Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (9): 996-1005.DOI: 10.17521/cjpe.2021.0113
Special Issue: 生态化学计量; 青藏高原植物生态学:植物-土壤-微生物; 微生物生态学
• Research Articles • Previous Articles Next Articles
NIE Xiu-Qing1,2, WANG Dong1,2,*(), ZHOU Guo-Ying3, XIONG Feng3, DU Yan-Gong3
Received:
2021-03-26
Accepted:
2021-07-03
Online:
2021-09-20
Published:
2021-08-26
Contact:
WANG Dong
Supported by:
NIE Xiu-Qing, WANG Dong, ZHOU Guo-Ying, XIONG Feng, DU Yan-Gong. Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region[J]. Chin J Plant Ecol, 2021, 45(9): 996-1005.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0113
植被类型 Vegetation type | MBC | MBN | MBP | MBC:MBN | MBC:MBP | MBN:MBP | MBC:MBN: MBP | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadow | 49.25a [38.92-61.58] | 3.40a [2.83-4.12] | 0.55a [0.42-0.69] | 14.53a [12.76-16.17] | 117.02a [79.22-168.91] | 8.13a [5.64-11.79] | 118:8:1 | 本研究 This study |
高寒湿地 Alpine wetland | 105.11b [81.33-133.33] | 3.79b [2.58-5.16] | 0.78a [0.55-1.06] | 50.56b [37.33-65.33] | 184.89b [156.25-213.18] | 5.42a [4.22-6.89] | 275:5:1 | 本研究 This study |
高寒草甸 Alpine meadow | 33.5 [30.1-37.2] | 3.24 [2.69-3.89] | 0.70 [0.61-0.80] | 10.23 [9.77-10.96] | 48.0 [43.8-52.6] | 4.68 [3.98-5.50] | 47.9:4.68:1 | Chen et al., |
高寒草原 Alpine steppe | 13.5 [11.9-15.4] | 1.00 [0.79-1.29] | 0.17 [0.14-0.20] | 13.49 [12.02-15.14] | 80.0 [71.4-89.5] | 6.03 [4.79-7.41] | 81.3:6.03:1 | Chen et al., |
全球湿地平均值 Global wetland average | 111.4 [84.4-147.0] | 19.3 [14.5-25.9] | 2.4 [1.1-5.4] | 9.5 [7.7-11.8] | 130.7 [62.1-275.0] | 35.7 [14.0-91.2] | 131:14:1 | Xu et al., |
全球平均值 Global average | 56.7 | 7.5 | 1.3 | 7.6 | 42.4 | 5.6 | 42:6:1 | Xu et al., |
82.3 [69.2-97.7] | 10.9 [9.1-12.9] | 1.4 [1.1-1.6] | 8.6 [8.3-8.9] | 59.5 [55.9-63.1] | 6.9 [6.5-7.3] | 60:7:1 | Cleveland & Liptzin, |
Table 1 Stoichiometric characteristics of soil microbial biomass (results are shown as means and 95% confidence intervals) in alpine ecosystems and global biomes
植被类型 Vegetation type | MBC | MBN | MBP | MBC:MBN | MBC:MBP | MBN:MBP | MBC:MBN: MBP | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadow | 49.25a [38.92-61.58] | 3.40a [2.83-4.12] | 0.55a [0.42-0.69] | 14.53a [12.76-16.17] | 117.02a [79.22-168.91] | 8.13a [5.64-11.79] | 118:8:1 | 本研究 This study |
高寒湿地 Alpine wetland | 105.11b [81.33-133.33] | 3.79b [2.58-5.16] | 0.78a [0.55-1.06] | 50.56b [37.33-65.33] | 184.89b [156.25-213.18] | 5.42a [4.22-6.89] | 275:5:1 | 本研究 This study |
高寒草甸 Alpine meadow | 33.5 [30.1-37.2] | 3.24 [2.69-3.89] | 0.70 [0.61-0.80] | 10.23 [9.77-10.96] | 48.0 [43.8-52.6] | 4.68 [3.98-5.50] | 47.9:4.68:1 | Chen et al., |
高寒草原 Alpine steppe | 13.5 [11.9-15.4] | 1.00 [0.79-1.29] | 0.17 [0.14-0.20] | 13.49 [12.02-15.14] | 80.0 [71.4-89.5] | 6.03 [4.79-7.41] | 81.3:6.03:1 | Chen et al., |
全球湿地平均值 Global wetland average | 111.4 [84.4-147.0] | 19.3 [14.5-25.9] | 2.4 [1.1-5.4] | 9.5 [7.7-11.8] | 130.7 [62.1-275.0] | 35.7 [14.0-91.2] | 131:14:1 | Xu et al., |
全球平均值 Global average | 56.7 | 7.5 | 1.3 | 7.6 | 42.4 | 5.6 | 42:6:1 | Xu et al., |
82.3 [69.2-97.7] | 10.9 [9.1-12.9] | 1.4 [1.1-1.6] | 8.6 [8.3-8.9] | 59.5 [55.9-63.1] | 6.9 [6.5-7.3] | 60:7:1 | Cleveland & Liptzin, |
Fig. 2 Effects of soil physical and chemical properties on microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) concentration in alpine wetlands in the Three Rivers Sources Region.
Fig. 3 Effects of soil physical and chemical properties on microbial biomass stoichiometry in alpine wetlands in the Three Rivers Sources Region. MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass phosphorus.
Fig. 4 Effects of soil microbial community structure on microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) in alpine wetlands in the Three Rivers Sources Region. PLFA, total phospholipid fatty acid.
Fig. 5 Effects of soil microbial community structure on microbial biomass stoichiometry in alpine wetlands in the Three Rivers Sources Region. MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass phosphorus. PLFA, total phospholipid fatty acid.
[1] |
Attiwill PM, Adams MA (1993). Nutrient cycling in forests. New Phytologist, 124, 561-582.
DOI PMID |
[2] | Bai JH, Ouyang H, Xu HF, Zhou CP, Gao JQ (2004). Advances in studies of wetlands in Qinghai-Tibet Plateau. Progress in Geography, 23(4), 1-9. |
[ 白军红, 欧阳华, 徐惠风, 周才平, 高俊琴 (2004). 青藏高原湿地研究进展. 地理科学进展, 23(4), 1-9.] | |
[3] |
Chen YH, Han WX, Tang LY, Tang ZY, Fang JY (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 36, 178-184.
DOI URL |
[4] | Chen YL, Chen LY, Peng YF, Ding JZ, Li F, Yang GB, Kou D, Liu L, Fang K, Zhang BB, Wang J, Yang YH (2016). Linking microbial C:N: P stoichiometry to microbial community and abiotic factors along a 3500-km grassland transect on the Tibetan Plateau. Global Ecology and Biogeography, 25, 1416-1427. |
[5] |
Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252.
DOI URL |
[6] |
Cleveland CC, Townsend AR, Schmidt SK (2002). Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems, 5, 680-691.
DOI URL |
[7] |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
[8] |
Fanin N, Fromin N, Buatois B, Hättenschwiler S (2013). An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system. Ecology Letters, 16, 764-772.
DOI URL |
[9] |
Fierer N, Bradford MA, Jackson RB (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354- 1364.
PMID |
[10] | Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000). Processes governing phosphorus availability in temperate soils. Journal of Environmental Quality, 29, 15-23. |
[11] |
Frostegård A, Bååth E (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65.
DOI URL |
[12] |
Frostegård Å, Bååth E, Tunlio A (1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25, 723-730.
DOI URL |
[13] |
Heuck C, Weig A, Spohn M (2015). Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology & Biochemistry, 85, 119-129.
DOI URL |
[14] |
Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423-436.
DOI URL |
[15] |
Kaiser C, Franklin O, Dieckmann U, Richter A (2014). Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters, 17, 680-690.
DOI URL |
[16] |
Li JW, Liu YL, Hai XY, Shangguan ZP, Deng L (2019). Dynamics of soil microbial C:N:P stoichiometry and its driving mechanisms following natural vegetation restoration after farmland abandonment. Science of the Total Environment, 693, 133613. DOI: 10.1016/j.scitotenv.2019.133613.
DOI URL |
[17] |
Li P, Yang YH, Han WX, Fang JY (2014). Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems. Global Ecology and Biogeography, 23, 979-987.
DOI URL |
[18] |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462
DOI URL |
[19] |
Lü CQ, Tian HQ (2007). Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. Journal of Geophysical Research, 112, D22S05. DOI: 10.1029/2006JD007990.
DOI |
[20] |
Medlyn BE, Zaehle S de Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain AK, Luo YQ, Parton W, Prentice IC, Thornton PE, Wang SS, Wang YP, Weng ES, et al. (2015). Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5, 528-534.
DOI URL |
[21] |
Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014). Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 5, 22. DOI: 10.3389/ fmicb.2014.00022.
DOI PMID |
[22] |
Mouginot C, Kawamura R, Matulich KL, Berlemont R, Allison SD, Amend AS, Martiny AC (2014). Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter. Soil Biology & Biochemistry, 76, 278-285.
DOI URL |
[23] |
Mu CC, Li LL, Zhang F, Li YX, Xiao XX, Zhao Q, Zhang TJ (2018). Impacts of permafrost on above- and belowground biomass on the northern Qinghai-Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 50, e1447192. DOI: 10. 1080/15230430.2018.1447192.
DOI URL |
[24] |
Nie XQ, Wang D, Yang LC, Zhou GY (2021). Controls on variation of soil organic carbon concentration in the shrublands of the north-eastern Tibetan Plateau. European Journal of Soil Science, 72, 1817-1830.
DOI URL |
[25] | Peng XQ, Wang W (2016). Spatial pattern of soil microbial biomass carbon and its driver in temperate grasslands of Inner Mongolia. Microbiology China, 43, 1918-1930. |
[ 彭晓茜, 王娓 (2016). 内蒙古温带草原土壤微生物生物量碳的空间分布及驱动因素. 微生物学通报, 43, 1918-1930.] | |
[26] |
Powlson DS, Prookes PC, Christensen BT (1987). Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology & Biochemistry, 19, 159-164.
DOI URL |
[27] | Qin DH (2014). Eco-preservation and Sustain Development in the Three Rivers Source Region of the Tibetan Plateau. Science Press, Beijing. 25-26. |
[ 秦大河 (2014). 三江源区生态保护与可持续发展. 科学出版社, 北京. 25-26.] | |
[28] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[29] |
Strickland MS, Rousk J (2010). Considering fungal: bacterial dominance in soils-Methods, controls, and ecosystem implications. Soil Biology & Biochemistry, 42, 1385-1395.
DOI URL |
[30] | Sun HL, Zheng D, Yao TD, Zhang YL (2012). Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica, 67, 3-12. |
[ 孙鸿烈, 郑度, 姚檀栋, 张镱锂 (2012). 青藏高原国家生态安全屏障保护与建设. 地理学报, 67, 3-12.]
DOI |
|
[31] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limation: mechanisms, implication, and nitrogen-phosphorus interaction. Ecological Applications, 20, 5-15.
DOI URL |
[32] | Wang CT, Long RJ, Wang GX, Liu W, Wang QL, Zhang L, Wu PF (2010). Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows. Acta Prataculturae Sinica, 19, 25-34. |
[ 王长庭, 龙瑞军, 王根绪, 刘伟, 王启兰, 张莉, 吴鹏飞 (2010). 高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究. 草业学报, 19, 25-34.] | |
[33] |
Xu X, Thornton PE, Post WM (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22, 737-749.
DOI URL |
[34] |
Yang MX, Nelson FE, Shiklomanov NI, Guo DL, Wan GN (2010). Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth-Science Reviews, 103, 31-44.
DOI URL |
[35] | Yang WJ, Wang YB, Liu X, Sun Z (2019). Nutrient evaluation of the soil in the Qinghai-Tibet Plateau based on BP neural network. Journal of Glaciology and Geocryology, 41, 215- 226. |
[ 杨文静, 王一博, 刘鑫, 孙哲 (2019). 基于BP神经网络的青藏高原土壤养分评价. 冰川冻土, 41, 215- 226.] | |
[36] |
Yang YH (2018). Ecological processes in alpine ecosystems under changing environment. Chinese Journal of Plant Ecology, 42, 1-5.
DOI URL |
[ 杨元合 (2018). 全球变化背景下的高寒生态过程. 植物生态学报, 42, 1-5.]
DOI |
|
[37] |
Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008). Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14, 1592-1599.
DOI URL |
[38] | Yao TD, Chen FH, Cui P, Ma YM, Xu BQ, Zhu LP, Zhang F, Wang WC, Ai LK, Yang XX (2017). From Tibetan Plateau to third pole and pan-third pole. Bulletin of Chinese Academy of Sciences, 9, 924-931. |
姚檀栋, 陈发虎, 崔鹏, 马耀明, 徐柏青, 朱立平, 张凡, 王伟财, 艾丽坤, 杨晓新 (2017). 从青藏高原到第三极和泛第三极. 中国科学院院刊, 9, 924-931.] | |
[39] |
Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015). The application of ecological stoichiometry to plant-microbial- soil organic matter transformations. Ecological Monographs, 85, 133-155.
DOI URL |
[40] |
Zhou ZH, Wang CK (2015). Reviews and syntheses: soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems. Biogeosciences, 12, 6751-6760.
DOI URL |
[41] |
Zhou ZH, Wang CK (2016). Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry. Chinese Journal of Plant Ecology, 40, 620-630.
DOI URL |
周正虎, 王传宽 (2016). 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 40, 620-630.]
DOI |
[1] | 艺彤 王 BAIKETUERHAN Yeerjiang Dan LIAO 娟 王. Correlation between Elemental Biometric Characteristics and Sexual Dimorphism in Leaves of the Dioecious Acer barbinerve at Different Growth Stages [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[3] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[4] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[5] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[6] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[7] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[8] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[9] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[10] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[11] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[12] | YUAN Chun-Yang, LI Ji-Hong, HAN Xin, HONG Zong-Wen, LIU Xuan, DU Ting, YOU Cheng-Ming, LI Han, TAN Bo, XU Zhen-Feng. Effects of tree species on soil microbial biomass carbon and nitrogen: a case study of common garden experiment [J]. Chin J Plant Ecol, 2022, 46(8): 882-889. |
[13] | WANG Jun-Qiang, LIU Bin, CHANG Feng, MA Zi-Jing, FAN Jia-Hui, HE Xiang-Ju, YOU Si-Xue, Aerziguli ABUDUREXITI, YANG Ying-Ke, SHEN Xin-Yan. Plant functional traits and ecological stoichiometric characteristics under water-salt gradient in the lakeshore zone of Bosten Lake [J]. Chin J Plant Ecol, 2022, 46(8): 961-970. |
[14] | FENG Ji-Guang, ZHANG Qiu-Fang, YUAN Xia, ZHU Biao. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects [J]. Chin J Plant Ecol, 2022, 46(8): 855-870. |
[15] | JIN Yi-Li, WANG Hao-Yan, WEI Lin-Feng, HOU Ying, HU Jing, WU Kai, XIA Hao-Jun, XIA Jie, ZHOU Bo-Rui, LI Kai, NI Jian. A plot-based dataset of plant community on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(7): 846-854. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn