
[44] | Zhang D, Zhang YX, Qu LY, Zhang S, Ma KM (2012). Effects of altitude on soil microbial community in Quercus liaotungensis forest. Chinese Journal of Applied Ecology, 23, 2041-2048. |
[ 张地, 张育新, 曲来叶, 张霜, 马克明 (2012). 海拔对辽东栎林地土壤土壤微生物群落的影响. 应用生态学报, 23, 2041-2048.] | |
[45] |
Zhao CZ, Liu Q (2008). Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization. Acta Physiologiae Plantarum, 31, 163-173.
DOI URL |
[46] |
Zhao CZ, Zhu LY, Liang J, Yin HJ, Yin CY, Li DD, Zhang NN, Liu Q (2014). Effects of experimental warming and nitrogen fertilization on soil microbial communities and processes of two subalpine coniferous species in Eastern Tibetan Plateau, China. Plant and Soil, 382, 189-201.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn