Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (10): 1398-1406.DOI: 10.17521/cjpe.2022.0256
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
ZHANG Zeng-Ke1, LI Zeng-Yan1, YANG Bai-Yu1, SAI Bi-Le1, YANG An-Na1, ZHANG Li1, MOU Ling1, ZHENG Jun-Yong1, JIN Le-Wei1, ZHAO Zhao1, WANG Wan-Sheng2, DU Yun-Cai2, YAN En-Rong1,*()
Received:
2022-06-17
Accepted:
2022-12-05
Online:
2023-10-20
Published:
2023-11-23
Contact:
* (Supported by:
ZHANG Zeng-Ke, LI Zeng-Yan, YANG Bai-Yu, SAI Bi-Le, YANG An-Na, ZHANG Li, MOU Ling, ZHENG Jun-Yong, JIN Le-Wei, ZHAO Zhao, WANG Wan-Sheng, DU Yun-Cai, YAN En-Rong. Functional traits influence the growth and mortality of common woody plants in Dajinshan Island, Shanghai, China[J]. Chin J Plant Ecol, 2023, 47(10): 1398-1406.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0256
物种 Species | 科 Family | 2016年多度(株) Abundance in 2016 (individual) | 2021年多度(株) Abundance in 2021 (individual) | 生长率 Growth rate (a?1) | 死亡率 Mortality rate (a?1) |
---|---|---|---|---|---|
天竺桂 Cinnamomum japonicum | 樟科 Lauraceae | 56 | 64 | 3.14 | 0.00 |
豆梨 Pyrus calleryana | 蔷薇科 Rosaceae | 10 | 9 | 2.14 | 2.09 |
白杜 Euonymus maackii | 卫矛科 Celastraceae | 16 | 16 | 1.93 | 0.00 |
小叶女贞 Ligustrum quihoui | 木犀科 Oleaceae | 87 | 84 | 4.61 | 0.70 |
柃木 Eurya japonica | 山茶科 Pentaphylacaceae | 148 | 142 | 4.34 | 0.82 |
楤木 Aralia elata | 五加科 Araliaceae | 21 | 20 | 5.67 | 0.97 |
白檀 Symplocos tanakana | 山矾科 Symplocaceae | 308 | 290 | 3.79 | 1.20 |
青冈 Cyclobalanopsis glauca | 壳斗科 Fagaceae | 256 | 237 | 4.34 | 1.53 |
桑 Morus alba | 桑科 Moraceae | 39 | 33 | 5.49 | 3.29 |
算盘子 Glochidion puberum | 叶下珠科 Phyllanthaceae | 16 | 13 | 2.99 | 4.07 |
小蜡 Ligustrum sinense | 木犀科 Oleaceae | 21 | 17 | 1.56 | 4.14 |
麻栎 Quercus acutissima | 壳斗科 Fagaceae | 28 | 22 | 2.91 | 4.71 |
椿叶花椒 Zanthoxylum ailanthoides | 芸香科 Rutaceae | 37 | 27 | 4.26 | 6.11 |
柘 Maclura tricuspidata | 桑科 Moraceae | 67 | 48 | 2.61 | 6.45 |
朴树 Celtis sinensis | 榆科 Ulmaceae | 60 | 41 | 2.57 | 7.33 |
红楠 Machilus thunbergii | 樟科 Lauraceae | 63 | 43 | 0.01 | 7.35 |
海桐 Pittosporum tobira | 海桐花科 Pittosporaceae | 11 | 7 | 1.44 | 8.64 |
黄连木 Pistacia chinensis | 漆树科 Anacardiaceae | 11 | 7 | 1.55 | 8.64 |
野桐 Mallotus tenuifolius | 大戟科 Euphorbiaceae | 683 | 430 | 2.84 | 8.84 |
枸骨 IIex cornuta | 冬青科 Aquifoliaceae | 13 | 8 | 1.59 | 9.25 |
胡颓子 Elaeagnus pungens | 胡颓子科 Elaeagnaceae | 10 | 5 | 1.73 | 12.94 |
黄檀 Dalbergia hupeana | 豆科 Fabaceae | 45 | 21 | 7.92 | 14.14 |
楝 Melia azedarach | 楝科 Meliaceae | 11 | 5 | 5.18 | 14.59 |
盐肤木 Rhus chinensis | 漆树科 Anacardiaceae | 17 | 7 | 8.70 | 16.26 |
构树 Broussonetia papyrifera | 桑科 Moraceae | 42 | 13 | 4.01 | 20.91 |
海州常山 Clerodendrum trichotomum | 马鞭草科 Lamiaceae | 117 | 34 | 8.15 | 21.90 |
Table 1 Summary information of the 26 dominant tree species in Dajinshan Island
物种 Species | 科 Family | 2016年多度(株) Abundance in 2016 (individual) | 2021年多度(株) Abundance in 2021 (individual) | 生长率 Growth rate (a?1) | 死亡率 Mortality rate (a?1) |
---|---|---|---|---|---|
天竺桂 Cinnamomum japonicum | 樟科 Lauraceae | 56 | 64 | 3.14 | 0.00 |
豆梨 Pyrus calleryana | 蔷薇科 Rosaceae | 10 | 9 | 2.14 | 2.09 |
白杜 Euonymus maackii | 卫矛科 Celastraceae | 16 | 16 | 1.93 | 0.00 |
小叶女贞 Ligustrum quihoui | 木犀科 Oleaceae | 87 | 84 | 4.61 | 0.70 |
柃木 Eurya japonica | 山茶科 Pentaphylacaceae | 148 | 142 | 4.34 | 0.82 |
楤木 Aralia elata | 五加科 Araliaceae | 21 | 20 | 5.67 | 0.97 |
白檀 Symplocos tanakana | 山矾科 Symplocaceae | 308 | 290 | 3.79 | 1.20 |
青冈 Cyclobalanopsis glauca | 壳斗科 Fagaceae | 256 | 237 | 4.34 | 1.53 |
桑 Morus alba | 桑科 Moraceae | 39 | 33 | 5.49 | 3.29 |
算盘子 Glochidion puberum | 叶下珠科 Phyllanthaceae | 16 | 13 | 2.99 | 4.07 |
小蜡 Ligustrum sinense | 木犀科 Oleaceae | 21 | 17 | 1.56 | 4.14 |
麻栎 Quercus acutissima | 壳斗科 Fagaceae | 28 | 22 | 2.91 | 4.71 |
椿叶花椒 Zanthoxylum ailanthoides | 芸香科 Rutaceae | 37 | 27 | 4.26 | 6.11 |
柘 Maclura tricuspidata | 桑科 Moraceae | 67 | 48 | 2.61 | 6.45 |
朴树 Celtis sinensis | 榆科 Ulmaceae | 60 | 41 | 2.57 | 7.33 |
红楠 Machilus thunbergii | 樟科 Lauraceae | 63 | 43 | 0.01 | 7.35 |
海桐 Pittosporum tobira | 海桐花科 Pittosporaceae | 11 | 7 | 1.44 | 8.64 |
黄连木 Pistacia chinensis | 漆树科 Anacardiaceae | 11 | 7 | 1.55 | 8.64 |
野桐 Mallotus tenuifolius | 大戟科 Euphorbiaceae | 683 | 430 | 2.84 | 8.84 |
枸骨 IIex cornuta | 冬青科 Aquifoliaceae | 13 | 8 | 1.59 | 9.25 |
胡颓子 Elaeagnus pungens | 胡颓子科 Elaeagnaceae | 10 | 5 | 1.73 | 12.94 |
黄檀 Dalbergia hupeana | 豆科 Fabaceae | 45 | 21 | 7.92 | 14.14 |
楝 Melia azedarach | 楝科 Meliaceae | 11 | 5 | 5.18 | 14.59 |
盐肤木 Rhus chinensis | 漆树科 Anacardiaceae | 17 | 7 | 8.70 | 16.26 |
构树 Broussonetia papyrifera | 桑科 Moraceae | 42 | 13 | 4.01 | 20.91 |
海州常山 Clerodendrum trichotomum | 马鞭草科 Lamiaceae | 117 | 34 | 8.15 | 21.90 |
功能性状 Functional trait | 简写 Abbreviation | 单位 Unit | 平均值 Mean | 最大值 Max | 最小值 Min | 标准差 SD |
---|---|---|---|---|---|---|
干材密度 Wood density | WD | g·cm-3 | 0.56 | 0.98 | 0.26 | 0.13 |
叶干物质含量 Leaf dry matter content | LDMC | % | 0.33 | 0.50 | 0.17 | 0.08 |
比叶面积 Specific leaf area | SLA | cm2·g-1 | 182.63 | 397.55 | 32.00 | 79.43 |
单叶面积 Mean leaf area | MLA | cm2 | 55.68 | 328.68 | 2.49 | 64.98 |
小枝木材密度 Twig wood density | TWD | g·cm-3 | 0.51 | 1.19 | 0.11 | 0.19 |
最大树高 Maximum tree height | H | m | 11.19 | 30.00 | 3.00 | 6.91 |
叶厚度 Leaf thickness | LT | mm | 0.19 | 0.70 | 0.07 | 0.12 |
叶氮含量 Leaf nitrogen content | LNC | g·kg-1 | 21.68 | 34.71 | 8.81 | 6.54 |
叶磷含量 Leaf phosphorus content | LPC | g·kg-1 | 1.57 | 9.50 | 0.52 | 1.88 |
Table 2 Statistical analysis of 9 plant functional traits of dominant species in Dajinshan Island
功能性状 Functional trait | 简写 Abbreviation | 单位 Unit | 平均值 Mean | 最大值 Max | 最小值 Min | 标准差 SD |
---|---|---|---|---|---|---|
干材密度 Wood density | WD | g·cm-3 | 0.56 | 0.98 | 0.26 | 0.13 |
叶干物质含量 Leaf dry matter content | LDMC | % | 0.33 | 0.50 | 0.17 | 0.08 |
比叶面积 Specific leaf area | SLA | cm2·g-1 | 182.63 | 397.55 | 32.00 | 79.43 |
单叶面积 Mean leaf area | MLA | cm2 | 55.68 | 328.68 | 2.49 | 64.98 |
小枝木材密度 Twig wood density | TWD | g·cm-3 | 0.51 | 1.19 | 0.11 | 0.19 |
最大树高 Maximum tree height | H | m | 11.19 | 30.00 | 3.00 | 6.91 |
叶厚度 Leaf thickness | LT | mm | 0.19 | 0.70 | 0.07 | 0.12 |
叶氮含量 Leaf nitrogen content | LNC | g·kg-1 | 21.68 | 34.71 | 8.81 | 6.54 |
叶磷含量 Leaf phosphorus content | LPC | g·kg-1 | 1.57 | 9.50 | 0.52 | 1.88 |
功能性状 Functional trait | 相对生长率 Relative growth rate | 相对死亡率 Relative mortality rate | ||||||
---|---|---|---|---|---|---|---|---|
估计值 Estimate | R2 | 误差 Error | p | 估计值 Estimate | R2 | 误差 Error | p | |
干材密度 Wood density | -0.25 | 0.06 | 0.16 | 0.12 | -0.32 | 0.13 | 0.14 | 0.03 |
叶干物质含量 Leaf dry matter content | -0.48 | 0.23 | 0.14 | 0.02 | -0.28 | 0.09 | 0.15 | 0.07 |
小枝木材密度 Twig wood density | -0.36 | 0.18 | 0.15 | 0.02 | -0.35 | 0.14 | 0.14 | 0.01 |
比叶面积 Specific leaf area | 0.46 | 0.27 | 0.15 | 0.00 | 0.10 | 0.01 | 0.15 | 0.52 |
单叶面积 Mean leaf area | 0.28 | 0.07 | 0.17 | 0.11 | 0.22 | 0.06 | 0.15 | 0.14 |
叶厚度 Leaf thickness | -0.36 | 0.12 | 0.17 | 0.05 | -0.01 | 0.00 | 0.15 | 0.98 |
最大树高 Maximum tree height | 0.02 | 0.00 | 0.19 | 0.87 | 0.06 | 0.00 | 0.16 | 0.70 |
叶氮含量 Leaf nitrogen content | 0.45 | 0.18 | 0.17 | 0.02 | 0.11 | 0.01 | 0.17 | 0.51 |
叶磷含量 Leaf phosphorus content | 0.01 | 0.00 | 0.20 | 0.92 | 0.00 | 0.00 | 0.15 | 0.98 |
Table 3 Evaluation results of linear mixed model for the effects of plant functional traits on relative growth rates and mortality rates of common species in Dajinshan Island
功能性状 Functional trait | 相对生长率 Relative growth rate | 相对死亡率 Relative mortality rate | ||||||
---|---|---|---|---|---|---|---|---|
估计值 Estimate | R2 | 误差 Error | p | 估计值 Estimate | R2 | 误差 Error | p | |
干材密度 Wood density | -0.25 | 0.06 | 0.16 | 0.12 | -0.32 | 0.13 | 0.14 | 0.03 |
叶干物质含量 Leaf dry matter content | -0.48 | 0.23 | 0.14 | 0.02 | -0.28 | 0.09 | 0.15 | 0.07 |
小枝木材密度 Twig wood density | -0.36 | 0.18 | 0.15 | 0.02 | -0.35 | 0.14 | 0.14 | 0.01 |
比叶面积 Specific leaf area | 0.46 | 0.27 | 0.15 | 0.00 | 0.10 | 0.01 | 0.15 | 0.52 |
单叶面积 Mean leaf area | 0.28 | 0.07 | 0.17 | 0.11 | 0.22 | 0.06 | 0.15 | 0.14 |
叶厚度 Leaf thickness | -0.36 | 0.12 | 0.17 | 0.05 | -0.01 | 0.00 | 0.15 | 0.98 |
最大树高 Maximum tree height | 0.02 | 0.00 | 0.19 | 0.87 | 0.06 | 0.00 | 0.16 | 0.70 |
叶氮含量 Leaf nitrogen content | 0.45 | 0.18 | 0.17 | 0.02 | 0.11 | 0.01 | 0.17 | 0.51 |
叶磷含量 Leaf phosphorus content | 0.01 | 0.00 | 0.20 | 0.92 | 0.00 | 0.00 | 0.15 | 0.98 |
Fig. 1 Plant economics spectrum of 26 species in Dajinshan Island (A) and the relationship of the phylogenetic principal component (PC) analysis score in the economics spectrum with each of relative growth rate (B) and mortality rate (C). The shadow of the regression line is the 95% confidence interval. H, maximum tree height; LDMC, leaf dry mass content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; LT, leaf thickness; MLA, mean leaf area; SLA, specific leaf area; TWD, twig wood density; WD, wood density.
[1] | Ali AM, Darvishzadeh R, Shahi KR, Skidmore A (2019). Validating the predictive power of statistical models in retrieving leaf dry matter content of a coastal wetland from a Sentinel-2 Image. Remote Sensing, 11, 1936. DOI: 10.3390/rs11161936. |
[2] |
Baltzer JL, Davies SJ, Bunyavejchewin S, Noor NSM (2008). The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. Functional Ecology, 22, 221-231.
DOI URL |
[3] |
Chaturvedi RK, Raghubanshi AS, Singh JS (2013). Relative effects of different leaf attributes on sapling growth in tropical dry forest. Journal of Plant Ecology, 7, 544-558.
DOI URL |
[4] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI PMID |
[5] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[6] | Da LJ, Yang YC, Chen YP (2004). The diversity of plant community on Dajinshan Island, Shanghai. Journal of Chinese Urban Forestry, 2(3), 22-25. |
[达良俊, 杨永川, 陈燕萍 (2004). 上海大金山岛的自然植物群落多样性. 城镇绿化, 2(3), 22-25.] | |
[7] | Flores O, Hérault B, Delcamp M, Garnier É, Gourlet-Fleury S (2014). Functional traits help predict post-disturbance demography of tropical trees. PLoS ONE, 9, e105022. DOI: 10.1371/journal.pone.0105022. |
[8] |
Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637.
DOI URL |
[9] |
He PC, Lian JY, Ye Q, Liu H, Zheng Y, Yu KL, Zhu SD, Li RH, Yin DY, Ye WH, Wright IJ (2022). How do functional traits influence tree demographic properties in a subtropical monsoon forest? Functional Ecology, 36, 3200-3210.
DOI URL |
[10] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, et al. (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends Ecology Evolution, 35, 908-918.
DOI URL |
[11] |
Kazakou E, Vile D, Shipley B, Gallet C, Garnier E (2006). Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology, 20, 21-30.
DOI URL |
[12] |
Kraft NJB, Metz MR, Condit RS, Chave J (2010). The relationship between wood density and mortality in a global tropical forest data set. New Phytologist, 188, 1124-1136.
DOI PMID |
[13] |
Li YP, Ni YL, Xu H, Lian JY, Ye WH (2021). Relationship between variation of plant functional traits and individual growth at different vertical layers in a subtropical evergreen broad-leaved forest of Dinghushan. Biodiversity Science, 29, 1186-1197.
DOI URL |
[李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉 (2021). 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联. 生物多样性, 29, 1186-1197.]
DOI |
|
[14] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[15] |
Martínez-Vilalta J, Mencuccini M, Vayreda J, Retana J (2010). Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species. Journal of Ecology, 98, 1462-1475.
DOI URL |
[16] |
McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
DOI URL |
[17] |
Nijs I, Behaeghe T, Impens I (1995). Leaf nitrogen content as a predictor of photosynthetic capacity in ambient and global change conditions. Journal of Biogeography, 22, 177-183.
DOI URL |
[18] |
Paine CET, Amissah L, Auge H, Baraloto C, Baruffol M, Bourland N, Bruelheide H, Daïnou K, de Gouvenain RC, Doucet JL, Doust S, Fine PVA, Fortunel C, Haase J, Holl KD, et al. (2015). Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 103, 978-989.
DOI URL |
[19] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[20] |
Pianka ER (1970). On r- and K-selection. The American Naturalist, 104, 592-597.
DOI URL |
[21] |
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
DOI URL |
[22] |
Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733-1743.
PMID |
[23] |
Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra- Manríques G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920.
DOI PMID |
[24] | Prado-Junior JA, Schiavini I, Vale VS, Raymundo D, Lopes SF, Poorter L (2016). Functional traits shape size- dependent growth and mortality rates of dry forest tree species. Journal of Plant Ecology, 10, 895-906. |
[25] | Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164. |
[26] |
Revell LJ (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223.
DOI URL |
[27] |
Rüger N, Wirth C, Wright SJ, Condit R (2012). Functional traits explain light and size response of growth rates in tropical tree species. Ecology, 93, 2626-2636.
PMID |
[28] |
Shen Y, Umaña MN, Li WB, Fang M, Chen YX, Lu HP, Yu SX (2019). Coordination of leaf, stem and root traits in determining seedling mortality in a subtropical forest. Forest Ecology and Management, 446, 285-292.
DOI URL |
[29] |
Silva MAM, de Vasconcelos Freitas Pinto A, do Nascimento LM, Lins-e-Silva ACB, de Lima ALA, de Sá Barretto Sampaio EV, Rodal MJN (2017). Traits and functional strategies as predictors of demographic variations over a chronosequence. Brazilian Journal of Botany, 40, 761-770.
DOI URL |
[30] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier EJO (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[31] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[32] |
Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261-268.
DOI URL |
[33] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI |
[34] |
Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, et al. (2010). Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91, 3664-3674.
PMID |
[35] | Xu MS, Zhu XT, Wang WS, Du YC, Wang YY, Liang QM, Zheng LT, Yan ER (2022). Vegetation classification and mapping of Dajinshan Island: a grid inventory-based approach. Guihaia, 42, 1273-1283. |
[许洺山, 朱晓彤, 王万胜, 杜运才, 汪彦颖, 梁启明, 郑丽婷, 阎恩荣 (2022). 上海大金山岛植被分类与制图——基于网格化清查方法. 广西植物, 42, 1273-1283.] | |
[36] |
Yang J, Cao M, Swenson NG (2018). Why functional traits do not predict tree demographic rates. Trends in Ecology & Evolution, 33, 326-336.
DOI URL |
[1] | 建 周 Han Wang. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Guang-Ze JIN Zhi-Li LIU. Variations and relationships analysis of leaf traits of three Acer species for different tree sizes and canopy conditions in Xiao Hinggan Mountains of Northeast China [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[3] | YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming. Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest [J]. Chin J Plant Ecol, 2023, 47(9): 1270-1277. |
[4] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[5] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[6] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[7] | QI Lu-Yu, CHEN Hao-Nan, Kulihong SAIREBIELI, JI Tian-Yu, MENG Gao-De, QIN Hui-Ying, WANG Ning, SONG Yi-Xin, LIU Chun-Yu, DU Ning, GUO Wei-Hua. Growth strategies of five shrub seedlings in warm temperate zone based on plant functional traits [J]. Chin J Plant Ecol, 2022, 46(11): 1388-1399. |
[8] | TAN Yi-Bo, TIAN Hong-Deng, ZENG Chun-Yang, SHEN Hao, SHEN Wen-Hui, YE Jian-Ping, GAN Guo-Juan. Canopy mechanical abrasion between adjacent plants influences twig and leaf traits of Tsuga chinensis assemblage in the Mao’er Mountain [J]. Chin J Plant Ecol, 2021, 45(12): 1281-1291. |
[9] | LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China [J]. Chin J Plant Ecol, 2019, 43(8): 685-696. |
[10] | ZHANG Zhen-Zhen, ZHAO Ping, ZHANG Jin-Xiu, SI Yao. Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2019, 43(2): 131-138. |
[11] | Zhi-Min LI, Chuan-Kuan WANG, Dan-Dan LUO. Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii [J]. Chin J Plant Ecol, 2017, 41(11): 1140-1148. |
[12] | XU Ming-Shan, ZHAO Yan-Tao, YANG Xiao-Dong, SHI Qing-Ru, ZHOU Liu-Li, ZHANG Qing-Qing, Ali ARSHAD, YAN En-Rong. Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province [J]. Chin J Plant Ecol, 2016, 40(1): 48-59. |
[13] | LI Yin-Gang, LIU Xin-Hong, MA Jun-Wei, SHI Cong-Guang, ZHU Guang-Quan. Phenotypic variations in populations of Phoebe chekiangensis [J]. Chin J Plant Ecol, 2014, 38(12): 1315-1324. |
[14] | ZHU Jie-Dong, MENG Ting-Ting, NI Jian, SU Hong-Xin, XIE Zong-Qiang, ZHANG Shou-Ren, ZHENG Yuan-Run, XIAO Chun-Wang. Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types [J]. Chin J Plant Ecol, 2011, 35(7): 687-698. |
[15] | XU Shen-Lin, LIU Wen-Zhe. Intra-inflorescence sex expression and allocation in Camptotheca acuminata [J]. Chin J Plant Ecol, 2011, 35(12): 1290-1299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn