Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (7): 771-779.DOI: 10.17521/cjpe.2021.0010
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
WU Qiu-Xia1, WU Fu-Zhong1,2,3, HU Yi1, KANG Zi-Jia1, ZHANG Yao-Yi1, YANG Jing1, YUE Kai1,2,3, NI Xiang-Yin1,2,3,*(), YANG Yu-Sheng1,2,3
Received:
2021-01-08
Accepted:
2021-04-06
Online:
2021-07-20
Published:
2021-10-22
Contact:
NI Xiang-Yin ORCID:0000-0002-2507-3463
Supported by:
WU Qiu-Xia, WU Fu-Zhong, HU Yi, KANG Zi-Jia, ZHANG Yao-Yi, YANG Jing, YUE Kai, NI Xiang-Yin, YANG Yu-Sheng. Difference in non-structural carbohydrates between fresh and senescent leaves of 11 tree species in a subtropical common-garden[J]. Chin J Plant Ecol, 2021, 45(7): 771-779.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0010
树种 Tree species | 土壤容重 Soil bulk density (g·cm-3) | 土壤含水量 Soil water content (%) | 土壤孔隙度 Soil porosity (%) | 土壤最大持水量 Soil maximum water holding capacity (g·kg-1) |
---|---|---|---|---|
鹅掌楸 Liriodendron chinense | 1.16 ± 0.07d | 10.35 ± 0.62b | 45.06 ± 1.31a | 405.18 ± 31.24a |
枫香 Liquidambar formosana | 1.36 ± 0.04ab | 11.01 ± 0.65ab | 45.05 ± 1.69a | 342.15 ± 22.39ab |
无患子 Sapindus mukorossi | 1.29 ± 0.04ab | 11.41 ± 0.53ab | 45.50 ± 1.21a | 363.62 ± 18.38ab |
杉木 Cunninghamia lanceolata | 1.35 ± 0.04ab | 11.67 ± 0.06ab | 44.55 ± 1.11a | 337.08 ± 18.01ab |
马尾松 Pinus massoniana | 1.42 ± 0.10a | 10.93 ± 0.54ab | 43.00 ± 1.31a | 313.06 ± 37.53b |
木荷 Schima superba | 1.26 ± 0.07b | 11.97 ± 0.55a | 42.97 ± 2.55a | 361.34 ± 37.11ab |
香叶 Lindera communis | 1.22 ± 0.04c | 11.42 ± 0.24ab | 46.17 ± 1.81a | 389.44 ± 27.07ab |
杜英 Elaeocarpus decipiens | 1.26 ± 0.02ab | 11.10 ± 0.46ab | 44.45 ± 1.19a | 375.31 ± 11.05ab |
火力楠 Michelia macclurei | 1.36 ± 0.04ab | 10.34 ± 0.44b | 41.78 ± 1.07a | 320.18 ± 16.62b |
米槠 Castanopsis carlesii | 1.27 ± 0.06ab | 11.01 ± 0.58ab | 45.08 ± 1.54a | 368.95 ± 30.18ab |
香樟 Cinnamomum camphora | 1.39 ± 0.02ab | 9.68 ± 0.41b | 43.66 ± 0.32a | 322.19 ± 3.63b |
Table 1 Soil physical properties in 0-10 cm soil layer after 7 years of plantations of the 11 tree species in the subtropical common garden (mean ± SE, n = 3)
树种 Tree species | 土壤容重 Soil bulk density (g·cm-3) | 土壤含水量 Soil water content (%) | 土壤孔隙度 Soil porosity (%) | 土壤最大持水量 Soil maximum water holding capacity (g·kg-1) |
---|---|---|---|---|
鹅掌楸 Liriodendron chinense | 1.16 ± 0.07d | 10.35 ± 0.62b | 45.06 ± 1.31a | 405.18 ± 31.24a |
枫香 Liquidambar formosana | 1.36 ± 0.04ab | 11.01 ± 0.65ab | 45.05 ± 1.69a | 342.15 ± 22.39ab |
无患子 Sapindus mukorossi | 1.29 ± 0.04ab | 11.41 ± 0.53ab | 45.50 ± 1.21a | 363.62 ± 18.38ab |
杉木 Cunninghamia lanceolata | 1.35 ± 0.04ab | 11.67 ± 0.06ab | 44.55 ± 1.11a | 337.08 ± 18.01ab |
马尾松 Pinus massoniana | 1.42 ± 0.10a | 10.93 ± 0.54ab | 43.00 ± 1.31a | 313.06 ± 37.53b |
木荷 Schima superba | 1.26 ± 0.07b | 11.97 ± 0.55a | 42.97 ± 2.55a | 361.34 ± 37.11ab |
香叶 Lindera communis | 1.22 ± 0.04c | 11.42 ± 0.24ab | 46.17 ± 1.81a | 389.44 ± 27.07ab |
杜英 Elaeocarpus decipiens | 1.26 ± 0.02ab | 11.10 ± 0.46ab | 44.45 ± 1.19a | 375.31 ± 11.05ab |
火力楠 Michelia macclurei | 1.36 ± 0.04ab | 10.34 ± 0.44b | 41.78 ± 1.07a | 320.18 ± 16.62b |
米槠 Castanopsis carlesii | 1.27 ± 0.06ab | 11.01 ± 0.58ab | 45.08 ± 1.54a | 368.95 ± 30.18ab |
香樟 Cinnamomum camphora | 1.39 ± 0.02ab | 9.68 ± 0.41b | 43.66 ± 0.32a | 322.19 ± 3.63b |
树种 Tree species | 功能类型 Functional type | 树高 Tree height (m) | 胸径 DBH (cm) | 叶片生物量 Leaf biomass (t·hm-2) |
---|---|---|---|---|
鹅掌楸 Liriodendron chinense | 落叶阔叶 Deciduous broadleaved | - | - | - |
枫香 Liquidambar formosana | 落叶阔叶 Deciduous broadleaved | - | - | - |
无患子 Sapindus mukorossi | 落叶阔叶 Deciduous broadleaved | - | - | - |
杉木 Cunninghamia lanceolata | 常绿针叶 Evergreen coniferous | 7.34 ± 0.21a | 10.24 ± 0.43a | 4.97 ± 0.32a |
马尾松 Pinus massoniana | 常绿针叶 Evergreen coniferous | 4.61 ± 0.08d | 6.36 ± 0.14b | 0.68 ± 0.09d |
木荷 Schima superba | 常绿阔叶 Evergreen broadleaved | 5.26 ± 0.18bc | 6.37 ± 0.36b | 0.99 ± 0.06cd |
香叶 Lindera communis | 常绿阔叶 Evergreen broadleaved | - | - | - |
杜英 Elaeocarpus decipiens | 常绿阔叶 Evergreen broadleaved | 5.64 ± 0.26b | 10.21 ± 0.55a | 1.44 ± 0.10bc |
火力楠 Michelia macclurei | 常绿阔叶 Evergreen broadleaved | 4.90 ± 0.01cd | 7.00 ± 0.15b | 1.06 ± 0.11cd |
米槠 Castanopsis carlesii | 常绿阔叶 Evergreen broadleaved | 5.65 ± 0.26b | 7.26 ± 0.47b | 0.78 ± 0.15d |
香樟 Cinnamomum camphora | 常绿阔叶 Evergreen broadleaved | 4.61 ± 0.25d | 6.58 ± 0.31b | 1.67 ± 0.27b |
Table 2 Plant growth status of the 11 tree species in the subtropical common-garden (mean ± SE, n = 4)
树种 Tree species | 功能类型 Functional type | 树高 Tree height (m) | 胸径 DBH (cm) | 叶片生物量 Leaf biomass (t·hm-2) |
---|---|---|---|---|
鹅掌楸 Liriodendron chinense | 落叶阔叶 Deciduous broadleaved | - | - | - |
枫香 Liquidambar formosana | 落叶阔叶 Deciduous broadleaved | - | - | - |
无患子 Sapindus mukorossi | 落叶阔叶 Deciduous broadleaved | - | - | - |
杉木 Cunninghamia lanceolata | 常绿针叶 Evergreen coniferous | 7.34 ± 0.21a | 10.24 ± 0.43a | 4.97 ± 0.32a |
马尾松 Pinus massoniana | 常绿针叶 Evergreen coniferous | 4.61 ± 0.08d | 6.36 ± 0.14b | 0.68 ± 0.09d |
木荷 Schima superba | 常绿阔叶 Evergreen broadleaved | 5.26 ± 0.18bc | 6.37 ± 0.36b | 0.99 ± 0.06cd |
香叶 Lindera communis | 常绿阔叶 Evergreen broadleaved | - | - | - |
杜英 Elaeocarpus decipiens | 常绿阔叶 Evergreen broadleaved | 5.64 ± 0.26b | 10.21 ± 0.55a | 1.44 ± 0.10bc |
火力楠 Michelia macclurei | 常绿阔叶 Evergreen broadleaved | 4.90 ± 0.01cd | 7.00 ± 0.15b | 1.06 ± 0.11cd |
米槠 Castanopsis carlesii | 常绿阔叶 Evergreen broadleaved | 5.65 ± 0.26b | 7.26 ± 0.47b | 0.78 ± 0.15d |
香樟 Cinnamomum camphora | 常绿阔叶 Evergreen broadleaved | 4.61 ± 0.25d | 6.58 ± 0.31b | 1.67 ± 0.27b |
非结构性碳水化合物 Non-structural carbohydrate | 变异来源 Source of variation | 自由度 df | F | p |
---|---|---|---|---|
非结构性碳水化合物 Non-structural carbohydrate | 树种 Tree speices | 10 | 9.0 | <0.001 |
叶类型 Leaf | 1 | 229.5 | <0.001 | |
树种×叶类型 Tree speices × Leaf | 10 | 3.4 | <0.01 | |
可溶性糖 Soluble sugars | 树种 Tree speices | 10 | 8.9 | <0.001 |
叶类型 Leaf | 1 | 242.9 | <0.001 | |
树种×叶类型 Tree species × Leaf | 10 | 2.9 | <0.01 | |
淀粉 Starch | 树种 Tree speices | 10 | 4.3 | <0.001 |
叶类型 Leaf | 1 | 21.0 | <0.001 | |
树种×叶类型 Tree species × Leaf | 10 | 2.0 | 0.061 |
Table 3 Two-way ANOVA analysis for the effects of tree species and leaf type on the content of non-structural carbohydrates
非结构性碳水化合物 Non-structural carbohydrate | 变异来源 Source of variation | 自由度 df | F | p |
---|---|---|---|---|
非结构性碳水化合物 Non-structural carbohydrate | 树种 Tree speices | 10 | 9.0 | <0.001 |
叶类型 Leaf | 1 | 229.5 | <0.001 | |
树种×叶类型 Tree speices × Leaf | 10 | 3.4 | <0.01 | |
可溶性糖 Soluble sugars | 树种 Tree speices | 10 | 8.9 | <0.001 |
叶类型 Leaf | 1 | 242.9 | <0.001 | |
树种×叶类型 Tree species × Leaf | 10 | 2.9 | <0.01 | |
淀粉 Starch | 树种 Tree speices | 10 | 4.3 | <0.001 |
叶类型 Leaf | 1 | 21.0 | <0.001 | |
树种×叶类型 Tree species × Leaf | 10 | 2.0 | 0.061 |
Fig. 1 Contents of non-structural carbohydrates, soluble sugars and starch in fresh and senescent leaves of 11 trees in the subtropical common-garden (A, C, E), and difference in them among different plant functional types (B, D, F)(mean ± SE, n = 3). Asterisks denote significant differences between fresh and senescent leaves for the same tree species (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Different uppercase letters denote significant differences in non-structural carbohydrates (soluble sugars, starch) content in fresh leaves among tree species/plant functional traits (p < 0.05), and different lowercase letters denote significant differences in non-structural carbohydrates (soluble sugars, starch) content in senescent leaves among tree species/plant functional traits (p < 0.05). CC, Castanopsis carlesii; CC1, Cinnamomum camphora; CL, Cunninghamia lanceolata; ED, Elaeocarpus decipiens; LC, Liriodendron chinense; LC1, Lindera communis; LF, Liquidambar formosana; MM, Michelia macclurei; PM, Pinus massoniana; SM, Sapindus mukorossi; SS, Schima superba. Db, deciduous broadleaved species (n = 9); Eb, evergreen broadleaved species (n = 18); Ec, evergreen coniferous species (n = 6).
Fig. 2 Correlation between non-structural carbohydrates (NSC) and carbon (C), nitrogen (N), phosphorus (P) contents in fresh leaves. SS, soluble sugars; St, starch. The value is correlation coefficient, asterisks denote significant correlations (**, p < 0.01).
[1] |
Berg B (2014). Decomposition patterns for foliar litter-A theory for influencing factors. Soil Biology & Biochemistry, 78, 222-232.
DOI URL |
[2] |
Bradford MA, Keiser AD, Davies CA, Mersmann CA, Strickland MS (2013). Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry, 113, 271-281.
DOI URL |
[3] | Chen FL, Zheng H, Yang BS, Ouyang ZY, Zhang K, Xiao Y, Tu NM (2011). The decomposition of coniferous and broadleaf mixed litters significantly changes the carbon metabolism diversity of soil microbial communities in subtropical area, southern China. Acta Ecologica Sinica, 31, 3027-3035. |
[ 陈法霖, 郑华, 阳柏苏, 欧阳志云, 张凯, 肖燚, 屠乃美 (2011). 中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响. 生态学报, 31, 3027-3035.] | |
[4] | Chen LC, Wang SL, Chen CY (2004). Degradation mechanism of Chinese fir plantation. Chinese Journal of Applied Ecology, 15, 1953-1957. |
[ 陈龙池, 汪思龙, 陈楚莹 (2004). 杉木人工林衰退机理探讨. 应用生态学报, 15, 1953-1957.] | |
[5] |
Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65, 667-687.
DOI URL |
[6] | Du JH, Shao JY, Li SF, Qin J (2020). Non-structural carbohydrate content of trees and its influencing factors at multiple spatial-temporal scales: a review. Chinese Journal of Applied Ecology, 31, 1378-1388. |
[ 杜建会, 邵佳怡, 李升发, 秦晶 (2020). 树木非结构性碳水化合物含量多时空尺度变化特征及其影响因素研究进展. 应用生态学报, 31, 1378-1388.] | |
[7] | FAO (2015). World Reference Base for Soil Resources 2014. Food and Agriculture Organization of the United Nations, Roman. |
[8] |
Francesca Cotrufo M, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779.
DOI |
[9] |
Francesca Cotrufo M, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DOI PMID |
[10] |
Kozlowski TT, Keller T (1966). Food relations of woody plants. The Botanical Review, 32, 293-382.
DOI URL |
[11] |
Li DS, Shi ZM, Liu SR, Geng LJ (2012). Relationships between chemical compositions of Quercus species seeds and climatic factors in temperate zone of NSTEC. Acta Ecologica Sinica, 32, 7857-7865.
DOI URL |
[ 李东胜, 史作民, 刘世荣, 耿丽君 (2012). 南北样带温带区栎属树种种子化学组成与气候因子的关系. 生态学报, 32, 7857-7865.] | |
[12] | Li NN, He NP, Yu GR (2015). Non-structural carbohydrates in leaves of tree species from four typical forests in China. Acta Botanica Boreali-Occidentalia Sinica, 35, 1846-1854. |
[ 李娜妮, 何念鹏, 于贵瑞 (2015). 中国4种典型森林中常见乔木叶片的非结构性碳水化合物研究. 西北植物学报, 35, 1846-1854.] | |
[13] | Li NN, He NP, Yu GR (2016). Evaluation of leaf non-structural carbohydrate contents in typical forest ecosystems in northeast China. Acta Ecologica Sinica, 36, 430-438. |
[ 李娜妮, 何念鹏, 于贵瑞 (2016). 中国东北典型森林生态系统植物叶片的非结构性碳水化合物研究. 生态学报, 36, 430-438.] | |
[14] |
Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105.
DOI PMID |
[15] |
Martínez-Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, Palacio S, Piper FI, Lloret F (2016). Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs, 86, 495-516.
DOI URL |
[16] |
Millard P, Sommerkorn M, Grelet GA (2007). Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175, 11-28.
DOI PMID |
[17] |
Molina-Montenegro MA, Gallardo-Cerda J, Flores TSM, Atala C (2012). The trade-off between cold resistance and growth determines the Nothofagus pumilio treeline. Plant Ecology, 213, 133-142.
DOI URL |
[18] | National Forestry and Grassland Administration (2019). China Forest Resources Report 2014-2018. China Forestry Publishing House, Beijing. |
[ 国家林业和草原局 (2019). 中国森林资源报告2014-2018. 中国林业出版社, 北京.] | |
[19] | Ouyang M, Yang QP, Qi HY, Liu J, Ma SQ, Song QN (2014). A comparison of seasonal dynamics of nonstructural carbohydrates for deciduous and evergreen landscape trees in subtropical region. Journal of Nanjing Forestry University (Natural Sciences Edition), 38, 105-110. |
[ 欧阳明, 杨清培, 祁红艳, 刘骏, 马思琪, 宋庆妮 (2014). 亚热带落叶与常绿园林树种非结构性碳水化合物的季节动态比较. 南京林业大学学报(自然科学版), 38, 105-110.] | |
[20] | Pan QM, Han XG, Bai YF, Yang JC (2002). Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany, 19, 30-38. |
[ 潘庆民, 韩兴国, 白永飞, 杨景成 (2002). 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 19, 30-38.] | |
[21] |
Soong JL, Parton WJ, Calderon F, Campbell EE, Cotrufo MF (2015). A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 124, 27-44.
DOI URL |
[22] |
Trumbore S, Czimczik CI, Sierra CA, Muhr J, Xu XM (2015). Non-structural carbon dynamics and allocation relate to growth rate and leaf habit in California oaks. Tree Physiology, 35, 1206-1222.
DOI PMID |
[23] |
Wang ZG, Wang CK (2019). Mechanisms of carbon source- sink limitations to tree growth. Chinese Journal of Plant Ecology, 43, 1036-1047.
DOI URL |
[ 王兆国, 王传宽 (2019). 碳供给与碳利用对树木生长的限制机制. 植物生态学报, 43, 1036-1047.]
DOI |
|
[24] |
Würth MKR, Peláez-Riedl S, Wright SJ, Körner C (2005). Non-structural carbohydrate pools in a tropical forest. Oecologia, 143, 11-24.
DOI URL |
[25] | Yang J, Zhang YY, Tan SY, Wang DY, Yue K, Ni XY, Liao S, Wu FZ, Yang YS (2020). Soil water conservation function of different plantations in subtropical forest. Acta Ecologica Sinica, 40, 4594-4604. |
[ 杨静, 张耀艺, 谭思懿, 王定一, 岳楷, 倪祥银, 廖姝, 吴福忠, 杨玉盛 (2020). 亚热带不同树种土壤水源涵养功能. 生态学报, 40, 4594-4604.] | |
[26] |
Yu DP, Wang QW, Liu JQ, Zhou WM, Qi L, Wang XY, Zhou L, Dai LM (2014). Formation mechanisms of the alpine Ermanʼs birch (Betula ermanii) treeline on Changbai Mountain in Northeast China. Trees, 28, 935-947.
DOI URL |
[27] |
Yu LM, Wang CK, Wang XC (2011). Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China. Chinese Journal of Plant Ecology, 35, 1245-1255.
DOI URL |
[ 于丽敏, 王传宽, 王兴昌 (2011). 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 35, 1245-1255.]
DOI |
|
[28] |
Zhang HY, Wang CK, Wang XC (2013). Comparison of concentrations of non-structural carbohydrates between new twigs and old branches for 12 temperate species. Acta Ecologica Sinica, 33, 5675-5685.
DOI URL |
[ 张海燕, 王传宽, 王兴昌 (2013). 温带12个树种新老树枝非结构性碳水化合物浓度比较. 生态学报, 33, 5675-5685.] | |
[29] |
Zhang PP, Zhou XH, Fu YL, Shao JJ, Zhou LY, Li SS, Zhou GY, Hu ZH, Hu JQ, Bai SH, McDowell NG (2020). Differential effects of drought on nonstructural carbohydrate storage in seedlings and mature trees of four species in a subtropical forest. Forest Ecology and Management, 469, 118159. DOI: 10.1016/j.foreco.2020.118159.
DOI URL |
[30] | Zhang YP, Cao PH, Xu JL, Hai XY, Wu WX, Jiao BW, Shen MW, Wang R (2019). Seasonal dynamics of non-structural carbohydrate contents in leaves of Quercus variabilis growing in the east Qinling Mountain range. Acta Ecologica Sinica, 39, 7274-7282. |
[ 章异平, 曹鹏鹤, 徐军亮, 海旭莹, 吴文霞, 焦保武, 沈梦文, 王瑞 (2019). 秦岭东段栓皮栎叶片非结构性碳水化合物含量的季节动态. 生态学报, 39, 7274-7282.] | |
[31] | Zhang ZY, Xu JJ, Lin DC, Zou BZ, Wu PF (2020). Research progress on pruning effects and characteristics of dead branches with needles remaining in the canopy of Chinese fir plantation. Ecological Science, 39, 268-272. |
[ 张子扬, 许静静, 林德城, 邹秉章, 吴鹏飞 (2020). 杉木枝叶贮存特性及人工修枝效应研究进展. 生态科学, 39, 268-272.] |
[1] | Guang-Ze JIN Zhi-Li LIU. Variations and relationships analysis of leaf traits of three Acer species for different tree sizes and canopy conditions in Xiao Hinggan Mountains of Northeast China [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[3] | Huiying Cai Lanhui Li Yang Lin Yatao Liang Guang Yang Long Sun. Responses of nonstructural carbohydrates in Betula platyphylla leaves and fine roots to time since fire [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[4] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[5] | WAN Chun-Yan, YU Jun-Rui, ZHU Shi-Dan. Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species [J]. Chin J Plant Ecol, 2023, 47(10): 1386-1397. |
[6] | DONG Han-Jun, WANG Xing-Chang, YUAN Dan-Yang, LIU Di, LIU Yu-Long, SANG Ying, WANG Xiao-Chun. Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 722-734. |
[7] | WANG Jiao, GUAN Xin, ZHANG Wei-Dong, HUANG Ke, ZHU Mu-Nan, YANG Qing-Peng. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings [J]. Chin J Plant Ecol, 2021, 45(11): 1231-1240. |
[8] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
[9] | CHEN Si-Lu, CAI Jin-Song, LIN Cheng-Fang, SONG Hao-Wei, YANG Yu-Sheng. Response of leaf litter decomposition of different tree species to nitrogen addition in a subtropical forest [J]. Chin J Plant Ecol, 2020, 44(3): 214-227. |
[10] | MEI Kong-Can, CHENG Lei, ZHANG Qiu-Fang, LIN Kai-Miao, ZHOU Jia-Cong, ZENG Quan-Xin, WU Yue, XU Jian-Guo, ZHOU Jin-Rong, CHEN Yue-Min. Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests [J]. Chin J Plant Ecol, 2020, 44(12): 1273-1284. |
[11] | CHE Jian, ZHENG Jie, JIANG Ya, JIN Yi, YI Yin. Separation of phylogeny and ecological behaviors between evergreen and deciduous woody angiosperms in the subtropical forest dynamics plots of China [J]. Chin J Plant Ecol, 2020, 44(10): 1007-1014. |
[12] | ZHANG Zhen-Zhen, ZHAO Ping, ZHANG Jin-Xiu, SI Yao. Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2019, 43(2): 131-138. |
[13] | WANG Zhao-Guo, WANG Chuan-Kuan. Mechanisms of carbon source-sink limitations to tree growth [J]. Chin J Plant Ecol, 2019, 43(12): 1036-1047. |
[14] | WANG Biao,JIANG Yuan,WANG Ming-Chang,DONG Man-Yu,ZHANG Yi-Ping. Variations of non-structural carbohydrate concentration of Picea meyeri at different elevations of Luya Mountain, China [J]. Chin J Plan Ecolo, 2015, 39(7): 746-752. |
[15] | TAN Zheng-Hong,YU Gui-Rui,ZHOU Guo-Yi,HAN Shi-Jie,HSIA Yue-Joe,MAEDA Takashi,KOSUGI Yoshiko,YAMANOI Katsumi,LI Sheng-Gong,OHTA Takeshi,HIRATA Ryuichi,YASUDA Yukio,NAKANO Takashi,KOMINAMI Yuji,KITAMURA Kenzo,MIZOGUCHI Yasuko,LIAO Zhi-Yong,ZHAO Jun-Fu,YANG Lian-Yan. Microclimate of forests across East Asia biomes: 1. Radiation and energy balance [J]. Chin J Plan Ecolo, 2015, 39(6): 541-553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn