Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (1): 41-50.DOI: 10.17521/cjpe.2022.0123
Special Issue: 青藏高原植物生态学:种群生态学
• Research Articles • Previous Articles Next Articles
LIN Ma-Zhen1,2, HUANG Yong1,*(), LI Yang3, SUN Jian2,*()
Received:
2022-04-07
Accepted:
2022-07-05
Online:
2023-01-20
Published:
2022-08-20
Contact:
*HUANG Yong(Huang Y, huangyong@ynu.edu.cn);SUN Jian(sunjian@itpcas.ac.cn)
Supported by:
LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland[J]. Chin J Plant Ecol, 2023, 47(1): 41-50.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0123
Fig. 2 CSR strategy of common species in alpine grassland on the Qingzang Plateau. C, competitor; S, stress-tolerator; R, ruderal. Size of the circle represents the leaf dry matter content.
Fig. 3 Heat map of the correlation between C (A) and S (B) strategies and environmental factors in alpine grassland on the Qingzang Plateau. *, p < 0.05; **, p < 0.01. AI, aridity index; Alt, altitude; C, competitor; Lat, latitude; Lon, longitude; Pre, precipitation; S, stress-tolerator; Tem, temperature.
Fig. 4 Relative importance of effect of environmental factors on C (A) and S (B) strategies in alpine grassland on the Qingzang Plateau. AI, aridity index; Alt, altitude; C, competitor; Lat, latitude; Lon, longitude; Pre, precipitation; S, stress-tolerator; Tem, temperature.
Fig. 5 Effects of altitude (A), precipitation (B), longitude (C), temperature (D) on C-strategy in alpine grassland on the Qingzang Plateau. C, competitor.
Fig. 8 Correlation analysis of C and S strategies on leaf area (A, B) and leaf water content (C, D), respectively, and leaf area on precipitation (E) and temperature (F) in the alpine grassland on the Qingzang Plateau. C, competitor; S, stress-tolerator.
[1] |
Behroozian M, Ejtehadi H, Memariani F, Pierce S, Mesdaghi M (2020). Are endemic species necessarily ecological specialists? Functional variability and niche differentiation of two threatened Dianthus species in the montane steppes of northeastern Iran. Scientific Reports, 10, 11774. DOI: 10.1038/s41598-020-68618-7.
DOI |
[2] |
Caccianiga M, Luzzaro A, Pierce S, Ceriani RM, Cerabolini B (2006). The functional basis of a primary succession resolved by CSR classification. Oikos, 112, 10-20.
DOI URL |
[3] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI PMID |
[4] | Chen L (2015). Response of Leaf Traits at Species and Functional Group Levels to Simulated Nitrogen Deposition and Precipitation Additions in a Stipa baicalensis Meadow Steppe. Master degree dissertation, Northeast Normal University, Changchun. |
[ 陈利 (2015). 贝加尔针茅草甸草原主要植物与功能群的叶片性状对增氮增雨的响应. 硕士学位论文, 东北师范大学, 长春.] | |
[5] |
Cross EL, Green PT, Morgan JW (2015). A plant strategy approach to understand multidecadal change in community assembly processes in Australian grassy woodlands. Journal of Ecology, 103, 1300-1307.
DOI URL |
[6] |
Davison J, García de León D, Zobel M, Moora M, Bueno CG, Barceló M, Gerz M, León D, Meng YM, Pillar VD, Sepp SK, Soudzilovaskaia NA, Tedersoo L, Vaessen S, Vahter T, et al. (2020). Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New Phytologist, 226, 1117-1128.
DOI PMID |
[7] |
Ferré C, Caccianiga M, Zanzottera M, Comolli R (2020). Soil-plant interactions in a pasture of the Italian Alps. Journal of Plant Interactions, 15, 39-49.
DOI URL |
[8] |
Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152, 69-83.
DOI PMID |
[9] |
Godoy O, Valladares F, Castro-Díez P (2011). Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Functional Ecology, 25, 1248-1259.
DOI URL |
[10] |
Grime JP (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1221-1226.
DOI URL |
[11] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, et al. (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918.
DOI URL |
[12] |
Holmgren M, Pooter L (2007). Does a ruderal strategy dominate the endemic flora of the West African forests? Journal of Biogeography, 34, 1100-1111.
DOI URL |
[13] | Li Y, Wang Y, Han GD, Sun J, Wang YF (2022). Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 31, 50-60. |
[ 李洋, 王毅, 韩国栋, 孙建, 汪亚峰 (2022). 青藏高原高寒草地土壤微生物量碳氮含量特征及其控制要素. 草业学报, 31, 50-60.] | |
[14] |
Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH (2012). A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 36, 88-98.
DOI URL |
[ 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎 (2012). 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 36, 88-98.]
DOI |
|
[15] |
Li YZ, Shipley B (2017). An experimental test of CSR theory using a globally calibrated ordination method. PLOS ONE, 12, e0175404. DOI: 10.1371/journal.pone.0175404.
DOI |
[16] |
Liao HX, Li DJ, Zhou T, Huang B, Zhang HJ, Chen BM, Peng SL (2021). The role of functional strategies in global plant distribution. Ecography, 44, 493-503.
DOI URL |
[17] | Ma BB, Sun J, Zhu JT, Luo GX (2018). Carbon and nitrogen stoichiometry of plant community and its influencing factors in a northern Tibet alpine grassland. Chinese Journal of Ecology, 37, 1026-1036. |
[ 马百兵, 孙建, 朱军涛, 罗广祥 (2018). 藏北高寒草地植物群落C、N化学计量特征及其影响因素. 生态学杂志, 37, 1026-1036.] | |
[18] | Ma JY, Fang XW, Xia DS, Duan ZH, Chen FH, Wang G (2008). Correlations between meteorological factors and leaf element contents in desert plant Reaumuria soongorica. Journal of Plant Ecology (Chinese Version), 32, 848-857. |
[ 马剑英, 方向文, 夏敦胜, 段争虎, 陈发虎, 王刚 (2008). 荒漠植物红砂叶片元素含量与气候因子的关系. 植物生态学报, 32, 848-857.]
DOI |
|
[19] |
Matos IS, Eller CB, Oliveras I, Mantuano D, Rosado BHP (2021). Three eco-physiological strategies of response to drought maintain the form and function of a tropical montane grassland. Journal of Ecology, 109, 327-341.
DOI URL |
[20] |
Nastos PT, Politi N, Kapsomenakis J (2013). Spatial and temporal variability of the Aridity Index in Greece. Atmospheric Research, 119, 140-152.
DOI URL |
[21] | Piao SL, Fang JY, He JS, Xiao Y (2004). Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 28, 491-498. |
[ 朴世龙, 方精云, 贺金生, 肖玉 (2004). 中国草地植被生物量及其空间分布格局. 植物生态学报, 28, 491-498.]
DOI |
|
[22] |
Pierce S, Negreiros D, Cerabolini BEL, Kattge J, Díaz S, Kleyer M, Shipley B, Wright SJ, Soudzilovskaia NA, Onipchenko VG, van Bodegom PM, Frenette-Dussault C, Weiher E, Pinho BX, Cornelissen JHC, et al. (2017). A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology, 31, 444-457.
DOI URL |
[23] |
Quan Q, Tian DS, Luo YQ, Zhang FY, Crowther TW, Zhu K, Chen HYH, Zhou QP, Niu SL (2019). Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 5, eaav1131. DOI: 10.1126/sciadv.aav1131.
DOI |
[24] |
Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[25] |
Sun J, Liu GH (2021). Alpine grassland on the Qingzang Plateau: pattern and process. Chinese Journal of Plant Ecology, 45, 429-433.
DOI URL |
[ 孙建, 刘国华 (2021). 青藏高原高寒草地: 格局与过程. 植物生态学报, 45, 429-433.] | |
[26] |
Sun J, Liu M, Fu BJ, Kemp D, Zhao WW, Liu GH, Han GD, Wilkes A, Lu XY, Chen YC, Cheng GW, Zhou TC, Hou G, Zhan TY, Peng F, et al. (2020b). Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Science Bulletin, 65, 1405-1414.
DOI URL |
[27] |
Sun J, Wang Y, Liu GH (2021). Linkages of aboveground plant carbon accumulation rate with ecosystem multifunctionality in alpine grassland, Qingzang Plateau. Chinese Journal of Plant Ecology, 45, 496-506.
DOI URL |
[ 孙建, 王毅, 刘国华 (2021). 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制. 植物生态学报, 45, 496-506.] | |
[28] |
Sun J, Zhou TC, Liu M, Chen YC, Liu GH, Xu M, Shi PL, Peng F, Tsunekawa A, Liu Y, Wang XD, Dong SK, Zhang YJ, Li YN (2020a). Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau. Global Ecology and Biogeography, 29, 50-64.
DOI URL |
[29] |
Timmermann A, Damgaard C, Strandberg MT, Svenning JC (2015). Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. Journal of Applied Ecology, 52, 21-30.
DOI URL |
[30] |
Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216.
DOI URL |
[ 王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.]
DOI |
|
[31] | Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2016). Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain. Acta Ecologica Sinica, 36, 2175-2184. |
[ 王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2016). 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例. 生态学报, 36, 2175-2184.] | |
[32] | Wang XD, Cheng GW, Zhao T, Zhang XZ, Zhu LP, Huang L (2017). Assessment on protection and construction of ecological safety shelter for Tibet. Bulletin of Chinese Academy of Sciences, 32, 29-34. |
[ 王小丹, 程根伟, 赵涛, 张宪洲, 朱立平, 黄麟 (2017). 西藏生态安全屏障保护与建设成效评估. 中国科学院院刊, 32, 29-34.] | |
[33] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI |
[34] | Yang B, Wang JC, Zhang YB (2010). Effect of long-term warming on growth and biomass allocation of Abies faxoniana seedlings. Acta Ecologica Sinica, 30, 5994-6000. |
[ 杨兵, 王进闯, 张远彬 (2010). 长期模拟增温对岷江冷杉幼苗生长与生物量分配的影响. 生态学报, 30, 5994-6000.] | |
[35] |
Yang DC, Hu L, Song XY, Wang CT (2021). Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow. Chinese Journal of Plant Ecology, 45, 1314-1328.
DOI URL |
[ 杨德春, 胡雷, 宋小艳, 王长庭 (2021). 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响. 植物生态学报, 45, 1314-1328.]
DOI |
|
[36] |
Yang JH, Li YN, Bu HY, Zhang ST, Qi W (2019). Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 43, 863-876.
DOI URL |
[ 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威 (2019). 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应. 植物生态学报, 43, 863-876.]
DOI |
|
[37] | Zheng D, Zhao DS (2017). Characteristics of natural environment of the Tibetan Plateau. Science & Technology Review, 35(6), 13-22. |
[ 郑度, 赵东升 (2017). 青藏高原的自然环境特征. 科技导报, 35(6), 13-22.] | |
[38] |
Zhou TC, Hou G, Sun J, Zong N, Shi PL (2021a). Degradation shifts plant communities from S- to R-strategy in an alpine meadow, Tibetan Plateau. Science of the Total Environment, 800, 149572. DOI: 10.1016/j.scitotenv.2021.149572.
DOI |
[39] |
Zhou TC, Sun J, Liu M, Shi PL, Zhang XB, Sun W, Yang G, Tsunekawa A (2020). Coupling between plant nitrogen and phosphorus along water and heat gradients in alpine grassland. Science of the Total Environment, 701, 134660. DOI: 10.1016/j.scitotenv.2019.134660.
DOI |
[40] |
Zhou TC, Sun J, Shi PL (2021b). Plant-microbe interactions regulate the aboveground community nitrogen accumulation rate in different environmental conditions on the Tibetan Plateau. Catena, 204, 105407. DOI: 10.1016/j.catena.2021.105407.
DOI |
[1] | Guang-Ze JIN Zhi-Li LIU. Variations and relationships analysis of leaf traits of three Acer species for different tree sizes and canopy conditions in Xiao Hinggan Mountains of Northeast China [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[3] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[4] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[5] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[6] | ZHANG Zeng-Ke, LI Zeng-Yan, YANG Bai-Yu, SAI Bi-Le, YANG An-Na, ZHANG Li, MOU Ling, ZHENG Jun-Yong, JIN Le-Wei, ZHAO Zhao, WANG Wan-Sheng, DU Yun-Cai, YAN En-Rong. Functional traits influence the growth and mortality of common woody plants in Dajinshan Island, Shanghai, China [J]. Chin J Plant Ecol, 2023, 47(10): 1398-1406. |
[7] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[8] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[9] | DONG Quan-Min, ZHAO Xin-Quan, LIU Yu-Zhen, FENG Bin, YU Yang, YANG Xiao-Xia, ZHANG Chun-Ping, CAO Quan, LIU Wen-Ting. Effects of different herbivore assemblage on relationship between Kobresia humilis seed size and seed number in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(9): 1018-1026. |
[10] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[11] | JIN Yi-Li, WANG Hao-Yan, WEI Lin-Feng, HOU Ying, HU Jing, WU Kai, XIA Hao-Jun, XIA Jie, ZHOU Bo-Rui, LI Kai, NI Jian. A plot-based dataset of plant community on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(7): 846-854. |
[12] | LU Jing, MA Zong-Qi, GAO Peng-Fei, FAN Bao-Li, SUN Kun. Changes in the Hippophae tibetana population structure and dynamics, a pioneer species of succession, to altitudinal gradients in the Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(5): 569-579. |
[13] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[14] | WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands [J]. Chin J Plant Ecol, 2022, 46(4): 461-472. |
[15] | CHEN Li, TIAN Xin-Min, REN Zheng-Wei, DONG Liu-Wen, XIE Chen-Di, ZHOU Xiao-Long. Effects of nutrient addition on plant diversity and above-ground biomass in alpine grasslands of Tianshan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(3): 280-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn