Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (1): 54-61.DOI: 10.3724/SP.J.1258.2014.00006
• Research Articles • Previous Articles Next Articles
ZHOU Yong, ZHENG Lu-Yu, ZHU Min-Jie, LI Xia, REN An-Zhi*(), GAO Yu-Bao
Received:
2013-08-22
Accepted:
2013-11-26
Online:
2014-08-22
Published:
2014-01-15
Contact:
REN An-Zhi
ZHOU Yong, ZHENG Lu-Yu, ZHU Min-Jie, LI Xia, REN An-Zhi, GAO Yu-Bao. Effects of fungal endophyte infection on soil properties and microbial communities in the host grass habitat[J]. Chin J Plant Ecol, 2014, 38(1): 54-61.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00006
Fig. 1 Effects of fungal endophyte infection on total C (A), total N (B), and C:N (C) in pot and field soils (mean ± SE, n = 5). E+, endophyte-infected; E-, endophyte-free. Different lower-case letters indicate significant differences at p < 0.05.
Fig. 2 Soil microbial phospholipid fatty acid (PLFA) profiles with different fungal endophyte infections (mean ± SE, n = 5). A, Pot soil. B, Field soil. E+, endophyte-infected; E-, endophyte-free.
盆栽土壤 Pot soil | 样地土壤 Plot soil | ||||
---|---|---|---|---|---|
E+ | E- | E+ | E- | ||
细菌 Bacteria | 37.91 ± 1.12 a | 31.85 ± 1.12 b | 33.15 ± 2.62 a | 27.22 ± 2.32 a | |
革兰氏阳性细菌 Gram-positive bacteria G+ | 1.60 ± 0.05 a | 1.47 ± 0.11 a | 1.60 ± 0.11 a | 1.21 ± 0.13 b | |
革兰氏阴性细菌 Gram-negative bacteria G- | 17.37 ± 1.26 a | 12.20 ± 0.76 b | 10.32 ± 1.12 a | 7.89 ± 1.15 a | |
真菌 Fungi | 19.19 ± 0.63 a | 15.09 ± 0.65 b | 13.16 ± 2.11 a | 10.58 ± 1.38 a | |
放线菌 Actinomycetes | 2.69 ± 0.08 a | 2.39 ± 0.14 a | 2.83 ± 0.17 a | 1.74 ± 0.26 b | |
原生动物 Protozoa | 2.59 ± 0.15 a | 2.09 ± 0.23 a | 1.21 ± 0.55 a | 1.08 ± 0.18 a | |
G+:G- | 0.10 ± 0.01 a | 0.12 ± 0.01 a | 0.16 ± 0.01 a | 0.16 ± 0.01 a | |
真菌:细菌比值 Bacteria:fungi ratio | 0.51 ± 0.02 a | 0.48 ± 0.02 a | 0.39 ± 0.04 a | 0.38 ± 0.02 a | |
PLFAs总量 Total PLFAs | 86.27 ± 1.14 a | 73.06 ± 1.91 b | 72.88 ± 7.31 a | 56.11 ± 5.27 a |
Table 1 Contents of soil microbial phospholipid fatty acids (PLFAs) in pots and field plots under different fungal endophyte infections (nmol·g-1) (mean ± SE, n = 5)
盆栽土壤 Pot soil | 样地土壤 Plot soil | ||||
---|---|---|---|---|---|
E+ | E- | E+ | E- | ||
细菌 Bacteria | 37.91 ± 1.12 a | 31.85 ± 1.12 b | 33.15 ± 2.62 a | 27.22 ± 2.32 a | |
革兰氏阳性细菌 Gram-positive bacteria G+ | 1.60 ± 0.05 a | 1.47 ± 0.11 a | 1.60 ± 0.11 a | 1.21 ± 0.13 b | |
革兰氏阴性细菌 Gram-negative bacteria G- | 17.37 ± 1.26 a | 12.20 ± 0.76 b | 10.32 ± 1.12 a | 7.89 ± 1.15 a | |
真菌 Fungi | 19.19 ± 0.63 a | 15.09 ± 0.65 b | 13.16 ± 2.11 a | 10.58 ± 1.38 a | |
放线菌 Actinomycetes | 2.69 ± 0.08 a | 2.39 ± 0.14 a | 2.83 ± 0.17 a | 1.74 ± 0.26 b | |
原生动物 Protozoa | 2.59 ± 0.15 a | 2.09 ± 0.23 a | 1.21 ± 0.55 a | 1.08 ± 0.18 a | |
G+:G- | 0.10 ± 0.01 a | 0.12 ± 0.01 a | 0.16 ± 0.01 a | 0.16 ± 0.01 a | |
真菌:细菌比值 Bacteria:fungi ratio | 0.51 ± 0.02 a | 0.48 ± 0.02 a | 0.39 ± 0.04 a | 0.38 ± 0.02 a | |
PLFAs总量 Total PLFAs | 86.27 ± 1.14 a | 73.06 ± 1.91 b | 72.88 ± 7.31 a | 56.11 ± 5.27 a |
Fig. 3 Changes in the rate and quantity of soil C mineralization under different fungal endophyte infections (mean ± SE, n = 5). A, Soil C mineralization rate in pot soil. B, Soil C mineralization rate in field plot. C, Quantity of soil C mineralization in pot soil. D, Quantity of soil C mineralization in field plot. E+, endophyte-infected; E-, endophyte-free.
[1] | Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3,267-274. |
[2] |
Baumann K, Dignac MF, Rumpel C, Bardoux G, Sarr A, Steffens M, Maron PA (2013). Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry, 114,201-212.
DOI URL |
[3] | Belesky DP, Fedders JM (1995). Tall fescue development in response to Acremonium coenophialum and soil acidity. Crop Science, 35,529-533. |
[4] | Bultman TL, Bell GD (2003). Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. Oikos, 103,182-190. |
[5] | Burns JC, Fisher DS (2006). Intake and digestion of ‘Jesup’ tall fescue hays with a novel fungal endophyte, without an endophyte, or with a wild-type endophyte. Crop Science, 46,216-223. |
[6] | Casas C, Omacini M, Montecchia MS, Correa OS (2011). Soil microbial community responses to the fungal endophyte neotyphodium in Italian ryegrass. Plant and Soil, 340,347-355. |
[7] | Chen XQ, Li YQ, Jia FS, Chen JL (1989). A study on Aneurolepidium chinense. Pratacultural Science, 6,7-12. (in Chinese with English abstract) |
[ 陈孝泉, 李艳芹, 贾丰生, 陈吉琳 (1989). 羊草植物的研究. 草业科学, 6,7-12.] | |
[8] | Christensen MJ (1996). Antifungal activity in grasses infected with Acremonium and Epichloë endophytes. Australasian Plant Pathology, 25,186-191. |
[9] | Clay K (1990). Fungal endophytes of grasses. Annual Review of Ecology and Systematics, 21,275-297. |
[10] |
Clay K, Holah J (1999). Fungal endophyte symbiosis and plant diversity in successional fields. Science, 285,1742-1744.
URL PMID |
[11] | Clay K, Marks S, Cheplick GP (1993). Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology, 74,1767-1777. |
[12] | Dou JX, Liu JS, Wang Y (2009). Effects of amendment C/N ratio on soil organic carbon mineralization of meadow marshes in Sanjiang Plain. Scientia Geographica Sinica, 29,773-778. (in Chinese with English abstract) |
[ 窦晶鑫, 刘景双, 王洋 (2009). 三江平原草甸湿地土壤有机碳矿化对C/N的响应. 地理科学, 29,773-778.] | |
[13] |
Franzluebbers AJ, Hill NS (2005). Soil carbon, nitrogen, and ergot alkaloids with short- and long-term exposure to endophyte-infected and endophyte-free tall fescue. Soil Science Society of America Journal, 69,404-412.
DOI URL |
[14] | Franzluebbers AJ, Nazih N, Stuedemann JA, Fuhrmann JJ, Schomberg HH, Hartel PG (1999). Soil carbon and nitrogen pools under low- and high-endophyte-infected tall fescue. Soil Science Society of America Journal, 63,1687-1694. |
[15] | Franzluebbers AJ, Stuedemann JA (2005). Soil carbon and nitrogen pools in response to tall fescue endophyte infection, fertilization, and cultivar. Soil Science Society of America Journal, 69,396-403. |
[16] |
Giardina CP, Ryan MG, Hubbard RM, Binkley D (2001). Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Science Society of America Journal, 65,1272-1279.
DOI URL |
[17] |
Handayani IP, Coyne MS, Phillips TD (2011). Soil organic carbon fractions differ in two contrasting tall fescue systems. Plant and Soil, 338,43-50.
DOI URL |
[18] |
Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, Diepenbrock W, Merbach W (2003). Ef- fects of neotyphodium endophytes on growth, reproduc- tion and drought-stress tolerance of three Lolium perenne L. genotypes. Grass and Forage Science, 58,407-415.
DOI URL |
[19] | Iqbal J, Siegrist JA, Nelson JA, Mcculley RL (2012). Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands. Soil Biology & Biochemistry, 44,81-92. |
[20] | Jenkins MB, Franzluebbers AJ, Humayoun SB (2006). Assessing short-term responses of prokaryotic communities in bulk and rhizosphere soils to tall fescue endophyte infection. Plant and Soil, 289,309-320. |
[21] | Latch GCM (1993). Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes. Agriculture, Ecosystems & Environment, 44,143-156. |
[22] |
Lemons A, Clay K, Rudgers JA (2005). Connecting plant-microbial interactions above- and below-ground: a fungal endophyte affects decomposition. Oecologia, 145,595-604.
URL PMID |
[23] | Lewis GC (2004). Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii. Annals of Applied Biology, 144,53-63. |
[24] |
Mack KML, Rudgers JA (2008). Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos, 117,310-320.
DOI URL |
[25] | Marks S, Clay K (1996). Physiological responses of Festuca arundinacea to fungal endophyte infection. New Phytologist, 133,727-733. |
[26] | Núñeza S, Martínez-Yrízara A, Búrqueza A, García-Oliva F (2001). Carbon mineralization in the southern Sonoran Desert. Acta Oecologica, 22,269-276. |
[27] | Omacini M, Chaneton EJ, Ghersa CM, Otero P (2004). Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos, 104,581-590. |
[28] | Rasmussen S, Parsons AJ, Bassett S, Christensen MJ, Hume DE, Johnson LJ, Johnson RD, Simpson WR, Stacke C, Voisey CR, Xue H, Newman JA (2007). High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytologist, 173,787-797. |
[29] |
Rasmussen S, Parsons AJ, Fraser K, Xue H, Newman JA (2008). Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiology, 146,1440-1453.
URL PMID |
[30] | Schutter ME, Dick RP (2000). Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Science Society of America Journal, 64,1659-1668. |
[31] | Siegrist JA, McCulley RL, Bush LP, Phillips TD (2010). Alkaloids may not be responsible for endophyte- associated reductions in tall fescue decomposition rates. Functional Ecology, 24,460-468. |
[32] | van Hecke MM, Treonis AM, Kaufman JR (2005). How does the fungal endophyte Neotyphodium coenophialum affect tall fescue ( Festuca arundinacea) rhizodeposition and soil microorganisms? Plant and Soil, 275,101-109. |
[33] |
Zhu MJ, Ren AZ, Wen W, Gao YB (2013). Diversity and taxonomy of endophytes from Leymus chinensis in the Inner Mongolia Steppe of China. FEMS Microbiology Letters, 340,135-145.
URL PMID |
[1] | DAI Jing-Zhong, BAI Yu-Ting, WEI Zhi-Jun, ZHANG Chu, YAN Rui-Rui. Effects of root-cutting in the vegetative phase on plant functional traits of Leymus chinensis [J]. Chin J Plant Ecol, 2021, 45(12): 1292-1302. |
[2] | LUO Lin, HUANG Yan, LIANG Jin, WANG En-Tao, HU Jun, HE He-Liang, ZHAO Chun-Zhang. Effects of plant interspecific interaction and warming on soil microbial community in root zone soil of two dominant tree species in the subalpine coniferous forest in southwestern China [J]. Chin J Plant Ecol, 2020, 44(8): 875-884. |
[3] | QIN Tian-Zi, REN An-Zhi, FAN Xiao-Wen, GAO Yu-Bao. Effects of endophyte fungal species and host plant genotype on the leaf shape and leaf area of endophyte-grass symbionts [J]. Chin J Plant Ecol, 2020, 44(6): 654-660. |
[4] | LI Ying, GONG Ji-Rui, LIU Min, HOU Xiang-Yang, DING Yong, YANG Bo, ZHANG Zi-He, WANG Biao, ZHU Chen-Chen. Defense strategies of dominant plants under different grazing intensity in the typical temperate steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(6): 642-653. |
[5] | WU Man, LI Juan-Juan, LIU Jin-Ming, REN An-Zhi, GAO Yu-Bao. Effects of Epichloë infection on the diversity and productivity of Achnatherum sibiricum community under various nutrient and mowing conditions [J]. Chin J Plant Ecol, 2019, 43(2): 85-93. |
[6] | LI Chun-Jie, YAO Xiang, NAN Zhi-Biao. Advances in research of Achnatherum inebrians-Epichloë endophyte symbionts [J]. Chin J Plan Ecolo, 2018, 42(8): 793-805. |
[7] | ZHANG Lu, HAO Bi-Tai, QI Li-Xue, LI Yan-Long, XU Hui-Min, YANG Li-Na, BAOYIN Taogetao. Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration [J]. Chin J Plant Ecol, 2018, 42(3): 317-326. |
[8] | SHI Guo-Xi, WANG Wen-Ying, JIANG Sheng-Jing, CHENG Gang, YAO Bu-Qing, FENG Hu-Yuan, ZHOU Hua-Kun. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity [J]. Chin J Plant Ecol, 2018, 42(1): 126-132. |
[9] | WANG Jun, WANG Guan-Qin, LI Fei, PENG Yun-Feng, YANG Gui-Biao, YU Jian-Chun, ZHOU Guo-Ying, YANG Yuan-He. Effects of short-term experimental warming on soil microbes in a typical alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 116-125. |
[10] | Xue YANG, Jun-Fang SHEN, Nian-Xi ZHAO, Yu-Bao GAO. Phenotypic plasticity and genetic differentiation of quantitative traits in genotypes of Leymus chinensis [J]. Chin J Plant Ecol, 2017, 41(3): 359-368. |
[11] | Zhan-Wei ZHAI, Ji-Rui GONG, Qin-Pu LUO, Yan PAN, Taogetao BAOYIN, Sha XU, Min LIU, Li-Li YANG. Effects of nitrogen addition on photosynthetic characteristics of Leymus chinensis in the temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2017, 41(2): 196-208. |
[12] | Yu CEN, Mei-Zhen LIU. Effects of dew on eco-physiological traits and leaf structures of Leymus chinensis and Agropyron cristatum grown under drought stress [J]. Chin J Plan Ecolo, 2017, 41(11): 1199-1207. |
[13] | Xi Qiu, Mao-Kui LÜ, Jin-Xue HUANG, Wei LI, Ben-Jia ZHAO, Hao ZHANG, En-Xi WANG, Jin-Sheng XIE. Characteristics of soil organic carbon mineralization at different temperatures in severely eroded red soil [J]. Chin J Plant Ecol, 2016, 40(3): 236-245. |
[14] | ZHAN Shu-Xia, ZHENG Shu-Xia, WANG Yang, BAI Yong-Fei. Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions [J]. Chin J Plant Ecol, 2016, 40(1): 36-47. |
[15] | HE Tong-Xin,LI Yan-Peng,ZHANG Fang-Yue,WANG Qing-Kui. Effects of understory removal on soil respiration and microbial community composition structure in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2015, 39(8): 797-806. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn