Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (2): 131-138.DOI: 10.17521/cjpe.2019.0291
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
ZHANG Zhen-Zhen1,*(),ZHAO Ping2,ZHANG Jin-Xiu1,SI Yao1
Received:
2018-11-14
Accepted:
2019-01-30
Online:
2019-02-20
Published:
2019-06-04
Contact:
ZHANG Zhen-Zhen
Supported by:
ZHANG Zhen-Zhen, ZHAO Ping, ZHANG Jin-Xiu, SI Yao. Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests[J]. Chin J Plant Ecol, 2019, 43(2): 131-138.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0291
树种 Species | 科 Family | 相对覆盖度 Relative coverage | 相对密度 Relative density | 相对频度 Relative frequency | 重要值 Important value | 样本量 Sample size | 树高(平均值± 标准误差) Tree height (mean ± SE) (m) |
---|---|---|---|---|---|---|---|
桂林栲 Castanopsis chinensis | 壳斗科 Fagaceae | 0.22 | 0.06 | 0.04 | 0.32 | 137 | 13.2 ± 2.1 |
木荷 Schima superba | 山茶科 Theaceae | 0.15 | 0.03 | 0.02 | 0.20 | 69 | 15.4 ± 1.3 |
Table 1 Community characteristics of the two dominant tree species of the subtropical forest in Shimentai of Guangdong Province
树种 Species | 科 Family | 相对覆盖度 Relative coverage | 相对密度 Relative density | 相对频度 Relative frequency | 重要值 Important value | 样本量 Sample size | 树高(平均值± 标准误差) Tree height (mean ± SE) (m) |
---|---|---|---|---|---|---|---|
桂林栲 Castanopsis chinensis | 壳斗科 Fagaceae | 0.22 | 0.06 | 0.04 | 0.32 | 137 | 13.2 ± 2.1 |
木荷 Schima superba | 山茶科 Theaceae | 0.15 | 0.03 | 0.02 | 0.20 | 69 | 15.4 ± 1.3 |
Fig. 3 Specific leaf area (SLA), leaf water content (LWC), stomatal quantity (Sd) and size (Ss) of Schima superba and Castanopsis chinensis (mean ± SE). *, p < 0.05; **, p < 0.01.
Fig. 4 Leaf chlorophyll (Chl) content, Chl a/b, net photosynthetic rate (Pn), stomatal conductance (Cond), leaf transpiration rate (Tr) and instantaneous water use efficiency (WUEi) for Schima superba and Castanopsis chinensis (mean ± SE). *, p < 0.05; **, p < 0.01.
[1] |
Arnon DI ( 1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15.
DOI URL |
[2] | Blonder B, Vasseur F, Violle C, Shipley B, Enquist BJ, Vile D ( 2015). Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants, 7, plv049. DOI: 10.1093/aobpla/plv049. |
[3] |
Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman WT ( 2009). Tree die-off in response to global change-type drought: Mortality insights from a decade of plant water potential measurements. Frontiers in Ecology and the Environment, 7, 185-189.
DOI URL |
[4] | Brodribb TJ, Holbrook NM, Edwards EJ, Gutiérrez MV ( 2010). Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell & Environment, 26, 443-450. |
[5] | Büssis D, von Groll U, Fisahn J, Altmann T ( 2006). Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. Functional Plant Biology, 33, 1037-1043. |
[6] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE ( 2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI URL |
[7] | Díaz S, Cabido M ( 2001). Vive la différence: Plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655. |
[8] |
Díaz S, Cabido M, Casanoves F ( 1998). Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113-122.
DOI URL |
[9] |
Drake PL, Froend RH, Franks PJ ( 2013). Smaller, faster stomata: Scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64, 495-505.
DOI URL |
[10] |
Esteban R, García-Plazaola JI, Hernández A, Fernández-Marín B ( 2018). On the recalcitrant use of Arnon’s method for chlorophyll determination. New Phytologist, 217, 474-476.
DOI URL |
[11] | Fichot R, Chamaillard S, Depardieu C, Le Thiec D, Cochard H, Barigah TS, Brignolas F ( 2010). Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Populus deltoides× Populus nigra hybrids. Journal of Experimental Botany, 62, 2093-2106. |
[12] | Franks PJ, Drake PL, Beerling DJ ( 2009). Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: An analysis using Eucalyptus globulus. Plant, Cell & Environment, 32, 1737-1748. |
[13] |
Hulot FD, Lacroix G, Leschermoutoué F, Loreau M ( 2000). Functional diversity governs ecosystem response to nutrient enrichment. Nature, 405, 340-344.
DOI |
[14] | Keyvan S ( 2010). The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal and Plant Sciences, 8, 1051-1060. |
[15] |
Klein T ( 2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28, 1313-1320.
DOI URL |
[16] | Li K ( 2011). Community Structure and Leaf Characteristics of a Secondary Broad Leaved Forest in Hilly Area of Central Hunan, China. Master degree dissertation, Central South University of Forestry and Technology, Changsha. |
[ 李凯 ( 2011). 湘中丘陵区次生阔叶林群落结构及叶片特征研究. 硕士学位论文, 中南林业科技大学, 长沙.] | |
[17] | Li MC, Zhu JJ, Sun YR ( 2009). Responses of specific leaf area of dominant tree species in Northeast China secondary forests to light intensity. Chinese Journal of Ecology , 28, 1437-1442. |
[ 李明财, 朱教君, 孙一荣 ( 2009). 东北次生林主要树种比叶面积对光照强度的响应. 生态学杂志, 28, 1437-1442.] | |
[18] | Li WJ, Zuo JQ, Song YL, Liu JP, Li Y, Shen YS, Li JX ( 2015). Changes in spatio temporal distribution of drought/flood disaster in southern China under global climate warming. Meteorological Monthly , 41, 261-271. |
[ 李维京, 左金清, 宋艳玲, 刘景鹏, 李瑜, 沈雨旸, 李景鑫 ( 2015). 气候变暖背景下我国南方旱涝灾害时空格局变化. 气象, 41, 261-271.] | |
[19] |
Matheny AM, Bohrer G, Vogel CS, Morin TH, He L, Frasson RPDM, Mirfenderesgi G, Schäfer KVR, Gough CM, Ivanov VY ( 2014). Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest. Journal of Geophysical Research Biogeosciences, 119, 2292-2311.
DOI URL |
[20] |
Milcu A, Allan E, Roscher C, Jenkins T, Meyer ST, Flynn D, Bessler H, Buscot F, Engels C, Gubsch M ( 2013). Functionally and phylogenetically diverse plant communities key to soil biota. Ecology, 94, 1878-1885.
DOI URL |
[21] |
Niu CY, Meinzer FC, Hao GY ( 2017). Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: The role of positive xylem pressure, wood type and tree stature. Functional Ecology, 31, 1550-1560.
DOI URL |
[22] |
Pérezharguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bretharte MS, Cornwell WK, Craine JM, Gurvich DE ( 2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[23] | Peters EB, Mcfadden JP, Montgomery RA ( 2015). Biological and environmental controls on tree transpiration in a suburban landscape. Journal of Geophysical Research Biogeosciences, 115, G04006. DOI: 10.1029/2009JG001266. |
[24] |
Poorter L, Mcdonald I, Alarcón A, Fichtler E, Licona JC, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U ( 2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185, 481-492.
DOI URL |
[25] |
Sack L, Holbrook NM ( 2006). Leaf hydraulics. Annual Review of Plant Biology, 57, 361-381.
DOI URL |
[26] |
Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE ( 1994). Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology, 75, 1736-1752.
DOI URL |
[27] | Sperry JS, Pockman WT ( 1993). Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis. Plant, Cell & Environment, 16, 279-287. |
[28] |
Steppe K, Lemeur R ( 2007). Effects of ring-porous and diffuse-porous stem wood anatomy on the hydraulic parameters used in a water flow and storage model. Tree Physiology, 27, 43-52.
DOI URL |
[29] |
Takahashi S, Okada N, Nobuchi T ( 2013). Relationship between the timing of vessel formation and leaf phenology in ten ring-porous and diffuse-porous deciduous tree species. Ecological Research, 28, 615-624.
DOI URL |
[30] |
Tateishi M, Kumagai TO, Utsumi Y, Umebayashi T, Shiiba Y, Inoue K, Kaji K, Cho K, Otsuki K ( 2008). Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: Comparisons with anatomical observations. Trees, 22, 23-30.
DOI URL |
[31] | von Allmen EI, Sperry JS, Bush SE ( 2013). Contrasting whole- tree water use, hydraulics, and growth in a co-dominant diffuse-porous vs. ring-porous species pair. Trees, 29, 717-728. |
[32] |
Wang J, Ives NE, Lechowicz MJ ( 1992). The relation of foliar phenology to xylem embolism in trees. Functional Ecology, 6, 469-475.
DOI URL |
[33] | Wardle DA, Barker GM, Bonner KI, Nicholson KS ( 1998). Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? Journal of Ecology, |
86, 405-420. | |
[34] | Westoby M, Falster DS, Moles AT, And PAV, Wright IJ ( 2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology & Systematics, 33, 125-159. |
[35] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ ( 2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003-1015.
DOI URL |
[36] | Yan DL, Ren YY, Lian JF, Sheng LJ ( 2012). Leaf functional traits and their associated characteristics of three dominant families. Journal of Forestry Engineering , 26(3), 34-37. |
[ 闫道良, 任燕燕, 连俊方, 盛琳杰 ( 2012). 3个优势科树种叶功能性状及其关联特性. 林业工程学报, 26(3), 34-37.] | |
[37] | Zeng XM, Zhao P, Ouyang L, Zhu LW, Ni GY, Zhao XH ( 2017). Soil water use and adaptive regulation of Schima superba in the dry and wet seasons. Journal of Tropical and Subtropical Botany, 25(2), 105-114. |
[ 曾小敏, 赵平, 欧阳磊, 朱丽薇, 倪广艳, 赵秀华 ( 2017). 荷木对干湿季土壤水分的利用和适应性调节. 热带亚热带植物学报, 25(2), 105-114.] | |
[38] | Zeng XL, Wang DW, Liu JP, Wang SS, Fan X ( 2015). Effects of slope orientation on apparent traits and chlorophyll content of three cold-season turfgrasses. Grass Science , 32, 1823-1831. |
[ 曾晓琳, 王大伟, 刘金平, 王思思, 范宣 ( 2015). 坡向对3种冷季型草坪草表观性状及叶绿素含量的影响. 草业科学, 32, 1823-1831.] | |
[39] | Zeng XP, Zhao P, Cai XA, Rao XQ, Liu H, Ma L, Li CH ( 2006). A preliminary study on the tolerance of 25 species of South Asian tropical plants. Journal of Beijing Forestry University , 28(4), 92-99. |
[ 曾小平, 赵平, 蔡锡安, 饶兴权, 刘惠, 马玲, 李长洪 ( 2006). 25种南亚热带植物耐阴性的初步研究. 北京林业大学学报, 28(4), 92-99.] | |
[40] |
Zhang JL, Poorter L, Cao KF ( 2012). Productive leaf functional traits of Chinese savanna species. Plant Ecology, 213, 1449-1460.
DOI URL |
[41] |
Zhou G, Wei X, Wu Y, Liu S, Huang Y, Yan J, Zhang D, Zhang Q, Liu J, Meng Z, Wang C, Chu G, Liu S, Tang X, Wang C ( 2011). Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Global Change Biology, 17, 3736-3746.
DOI URL |
[42] | Zhu L, Hu Y, Zhao X, Zeng X, Zhao P, Zhang Z, Ju Y ( 2017). The impact of drought on sap flow of cooccurring Liquidambar formosana Hance and Quercus variabilis Blume in a temperate forest, Central China. Ecohydrology, 10, 1828. DOI: 10.1002/eco.1828. |
[1] | Guang-Ze JIN Zhi-Li LIU. Variations and relationships analysis of leaf traits of three Acer species for different tree sizes and canopy conditions in Xiao Hinggan Mountains of Northeast China [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[3] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[4] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[5] | WAN Chun-Yan, YU Jun-Rui, ZHU Shi-Dan. Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species [J]. Chin J Plant Ecol, 2023, 47(10): 1386-1397. |
[6] | ZHANG Zeng-Ke, LI Zeng-Yan, YANG Bai-Yu, SAI Bi-Le, YANG An-Na, ZHANG Li, MOU Ling, ZHENG Jun-Yong, JIN Le-Wei, ZHAO Zhao, WANG Wan-Sheng, DU Yun-Cai, YAN En-Rong. Functional traits influence the growth and mortality of common woody plants in Dajinshan Island, Shanghai, China [J]. Chin J Plant Ecol, 2023, 47(10): 1398-1406. |
[7] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[8] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[9] | QI Lu-Yu, CHEN Hao-Nan, Kulihong SAIREBIELI, JI Tian-Yu, MENG Gao-De, QIN Hui-Ying, WANG Ning, SONG Yi-Xin, LIU Chun-Yu, DU Ning, GUO Wei-Hua. Growth strategies of five shrub seedlings in warm temperate zone based on plant functional traits [J]. Chin J Plant Ecol, 2022, 46(11): 1388-1399. |
[10] | WU Qiu-Xia, WU Fu-Zhong, HU Yi, KANG Zi-Jia, ZHANG Yao-Yi, YANG Jing, YUE Kai, NI Xiang-Yin, YANG Yu-Sheng. Difference in non-structural carbohydrates between fresh and senescent leaves of 11 tree species in a subtropical common-garden [J]. Chin J Plant Ecol, 2021, 45(7): 771-779. |
[11] | TAN Yi-Bo, TIAN Hong-Deng, ZENG Chun-Yang, SHEN Hao, SHEN Wen-Hui, YE Jian-Ping, GAN Guo-Juan. Canopy mechanical abrasion between adjacent plants influences twig and leaf traits of Tsuga chinensis assemblage in the Mao’er Mountain [J]. Chin J Plant Ecol, 2021, 45(12): 1281-1291. |
[12] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
[13] | CHEN Si-Lu, CAI Jin-Song, LIN Cheng-Fang, SONG Hao-Wei, YANG Yu-Sheng. Response of leaf litter decomposition of different tree species to nitrogen addition in a subtropical forest [J]. Chin J Plant Ecol, 2020, 44(3): 214-227. |
[14] | MEI Kong-Can, CHENG Lei, ZHANG Qiu-Fang, LIN Kai-Miao, ZHOU Jia-Cong, ZENG Quan-Xin, WU Yue, XU Jian-Guo, ZHOU Jin-Rong, CHEN Yue-Min. Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests [J]. Chin J Plant Ecol, 2020, 44(12): 1273-1284. |
[15] | CHE Jian, ZHENG Jie, JIANG Ya, JIN Yi, YI Yin. Separation of phylogeny and ecological behaviors between evergreen and deciduous woody angiosperms in the subtropical forest dynamics plots of China [J]. Chin J Plant Ecol, 2020, 44(10): 1007-1014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn