Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (6): 541-553.DOI: 10.17521/cjpe.2015.0052
• Orginal Article • Next Articles
TAN Zheng-Hong1,*(), YU Gui-Rui2, ZHOU Guo-Yi3, HAN Shi-Jie4, HSIA Yue-Joe5, MAEDA Takashi6, KOSUGI Yoshiko7, YAMANOI Katsumi8, LI Sheng-Gong2, OHTA Takeshi9, HIRATA Ryuichi10, YASUDA Yukio11, NAKANO Takashi12, KOMINAMI Yuji13, KITAMURA Kenzo14, MIZOGUCHI Yasuko12, LIAO Zhi-Yong1, ZHAO Jun-Fu1, YANG Lian-Yan1
Received:
2014-10-09
Accepted:
2015-03-31
Online:
2015-06-01
Published:
2015-07-02
Contact:
Zheng-Hong TAN
About author:
# Co-first authors
TAN Zheng-Hong,YU Gui-Rui,ZHOU Guo-Yi,HAN Shi-Jie,HSIA Yue-Joe,MAEDA Takashi,KOSUGI Yoshiko,YAMANOI Katsumi,LI Sheng-Gong,OHTA Takeshi,HIRATA Ryuichi,YASUDA Yukio,NAKANO Takashi,KOMINAMI Yuji,KITAMURA Kenzo,MIZOGUCHI Yasuko,LIAO Zhi-Yong,ZHAO Jun-Fu,YANG Lian-Yan. Microclimate of forests across East Asia biomes: 1. Radiation and energy balance[J]. Chin J Plan Ecolo, 2015, 39(6): 541-553.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0052
Fig. 2 The annual cycle of solar radiation above forest canopy across forest biomes. A, SKT for boreal forest. B, TMK for temperate forest. C, DHS for subtropical forest. D, PSO for tropical forest. Each value is the daily sum of multi-year means. Site information sees Table 1.
Fig. 3 The annual cycle of net radiation above forest canopy across forest biomes. A, SKT for boreal forest. B, TMKfor temperate forest. C, DHS for subtropical forest. D, PSO for tropical forest. Each value is the daily sum of multi-year means. Site information sees Table 1.
Fig. 4 The annual cycle of albedo above forest canopy across forest biomes. A, SKT for boreal forest. B, TMK for temperate forest. C, DHS for subtropical forest. D, PSO for tropical forest. Each value is the daily average of multi-year means. Site information sees Table 1.
Fig. 5 The annual cycle of Bowen ratio above forest canopy across forest biomes. A, SKT for boreal forest. B, TMK for temperate forest. C, DHS for subtropical forest. D, PSO for tropical forest. Each value is the daily sum of multi-year means. Site information sees Table 1.
Fig. 6 The annual cycle of soil heat flux above forest canopy across forest biomes. A, SKT for boreal forest. B, TMK for temperate forest. C, DHS for subtropical forest. D, PSO for tropical forest. Each value is the daily average of multi-year means. Site information sees Table 1.
序号 No. | 站点 Site | 太阳辐射 Solar radiation (Rg) (MJ·m-2·a-1) | 反射辐射 Upward shortwave radiation (MJ·m-2·a-1) | 净辐射 Net radiation (Rn) (MJ·m-2·a-1) | 有效辐射 Net longwave radiation losses (MJ·m-2·a-1) | 土壤热通量 Soil heat flux (MJ·m-2·a-1) | 反照率 Albedo | 净辐射总辐射比 Rn/Rg | 波文比 Bowen ratio | 蒸散比 Evapotranspiration fraction |
---|---|---|---|---|---|---|---|---|---|---|
1 | YLF | 2 988 | 400 | 1 675 | 913 | - | 0.26 | 0.56 | 1.26 | 0.44 |
2 | YPF | 3 645 | 571 | 1 941 | 1 133 | - | 0.24 | 0.53 | - | - |
3 | SKT | 5 397 | 537 | 2 060 | 2 800 | -85 | 0.10 | 0.38 | 2.53 | 0.28 |
4 | SAP | 4 661 | 882 | 2 340 | 1 439 | -10 | 0.20 | 0.50 | 0.27 | 0.78 |
5 | TMK | 4 197 | 625 | 2 490 | 1 082 | -2 | 0.15 | 0.59 | 0.65 | 0.60 |
6 | CBS | 5 012 | - | 2 323 | - | - | - | 0.46 | 0.68 | 0.59 |
7 | API | 4 024 | 758 | 1 999 | 1 276 | -22 | 0.19 | 0.50 | 0.28 | 0.77 |
8 | KWG | 4 813 | 482 | 2 401 | 1 930 | -23 | 0.10 | 0.50 | 0.31 | 0.75 |
9 | FJY | 5 120 | 556 | 3 006 | 1 558 | 15 | 0.10 | 0.59 | 0.31 | 0.75 |
10 | YMS | 4 580 | 632 | 2 824 | 1 124 | - | 0.14 | 0.62 | - | - |
11 | KHW | 4 935 | 432 | 3 151 | 1 352 | - | 0.09 | 0.64 | 0.35 | 0.73 |
12 | QYZ | 4 189 | - | 2 707 | - | - | - | 0.65 | 0.43 | 0.69 |
13 | CLM | 3 834 | 373 | 2 559 | 902 | -18 | 0.10 | 0.67 | 0.70 | 0.58 |
14 | DHS | 4 551 | 349 | 2 815 | 1 387 | -28 | 0.08 | 0.62 | 0.54 | 0.65 |
15 | MKL | 6 380 | 845 | 4 273 | 1 262 | -38 | 0.13 | 0.67 | 0.45 | 0.68 |
16 | SKR | 6 185 | 816 | 3 918 | 1 451 | -15 | 0.13 | 0.63 | 0.70 | 0.58 |
17 | PSO | 6 255 | 701 | 4 547 | 1 007 | -30 | 0.11 | 0.73 | 0.46 | 0.68 |
Table 2 Summary of the forest radiation and energy properties
序号 No. | 站点 Site | 太阳辐射 Solar radiation (Rg) (MJ·m-2·a-1) | 反射辐射 Upward shortwave radiation (MJ·m-2·a-1) | 净辐射 Net radiation (Rn) (MJ·m-2·a-1) | 有效辐射 Net longwave radiation losses (MJ·m-2·a-1) | 土壤热通量 Soil heat flux (MJ·m-2·a-1) | 反照率 Albedo | 净辐射总辐射比 Rn/Rg | 波文比 Bowen ratio | 蒸散比 Evapotranspiration fraction |
---|---|---|---|---|---|---|---|---|---|---|
1 | YLF | 2 988 | 400 | 1 675 | 913 | - | 0.26 | 0.56 | 1.26 | 0.44 |
2 | YPF | 3 645 | 571 | 1 941 | 1 133 | - | 0.24 | 0.53 | - | - |
3 | SKT | 5 397 | 537 | 2 060 | 2 800 | -85 | 0.10 | 0.38 | 2.53 | 0.28 |
4 | SAP | 4 661 | 882 | 2 340 | 1 439 | -10 | 0.20 | 0.50 | 0.27 | 0.78 |
5 | TMK | 4 197 | 625 | 2 490 | 1 082 | -2 | 0.15 | 0.59 | 0.65 | 0.60 |
6 | CBS | 5 012 | - | 2 323 | - | - | - | 0.46 | 0.68 | 0.59 |
7 | API | 4 024 | 758 | 1 999 | 1 276 | -22 | 0.19 | 0.50 | 0.28 | 0.77 |
8 | KWG | 4 813 | 482 | 2 401 | 1 930 | -23 | 0.10 | 0.50 | 0.31 | 0.75 |
9 | FJY | 5 120 | 556 | 3 006 | 1 558 | 15 | 0.10 | 0.59 | 0.31 | 0.75 |
10 | YMS | 4 580 | 632 | 2 824 | 1 124 | - | 0.14 | 0.62 | - | - |
11 | KHW | 4 935 | 432 | 3 151 | 1 352 | - | 0.09 | 0.64 | 0.35 | 0.73 |
12 | QYZ | 4 189 | - | 2 707 | - | - | - | 0.65 | 0.43 | 0.69 |
13 | CLM | 3 834 | 373 | 2 559 | 902 | -18 | 0.10 | 0.67 | 0.70 | 0.58 |
14 | DHS | 4 551 | 349 | 2 815 | 1 387 | -28 | 0.08 | 0.62 | 0.54 | 0.65 |
15 | MKL | 6 380 | 845 | 4 273 | 1 262 | -38 | 0.13 | 0.67 | 0.45 | 0.68 |
16 | SKR | 6 185 | 816 | 3 918 | 1 451 | -15 | 0.13 | 0.63 | 0.70 | 0.58 |
17 | PSO | 6 255 | 701 | 4 547 | 1 007 | -30 | 0.11 | 0.73 | 0.46 | 0.68 |
Fig. 7 The dependence of radiation on latitude. A, solar radiation (Rn). B, net radiation (Rg). C, ratio between net and solar radiation (Rg / Rn). D, albedo. Each value in the plot represents the annual sums.
[1] | Baldocchi D (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere―The state and future of eddy covariance method.Global Change Biology, 20, 3600-3609. |
[2] | Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer Ch, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, Paw U KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001). FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities.Bulletin of American Meteorological Society, 82, 2415-2434. |
[3] | Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics. 2nd edn. Springer Press, New York, USA. |
[4] | Chapin III FS, Matson PA, Vitousek PM (2012). Principles of Terrestrial Ecosystem Ecology. 2nd edn. Springer Press, New York, USA. |
[5] | Chen JQ, Franklin JF, Spies TA (1993). Contrasting microclimates among clearcut, edge and interior of old-growth Douglas-fir forest.Agricultural and Forest Meteorology, 63, 219-237. |
[6] | Gamo M, Panuthai S, Maeda T, Toma T, Ishida A, Hayashi M, Warsudi, Dianna R, Diloksumpun S, Phanumard L, Sta- porn D, Ishizuka M, Saigusa N, Kondo H (2005). Carbon flux observation in the tropical seasonal forests and trop- ical rain forest. In: Proceedings of the International Work- shop on Advanced Flux Network and Flux Evaluation (AsiaFlux Workshop 2005). Fujiyoshida, Japan, 86. |
[7] | Geiger R, Aron RH, Todhunter P (1965). The Climate Near the Ground. 4th edn. Das Klima Der Bodennahen Luftschicht, Braunschweig, German. |
[8] | Guan DX, Wu JB, Zhao XS, Han SJ, Yu GR, Sun XM, Jin CJ (2006). CO2 fluxes over an old, temperate mixed forest in northeastern China.Agricultural and Forest Meteorology, 137, 138-149. |
[9] | Hamada S, Ohta T, Hiyama T, Kuwada T, Takahashi A, Maximov TC (2004) Hydrometeorological behavior of pine and larch forests in Eastern Siberia.Hydrological Processes, 18, 23-39. |
[10] | He QT (2001). Chinese Forestry Meteorology. Chinese Forestry Publishing House, Beijing.(in Chinese) |
[贺庆棠 (2001). 中国森林气象学. 中国林业出版社, 北京.] | |
[11] | Higuchi A, Kondoh A, Kishi S (2000). Relationship among the surface albedo, spectral reflectance of canopy, and evaporative fraction at grassland and paddy field.Advances in Space Research, 26, 1043-1046. |
[12] | Hirano T, Hirata R, Fujinuma Y, Saigusa N, Yamamoto S, Harazono Y, Takada M, Inukai K, Inoue G (2003). CO2 and water vapor exchange of a larch forest in northern Japan.Tellus B, 55, 244-257. |
[13] | Hong QF, Wang YZ, Wu SZ, Cao ZK, Huang JG, Liu HQ, Wang ZS, Wan ZH, Zhou BL (1963). The microclimate of Pinus massoniana forest.Scientia Silvae Sinicae, 8, 275-289.(in Chinese with English abstract) |
[洪启法, 王仪洲, 吴淑贞, 曹仲恺, 黄建国, 刘怀屺, 王志胜, 宛志沪, 周本琳 (1963). 马尾松幼林小气候. 林业科学, 8, 275-289.] | |
[14] | Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen JQ, De Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu QZ, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply.Nature, 467, 951-954. |
[15] | Kitamura K, Nakai Y, Suzuki S, Ohtani Y, Yamanoi K, Saka- moto T (2012). Interannual variability of net ecosystem production for a broadleaf deciduous forest in Sapporo, northern Japan.Journal of Forest Research, 17, 323-332. |
[16] | Kominami Y, Jomura M, Dannoura M, Goto Y, Tamai K, Mi- yama T, Kanazawa Y, Kaneko S, Okumura M, Misawa N, Hamada S, Sasaki T, Kimura H, Ohtani Y (2008). Biometric and eddy-covariance-based estimates of carbon balance for a warm-temperate mixed forest in Japan.Agricultural and Forest Meteorology, 148, 723-737. |
[17] | Kosugi Y, Takanashi S, Ohkubo S, Matsuo N, Tani M, Mitani T, Tsutsumi D, Nik AR (2008). CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia.Agricultural and Forest Meteorology, 148, 439-452. |
[18] | Kustas WP, Schmugge TJ, Humes KS, Jackson TJ, Parry R, Weltz MA, Moran MS (1993). Relationships between evaporative fraction and remotely sensed vegetation index and microwave brightness temperature for semiarid range- lands.Journal of Applied Meteorology, 32, 1781-1790. |
[19] | Lee XH, Goulden ML, Hollinger DY, Barr A, Black TA, Bohrer G, Bracho R, Drake B, Goldstein A, Gu LH, Katul G, Kolb T, Law BE, Margolis H, Meyers T, Monson R, Munger W, Oren R, Paw U KT, Richardson AD, Schmid HP, Staebler R, Wofsy S, Zhao L (2011). Observed increase in local cooling effect of deforestation at higher latitudes.Nature, 479, 384-387. |
[20] | Li SG, Asanuma J, Kotani A, Eugster W, Davaa G, Oyunbaatar D, Sugita M (2005). Year-round measurements of net ecosystem CO2 flux over a montane larch forest in Mongolia.Journal of Geophysical Research, 110, D09303, doi: 10.1029/2004JD005453. |
[21] | Mildenberger K, Beiderwieden E, Hsia Y-J, Klemm O (2009). CO2 and water vapor fluxes above a subtropical mountain cloud forest―The effect of light conditions and fog.Agricultural and Forest Meteorology, 149, 1730-1736. |
[22] | Mizoguchi Y, Ohtani Y, Takanashi S, Iwata H, Yasuda Y, Nakai Y (2012). Seasonal and interannual variation in net ecosystem production of an evergreen needleleaf forest in Japan.Journal of Forest Research, 17, 283-295. |
[23] | Nutini F, Boschetti M, Candiani G, Bocchi S, Brivio PA (2014). Evaporative fraction as an indicator of moisture condition and water stress status in semi-arid rangeland ecosystems.Remote Sensing, 6, 6300-6323. |
[24] | Ohta T, Maximov TC, Dolman AJ, Nakai T, van der Molen MK, Kononov AV, Maximov AP, Hiyama T, Iijima Y, Moors EJ, Tanaka H, Toba T, Yabuki H (2008). Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998-2006).Agricultural and Forest Meteorology, 148, 1941-1953. |
[25] | Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests.Science, 333, 988-993. |
[26] | Saigusa N, Li SG, Kwon H, Takagi K, Zhang LM, Ide R, Ueyama M, Asanuma J, Choi YJ, Chun JH, Han SJ, Hirano T, Hirata R, Kang M, Kato T, Kim J, Li YN, Maeda T, Miyata A, Mizoguchi Y, Murayama S, Nakai Y, Ohta T, Saitoh TM, Wang HM, Yu GR, Zhang YP, Zhao FH (2013). Dataset of CarboEastAsia and uncertainties in the CO2 budget evaluation caused by different data processing.Journal of Forest Research, 18, 41-48. |
[27] | Sang WG, Zheng Y, Zhang DQ (2001). Research on radiation flux dynamics of canopy surface in warm temperate zone deciduous broadleaved forests.Journal of Northeast Forestry University, 29(3), 40-43.(in Chinese with English abstract) |
[桑卫国, 郑豫, 张德全 (2001). 暖温带落叶阔叶林林冠层表面辐射通量动态与特点. 东北林业大学学报, 29(3), 40-43.] | |
[28] | Shimizu A, Shimizu T, Miyabuchi Y, Ogawa Y (2003). Evapotranspiration and runoff in a forest watershed, western Japan.Hydrological Processes, 17, 3125-3139. |
[29] | Trenberth KE, Fasullo JT, Kiehl J (2009). Earth’s global energy budget.Bulletin of the American Meteorological Society, 90, 311-323. |
[30] | Venturini V, Islam S, Rodriguez L (2008). Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model.Remote Sensing of Environment, 112, 132-141. |
[31] | Wofsy SC, Goulden ML, Munger JW, Fan SM, Bakwin PS, Daube BC, Bassow SL, Bazzaz FA (1993). Net exchange of CO2 in a mid-latitude forest.Science, 260, 1314-1317. |
[32] | Yasuda Y, Saito T, Hoshino D, Ono K, Ohtani Y, Mizoguchi Y, Morisawa T (2012). Carbon balance in a cool-temperate deciduous forest in northern Japan: Seasonal and interannual variations, and environmental controls of its annual balance.Journal of Forest Research, 17, 253-267. |
[33] | Yasuda Y, Watanabe T (2001). Comparative measurements of CO2 flux over a forest using closed-path and open-path CO2 analysers.Boundary-Layer Meteorology, 100, 191-208. |
[34] | Yu GR, Chen Z, Piao SL, Peng CH, Ciais P, Wang QF, Li XR, Zhu XJ (2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region.Proceedings of the National Academy of Sciences, 111, 4910-4915. |
[35] | Yu GR, Zhang LM, Sun XM, Fu YL, Wen XF, Wang QF, Li SG, Ren CY, Song X, Liu YF, Han SJ, Yan JH (2008). Environmental controls over carbon exchange of three forest ecosystems in eastern China.Global Change Biology, 14, 2555-2571. |
[36] | Zhang YP, Dou JX, Yu GR, Zhao SJ, Song QH, Sun XM (2005). Characteristics of solar radiation and its distribu- tion above the canopy of tropical seasonal rain forest in Xishuangbanna, Southwest China.Journal of Beijing Forestry University, 27(5), 17-25.(in Chinese with English abstract) |
[张一平, 窦军霞, 于贵瑞, 赵双菊, 宋清海, 孙晓敏 (2005). 西双版纳热带季节雨林太阳辐射特征研究. 北京林业大学学报, 27(5), 17-25.] |
[1] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[2] | WAN Chun-Yan, YU Jun-Rui, ZHU Shi-Dan. Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species [J]. Chin J Plant Ecol, 2023, 47(10): 1386-1397. |
[3] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[4] | WU Qiu-Xia, WU Fu-Zhong, HU Yi, KANG Zi-Jia, ZHANG Yao-Yi, YANG Jing, YUE Kai, NI Xiang-Yin, YANG Yu-Sheng. Difference in non-structural carbohydrates between fresh and senescent leaves of 11 tree species in a subtropical common-garden [J]. Chin J Plant Ecol, 2021, 45(7): 771-779. |
[5] | HUANG Song-Yu, JIA Xin, ZHENG Jia-Jia, YANG Rui-Zhi, MU Yu, YUAN He-Di. Characteristics and influencing factors of Bowen ratio variation in typical terrestrial ecosystems in China [J]. Chin J Plant Ecol, 2021, 45(2): 119-130. |
[6] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
[7] | CHEN Si-Lu, CAI Jin-Song, LIN Cheng-Fang, SONG Hao-Wei, YANG Yu-Sheng. Response of leaf litter decomposition of different tree species to nitrogen addition in a subtropical forest [J]. Chin J Plant Ecol, 2020, 44(3): 214-227. |
[8] | MEI Kong-Can, CHENG Lei, ZHANG Qiu-Fang, LIN Kai-Miao, ZHOU Jia-Cong, ZENG Quan-Xin, WU Yue, XU Jian-Guo, ZHOU Jin-Rong, CHEN Yue-Min. Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests [J]. Chin J Plant Ecol, 2020, 44(12): 1273-1284. |
[9] | CHE Jian, ZHENG Jie, JIANG Ya, JIN Yi, YI Yin. Separation of phylogeny and ecological behaviors between evergreen and deciduous woody angiosperms in the subtropical forest dynamics plots of China [J]. Chin J Plant Ecol, 2020, 44(10): 1007-1014. |
[10] | ZHANG Zhen-Zhen, ZHAO Ping, ZHANG Jin-Xiu, SI Yao. Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2019, 43(2): 131-138. |
[11] | XU Ting,CAO Lin,SHEN Xin,SHE Guang-Hui. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data [J]. Chin J Plan Ecolo, 2015, 39(4): 309-321. |
[12] | SHEN Xin,CAO Lin,XU Ting,SHE Guang-Hui. Classification of Pinus massoniana and secondary deciduous tree species in northern subtropical region based on high resolution and hyperspectral remotely sensed data [J]. Chin J Plan Ecolo, 2015, 39(12): 1125-1135. |
[13] | HAN Tian-Feng, ZHOU Guo-Yi, LI Yue-Lin, LIU Ju-Xiu, ZHANG De-Qiang. Partitioning soil respiration in lower subtropical forests at different successional stages in southern China [J]. Chin J Plant Ecol, 2011, 35(9): 946-954. |
[14] | LI Rong-Hua, DENG Qi, ZHOU Guo-Yi, ZHANG De-Qiang. Effect of incubation starting time on litter decomposition rate in a subtropical forest in China [J]. Chin J Plant Ecol, 2011, 35(7): 699-706. |
[15] | ZHOU Wen-Jia, SHI Zhao-Yong, WANG Wei. Temporal and spatial patterns of soil respiration in subtropical forests of eastern China [J]. Chin J Plant Ecol, 2011, 35(7): 731-740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn