Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (3): 214-227.DOI: 10.17521/cjpe.2019.0299
• Research Articles • Previous Articles Next Articles
CHEN Si-Lu1,2,CAI Jin-Song4,LIN Cheng-Fang1,2,3,*(),SONG Hao-Wei1,2,YANG Yu-Sheng1,2,3
Received:
2019-11-04
Accepted:
2020-02-06
Online:
2020-03-20
Published:
2020-04-30
Contact:
Cheng-Fang LIN
Supported by:
CHEN Si-Lu, CAI Jin-Song, LIN Cheng-Fang, SONG Hao-Wei, YANG Yu-Sheng. Response of leaf litter decomposition of different tree species to nitrogen addition in a subtropical forest[J]. Chin J Plant Ecol, 2020, 44(3): 214-227.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0299
林分特征 Forest characteristics | 土壤理化性质 Soil physiochemical properties | ||||||
---|---|---|---|---|---|---|---|
林分密度 Stand density (株·hm-2) | 郁闭度 Canopy density | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 容重 Bulk density (g·cm-3) | 全C Total carbon (%) | 全N Total nitrogen (%) | 全P Total phosphorus (%) |
1 955 | 0.89 | 11.9 | 20 | 1.12 | 2.45 | 0.186 | 0.021 7 |
Table 1 Community characteristics and topsoil (0-10 cm) physiochemical properties of a subtropical Castanopsis carlesii natural forest
林分特征 Forest characteristics | 土壤理化性质 Soil physiochemical properties | ||||||
---|---|---|---|---|---|---|---|
林分密度 Stand density (株·hm-2) | 郁闭度 Canopy density | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 容重 Bulk density (g·cm-3) | 全C Total carbon (%) | 全N Total nitrogen (%) | 全P Total phosphorus (%) |
1 955 | 0.89 | 11.9 | 20 | 1.12 | 2.45 | 0.186 | 0.021 7 |
树种 Species | C (g·kg-1) | N ( g·kg-1) | P ( g·kg-1) | 可萃取物 Extractive (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) | C:N | C:P | 木质素:N Lignin:N | 木质素:P Lignin:P |
---|---|---|---|---|---|---|---|---|---|---|
米槠 Castanopsis carlesii | 486.44 ± 2.15 | 14.22 ± 0.19 | 0.34 ± 0.03 | 55.50 ± 1.58 | 24.50 ± 1.07 | 20.00 ± 1.02 | 34.21 ± 2.13 | 1 158.20 ± 0.78 | 1.41 ± 0.05 | 47.62± 1.56 |
杉木 Cunninghamia lanceolata | 525.05 ± 2.39 | 16.03 ± 0.16 | 0.79 ± 0.10 | 51.40 ± 0.95 | 24.30 ± 1.02 | 24.30 ± 0.85 | 32.75 ± 0.95 | 664.62 ± 0.50 | 1.52 ± 0.05 | 30.76 ± 5.46 |
观光木 Michelia odora | 390.24 ± 1.68 | 24 .26 ± 0.12 | 0.92 ± 0.05 | 55.20 ± 0.97 | 25.50 ± 0.95 | 19.30 ± 1.16 | 16.10 ± 0.26 | 424.45 ± 0.36 | 0.80 ± 0.28 | 20.98 ± 2.15 |
台湾相思 Acacia confusa | 501.37 ± 2.81 | 27.61 ± 0.36 | 0.56 ± 0.02 | 51.10 ± 1.87 | 26.60 ± 0.45 | 22.30 ± 0.81 | 18.14 ± 0.09 | 894.69 ± 0.52 | 0.81 ± 0.35 | 39.82 ± 0.97 |
Table 2 Initial chemical properties of leaf litter in a subtropical forest (mean ± SD, n = 3)
树种 Species | C (g·kg-1) | N ( g·kg-1) | P ( g·kg-1) | 可萃取物 Extractive (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) | C:N | C:P | 木质素:N Lignin:N | 木质素:P Lignin:P |
---|---|---|---|---|---|---|---|---|---|---|
米槠 Castanopsis carlesii | 486.44 ± 2.15 | 14.22 ± 0.19 | 0.34 ± 0.03 | 55.50 ± 1.58 | 24.50 ± 1.07 | 20.00 ± 1.02 | 34.21 ± 2.13 | 1 158.20 ± 0.78 | 1.41 ± 0.05 | 47.62± 1.56 |
杉木 Cunninghamia lanceolata | 525.05 ± 2.39 | 16.03 ± 0.16 | 0.79 ± 0.10 | 51.40 ± 0.95 | 24.30 ± 1.02 | 24.30 ± 0.85 | 32.75 ± 0.95 | 664.62 ± 0.50 | 1.52 ± 0.05 | 30.76 ± 5.46 |
观光木 Michelia odora | 390.24 ± 1.68 | 24 .26 ± 0.12 | 0.92 ± 0.05 | 55.20 ± 0.97 | 25.50 ± 0.95 | 19.30 ± 1.16 | 16.10 ± 0.26 | 424.45 ± 0.36 | 0.80 ± 0.28 | 20.98 ± 2.15 |
台湾相思 Acacia confusa | 501.37 ± 2.81 | 27.61 ± 0.36 | 0.56 ± 0.02 | 51.10 ± 1.87 | 26.60 ± 0.45 | 22.30 ± 0.81 | 18.14 ± 0.09 | 894.69 ± 0.52 | 0.81 ± 0.35 | 39.82 ± 0.97 |
Fig. 1 Variations of litter mass remaining of different tree species during decomposition under different treatments in a subtropical forest (mean ± SD, n = 3). A, Castanopsis carlesii litter. B, Cunninghamia lanceolata litter. C, Michelia odora litter. D, Acacia confusa litter. CT, control; +N, nitrogen addition.
树种 Species | 处理 Treatment | Olson负指数方程 Olson negative exponential equation | R2 | 分解常数 Decay constant k (a-1) | 年实际干质量 损失率 Annual observed mass loss rate (%) | 年预期干质量 损失率 Annual predicted mass loss rate (%) | 半分解 时间 T50% (a) | 95%分解 时间 T95% (a) |
---|---|---|---|---|---|---|---|---|
米槠 Castanopsis carlesii | CT | Y = 91.26e-0.440x | 0.949 | 0.440Ba | 47.794 | 42.194 | 1.292 | 5.941 |
+N | Y = 96.35e-0.354x | 0.976 | 0.354Bb | 34.257 | 32.435 | 1.836 | 8.232 | |
杉木 Cunninghamia lanceolata | CT | Y = 95.79e-0.354x | 0.969 | 0.354Ca | 36.242 | 30.661 | 1.862 | 8.366 |
+N | Y = 94.91e-0.291x | 0.968 | 0.291BCa | 29.510 | 28.215 | 2.245 | 10.167 | |
观光木 Michelia odora | CT | Y = 81.65e-0.557x | 0.899 | 0.557Aa | 49.333 | 38.934 | 0.993 | 5.124 |
+N | Y = 88.03e-0.447x | 0.934 | 0.447Ab | 39.768 | 36.776 | 1.334 | 6.481 | |
台湾相思 Acacia confusa | CT | Y = 91.26e-0.357x | 0.964 | 0.357Ca | 35.240 | 31.303 | 1.798 | 8.248 |
+N | Y = 96.35e-0.230x | 0.908 | 0.230Cb | 24.887 | 26.328 | 2.685 | 13.479 |
Table 3 Exponential regression equations of mass remaining rate of leaf litter with time under different treatments in a subtropical forest
树种 Species | 处理 Treatment | Olson负指数方程 Olson negative exponential equation | R2 | 分解常数 Decay constant k (a-1) | 年实际干质量 损失率 Annual observed mass loss rate (%) | 年预期干质量 损失率 Annual predicted mass loss rate (%) | 半分解 时间 T50% (a) | 95%分解 时间 T95% (a) |
---|---|---|---|---|---|---|---|---|
米槠 Castanopsis carlesii | CT | Y = 91.26e-0.440x | 0.949 | 0.440Ba | 47.794 | 42.194 | 1.292 | 5.941 |
+N | Y = 96.35e-0.354x | 0.976 | 0.354Bb | 34.257 | 32.435 | 1.836 | 8.232 | |
杉木 Cunninghamia lanceolata | CT | Y = 95.79e-0.354x | 0.969 | 0.354Ca | 36.242 | 30.661 | 1.862 | 8.366 |
+N | Y = 94.91e-0.291x | 0.968 | 0.291BCa | 29.510 | 28.215 | 2.245 | 10.167 | |
观光木 Michelia odora | CT | Y = 81.65e-0.557x | 0.899 | 0.557Aa | 49.333 | 38.934 | 0.993 | 5.124 |
+N | Y = 88.03e-0.447x | 0.934 | 0.447Ab | 39.768 | 36.776 | 1.334 | 6.481 | |
台湾相思 Acacia confusa | CT | Y = 91.26e-0.357x | 0.964 | 0.357Ca | 35.240 | 31.303 | 1.798 | 8.248 |
+N | Y = 96.35e-0.230x | 0.908 | 0.230Cb | 24.887 | 26.328 | 2.685 | 13.479 |
差异来源 Different source | 质量损失率 Mass loss rate | 木质素损失率 Lignin loss rate | 纤维素损失率 Cellulose loss rate | 氮释放率 N release rate |
---|---|---|---|---|
T | 356.428*** | 18 920.622*** | 8 803.023*** | 1 266.179*** |
L | 60.641* | 1 798.360** | 4 305.721*** | 70.640** |
N | 287.734** | 2 916.781*** | 5 176.453*** | 421.188** |
T ′ L | 4.114 | 1 605.655*** | 1 016.727*** | 14.430* |
T ′ N | 2.681 | 124.624** | 72.162* | 15.670* |
L ′ N | 8.713 | 582.266** | 667.323*** | 7.278 |
T ′ L ′ N | 1.038 | 271.636** | 407.487*** | 2.044 |
Table 4 Analysis (indicated by F values from ANOVA with three factors repeated measurements) of decomposition time, litter type, nitrogen addition and their interactions on litter mass and lignin, cellulose and N release in a subtropical forest
差异来源 Different source | 质量损失率 Mass loss rate | 木质素损失率 Lignin loss rate | 纤维素损失率 Cellulose loss rate | 氮释放率 N release rate |
---|---|---|---|---|
T | 356.428*** | 18 920.622*** | 8 803.023*** | 1 266.179*** |
L | 60.641* | 1 798.360** | 4 305.721*** | 70.640** |
N | 287.734** | 2 916.781*** | 5 176.453*** | 421.188** |
T ′ L | 4.114 | 1 605.655*** | 1 016.727*** | 14.430* |
T ′ N | 2.681 | 124.624** | 72.162* | 15.670* |
L ′ N | 8.713 | 582.266** | 667.323*** | 7.278 |
T ′ L ′ N | 1.038 | 271.636** | 407.487*** | 2.044 |
Fig. 2 Dynamics of litter lignin remaining rates under different treatments during decomposition in a subtropical forest (mean ± SD, n = 3). A, Castanopsis carlesii litter. B, Cunninghamia lanceolata litter. C, Michelia odora litter. D, Acacia confusa litter. CT, control; +N, nitrogen addition.
Fig. 3 Dynamics of litter cellulose remaining rates under different treatments during decomposition in a subtropical forest (mean ± SD, n = 3). A, Castanopsis carlesii litter. B, Cunninghamia lanceolata litter. C, Michelia odora litter. D, Acacia confusa litter. CT, control; +N, nitrogen addition.
Fig. 4 Dynamics of litter nitrogen remaining rates under different treatments during decomposition in a subtropical forest (mean ± SD, n = 3). A, Castanopsis carlesii litter. B, Cunninghamia lanceolata litter. C, Michelia odora litter. D, Acacia confusa litter. CT, control; +N, nitrogen addition.
Fig. 5 Litter enzyme activities under different treatments during decomposition in a subtropical forest (mean ± SD, n = 3). A, Castanopsis carlesii litter; B, Cunninghamia lanceolata litter; C, Michelia odora litter; D, Acacia confusa litter. CT, control; +N, nitrogen addition. AP, acid phosphatase; βG, β-1,4-glucosidase; CBH, cellobiohydrolase; NAG, β-1,4-N-acetylglucosaminidase; PEO, peroxidase; PHO, phenol oxidase. Different lowercase letters indicate significant differences among control and nitrogen addition treatments in the same enzyme (p < 0.05).
差异来源 Different source | βG | CBH | NAG | AP | PHO | PEO |
---|---|---|---|---|---|---|
L | 23.755*** | 35.348*** | 80.072*** | 82.374*** | 32.250*** | 97.990*** |
N | 27.609*** | 0.040 | 60.288*** | 7.380* | 4.684* | 256.223*** |
L × N | 21.797*** | 29.083*** | 149.790*** | 5.044* | 19.714*** | 15.464*** |
Table 5 Analysis (indicated by F values from ANOVA with two factors) of litter type, nitrogen addition and their interactions on litter enzyme activity in a subtropical forest
差异来源 Different source | βG | CBH | NAG | AP | PHO | PEO |
---|---|---|---|---|---|---|
L | 23.755*** | 35.348*** | 80.072*** | 82.374*** | 32.250*** | 97.990*** |
N | 27.609*** | 0.040 | 60.288*** | 7.380* | 4.684* | 256.223*** |
L × N | 21.797*** | 29.083*** | 149.790*** | 5.044* | 19.714*** | 15.464*** |
酶活性 Enzyme activity | 初始性质 Initial chemistry | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AP | βG | CBH | NAG | PEO | PHO | C | N | 可萃取物 Extractive (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) |
-1.98 | 0.661* | 0.511 | 0.372 | 0.297 | 0.533 | -0.817** | -0.530 | 0.871** | -0.724** | -0.848** |
Table 6 Pearson correlation coefficients (r) for litter mass loss rate versus cumulative enzyme activity and initial chemistry in the control plots after 2-year decomposition in a subtropical forest (n = 12, mean value used)
酶活性 Enzyme activity | 初始性质 Initial chemistry | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AP | βG | CBH | NAG | PEO | PHO | C | N | 可萃取物 Extractive (%) | 纤维素 Cellulose (%) | 木质素 Lignin (%) |
-1.98 | 0.661* | 0.511 | 0.372 | 0.297 | 0.533 | -0.817** | -0.530 | 0.871** | -0.724** | -0.848** |
[1] |
Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449.
DOI URL |
[2] | Allison SD, Vitousek PM (2004). Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica, 36, 285-296. |
[3] |
Aponte C, García LV, Marañón T (2012). Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time. Ecosystems, 15, 1204-1218.
DOI URL |
[4] |
Averill C, Waring B (2018). Nitrogen limitation of decomposition and decay: How can it occur? Global Change Biology, 24, 1417-1427.
DOI URL |
[5] |
Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133, 13-22.
DOI URL |
[6] |
Berg B, Davey MP, de Marco A, Emmett B, Faituri M, Hobbie SE, Johansson MB, Liu C, McClaugherty C, Norell L, Rutigliano FA, Vesterdal L, de Santo AV (2010). Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 100, 57-73.
DOI URL |
[7] |
Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365.
DOI URL |
[8] |
Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF (2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669.
DOI URL |
[9] | Chen ZF, Chen TQ, Huang WY (2016). Researches on soil physical properties of Acacia water conservation forest. Anhui Agricultural Science Bulletin, 22, 122-123. |
[ 陈志锋, 陈统泉, 黄伟毅 (2016). 台湾相思水源涵养林土壤物理性质研究. 安徽农学通报, 22, 122-123.] | |
[10] |
Cornwell WK, Cornelissen JHC, Kathryn A, Ellen D, Eviner VT, Oscar G, Hobbie SE, Bart H, Hiroko K, Natalia PH (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology letters, 11, 1065-1071.
DOI URL |
[11] |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DOI URL |
[12] |
Dong LL, Sun T, Berg B, Zhang LL, Zhang QQ, Wang ZW (2019). Effects of different forms of N deposition on leaf litter decomposition and extracellular enzyme activities in a temperate grassland. Soil Biology & Biochemistry, 134, 78-80.
DOI URL |
[13] |
Fang H, Mo JM, Peng SL, Li ZA, Wang H (2007). Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in Southern China. Plant and Soil, 297, 233-242.
DOI URL |
[14] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI URL |
[15] | Guan SY, Zhang DS, Zhang ZM (1986). Soil Enzyme and Its Research Method. Agricultural Press, Beijing. |
[ 关松荫, 张德生, 张志明 (1986). 土壤酶及其研究法. 农业出版社, 北京.] | |
[16] | Gundersen P, Rasmussen L (1990). Nitrification in forest soils: effects from nitrogen deposition on soil acidification and aluminum release. Reviews of environmental contamination and toxicology, 113, 1-45. |
[17] |
Güsewell S, Gessner MO (2009). N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 23, 211-219.
DOI URL |
[18] |
Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000). Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems, 3, 57-69.
DOI URL |
[19] |
Hirobe M, Sabang J, Bhatta BK, Takeda H (2004). Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: decomposition rates and initial litter chemistry. Journal of Forest Research, 9, 341-346.
DOI URL |
[20] |
Hirobe M, Sabang J, Bhatta BK, Takeda H (2004). Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: decomposition rates and initial litter chemistry. Journal of Forest Research, 9, 341-346.
DOI URL |
[21] |
Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012). Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 82, 389-405.
DOI URL |
[22] | Hong HB, Lin CF, Peng JQ, Chen YM, Wei CC, Yang YS (2017). Effects of phosphorus addition on fine root decomposition and enzyme activity of Castanopsis carlesii and Cunninghamia lanceolata in subtropical forest. Acta Ecologica Sinica, 37, 136-146. |
[ 洪慧滨, 林成芳, 彭建勤, 陈岳民, 魏翠翠, 杨玉盛 (2017). 磷添加对中亚热带米槠和杉木细根分解及其酶活性的影响. 生态学报, 37, 136-146.] | |
[23] | Hu S, Zhang Y, Shi RJ, Han SQ, Li H, Xu H (2013). Temporal variations of soil microbial biomass and enzyme activities during the secondary succession of primary broadleaved-Pinuskoraiensis forests in Changbai Mountains of Northeast China. Chinese Journal of Applied Ecology, 24, 366-372. |
[ 胡嵩, 张颖, 史荣久, 韩斯琴, 李慧, 徐慧 (2013). 长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化. 应用生态学报, 24, 366-372.] | |
[24] | Huang JN, Cheng Y, Yang HY, Zheng KZ, Wang JJ (2017). Analysis of the dynamic soil nutrients of a Castanopsis carlesii, Chinese Chestnut & Sightseeing Wood natural forest under simulated nitrogen deposition. Acta Ecologica Sinica, 37, 63-73. |
[ 黄锦铌, 程煜, 杨红玉, 郑凯舟, 王家骏 (2017). 模拟N沉降下三种林分土壤营养动态分析. 生态学报, 37, 63-73.] | |
[25] |
Keiser AD, Keiser DA, Strickland MS, Bradford MA (2014). Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology, 102, 603-609.
DOI URL |
[26] |
Knorr M, Frey SD, Curtis PS (2005). Nitrogen additions and litter decomposition: a meta-analysis. Ecology, 86, 3252-3257.
DOI URL |
[27] |
Lauber CL, Hamady M, Knight R, Fierer N (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111-5120.
DOI URL |
[28] | Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Chang CH (2015). Effects of snow cover on acid-soluble extractive and acid-insoluble residue during foliar litter decomposition in the alpine forest. Acta Ecologica Sinica, 35, 4687-4698. |
[ 李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 常晨晖 (2015). 不同厚度雪被对高山森林6种凋落物分解过程中酸溶性和酸不溶性组分的影响. 生态学报, 35, 4687-4698.] | |
[29] | Li XF, Han SJ, Hu YL, Zhao YT (2008). Decomposition of litter organic matter and its relations to C, N and P release in secondary conifer and broadleaf mixed forest in Changbai Mountains. Chinese Journal of Applied Ecology, 19, 245-251. |
[ 李雪峰, 韩士杰, 胡艳玲, 赵玉涛 (2008). 长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系. 应用生态学报, 19, 245-251.] | |
[30] | Lin CF, Peng JQ, Hong HB, Yang ZJ, Yang YS (2017). Effect of nitrogen and phosphorus availability on forest litter decomposition. Acta Ecologica Sinica, 37, 54-62. |
[ 林成芳, 彭建勤, 洪慧滨, 杨智杰, 杨玉盛 (2017). 氮、磷养分有效性对森林凋落物分解的影响研究进展. 生态学报, 37, 54-62.] | |
[31] | Lin WS, Yang ZJ, Guo JF, Huang YM, Wang JJ, Wu BB, Liu XF, Lyu LX, Chen GS (2013). Changes of soil dissolved organic carbon after converting natural Castanopsis carlesis forest into Cunninghamia lanceolata plantation in subtropical China. Journal of Subtropical Resources and Environment, 8, 41-47. |
[ 林伟盛, 杨智杰, 郭剑芬, 黄咏梅, 王家骏, 吴波波, 刘小飞, 吕理兴, 陈光水 (2013). 米槠天然林转变成杉木人工林后土壤可溶性有机碳的变化. 亚热带资源与环境学报, 8, 41-47.] | |
[32] | Lu Y, Li K, Liang Q, Li CR, Zhang CH (2019). Effects of leaf litter decomposition on bacterial community structure in the leaf litter of four dominant tree species in Mount Tai. Acta Ecologica Sinica, 39, 3175-3186. |
[ 路颖, 李坤, 梁强, 李传荣, 张彩虹 (2019). 泰山4种优势造林树种叶片凋落物分解对凋落物内细菌群落结构的影响. 生态学报, 39, 3175-3186.] | |
[33] |
Makita N, Fujii S (2015). Tree species effects on microbial respiration from decomposing leaf and fine root litter. Soil Biology & Biochemistry, 88, 39-47.
DOI URL |
[34] |
Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621-626.
DOI URL |
[35] |
Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331.
DOI URL |
[36] |
Palozzi JE, Lindo Z (2018). Are leaf litter and microbes team players? Interpreting home-field advantage decomposition dynamics. Soil Biology & Biochemistry, 124, 189-198.
DOI URL |
[37] |
Ramirez KS, Craine JM, Fierer N (2010). Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied. Soil Biology & Biochemistry, 42, 2336-2338.
DOI URL |
[38] |
Ryan MG, Melillo JM, Ricca A (1990). A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166-171.
DOI URL |
[39] |
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
DOI URL |
[40] |
Sariyildiz T, Anderson JM, Kucuk M (2005). Effects of tree species and topography on soil chemistry, litter quality, and decomposition in Northeast Turkey. Soil Biology & Biochemistry, 37, 1695-1706.
DOI URL |
[41] |
Sinsabaugh RL, Carreiro MM, Repert DA (2002). Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 60, 1-24.
DOI URL |
[42] |
Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR (2005). Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry, 75, 201-215.
DOI URL |
[43] |
Sinsabaugh RL, Weiland T, Linkins AE (1992). Enzymic and molecular analysis of microbial communities associated with lotic particulate organic matter. Freshwater Biology, 28, 393-404.
DOI URL |
[44] | Song Y, Gu XR, Yan HY, Mao WT, Wu XL, Wan YX (2014). Dynamics of microbes and enzyme activities during litter decomposition of Pinus massoniana forest in mid-subtropical area. Environmental Science, 35, 1151-1158. |
[ 宋影, 辜夕容, 严海元, 毛文韬, 吴雪莲, 万宇轩 (2014). 中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态. 环境科学, 35, 1151-1158.] | |
[45] |
Stursova M, Crenshaw CL, Sinsabaugh RL (2006). Microbial responses to long-term N deposition in a semiarid grassland. Microbial Ecology, 51, 90-98.
DOI URL |
[46] |
Tang SS, Yang WQ, Yin R, Xiong L, Wang HP, Wang B, Zhang Y, Peng YJ, Chen QS, Xu ZF (2014). Spatial characteristics in decomposition rate of foliar litter and controlling factors in Chinese forest ecosystems. Chinese Journal of Plant Ecology, 38, 529-539.
DOI URL |
[ 唐仕姗, 杨万勤, 殷睿, 熊莉, 王海鹏, 王滨, 张艳, 彭艳君, 陈青松, 徐振锋 (2014). 中国森林生态系统凋落叶分解速率的分布特征及其控制因子. 植物生态学报, 38, 529-539.]
DOI URL |
|
[47] |
Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019.
DOI URL |
[48] |
Tu LH, Hu HL, Hu TX, Zhang J, Luo SH, Dai HZ (2012). Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of West China. Chinese Journal of Plant Ecology, 36, 99-108.
DOI URL |
[ 涂利华, 胡红玲, 胡庭兴, 张健, 雒守华, 戴洪忠 (2012). 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应. 植物生态学报, 36, 99-108.]
DOI URL |
|
[49] |
van Huysen TL, Perakis SS, Harmon ME (2016). Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant and Soil, 406, 1-14.
DOI URL |
[50] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737-750. |
[51] |
Vivanco L, Austin AT (2011). Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina. Global Change Biology, 17, 1963-1974.
DOI URL |
[52] | Wang JJ, Cheng Y, Yang YS, Lin CF, Lin WS, Peng JQ (2014). Responses of leaf litter decomposition and nutrient release to simulated nitrogen deposition of Castanopsis carlesii. Journal of Fujian College of Forestry, 34, 113-119. |
[ 王家骏, 程煜, 杨玉盛, 林成芳, 林伟盛, 彭建勤 (2014). 米槠叶凋落物分解及养分释放对模拟N沉降的响应. 福建林学院学报, 34, 113-119.] | |
[53] |
Waring BG (2013). Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biology & Biochemistry, 64, 89-95.
DOI URL |
[54] |
Wieder WR, Cleveland CC, Townsend AR (2009). Controls over leaf litter decomposition in wet tropical forests. Ecology, 90, 3333-3341.
DOI URL |
[55] |
Yan JF, Wang L, Hu Y, Tsang YF, Zhang YN, Wu JH, Fu XH, Sun Y (2018). Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma, 319, 194-203.
DOI URL |
[56] | Yang L, Deng CC, Chen YM, He RL, Zhang J, Liu Y (2015). Relationships between decomposition rate of leaf litter and initial quality across the alpine timberline ecotone in Western Sichuan, China. Chinese Journal of Applied Ecology, 26, 3602-3610. |
[ 杨林, 邓长春, 陈亚梅, 和润莲, 张健, 刘洋 (2015). 川西高山林线交错带凋落叶分解速率与初始质量的关系. 应用生态学报, 26, 3602-3610.] | |
[57] |
Yang YS, Guo JF, Chen GS, Yin YF, Gao R, Lin CF (2009). Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil, 323, 153-162.
DOI URL |
[58] |
Yu Q, Duan L, Yu LF, Chen X, Si GY, Ke PP, Ye ZX, Mulder J (2018). Threshold and multiple indicators for nitrogen saturation in subtropical forests. Environmental Pollution, 241, 664-673.
DOI URL |
[59] | Zhang RQ, Sun ZJ, Wang C, Yuan TY (2008). Ecological process of leaf litter decomposition in tropical rainforest in Xishuangbanna, SW China. Ⅲ. Enzyme dynamics. Journal of Plant Ecology (Chinese Version), 32, 622-631. |
[ 张瑞清, 孙振钧, 王冲, 袁堂玉 (2008). 西双版纳热带雨林凋落叶分解的生态过程. Ⅲ. 酶活性动态. 植物生态学报, 32, 622-631.] | |
[60] |
Zhang XY, Wang W (2015). Control of climate and litter quality on leaf litter decomposition in different climatic zones. Journal of Plant Research, 128, 791-802.
DOI URL |
[61] |
Zheng JQ, Guo RH, Li DS, Zhang JH, Han SJ (2017). Nitrogen addition, drought and mixture effects on litter decomposition and nitrogen immobilization in a temperate forest. Plant and Soil, 416, 165-179.
DOI URL |
[62] | Zheng YX, Cao JL, Yang ZJ, Lin CF, Yang YS (2018). Impacts of nitrogen deposition on soil microbial community structure in subtropical natural evergreen broad-leaved forest relative to season. Acta Pedologica Sinica, 55, 1534-1544. |
[ 郑裕雄, 曹际玲, 杨智杰, 林成芳, 杨玉盛 (2018). 氮沉降对亚热带常绿阔叶天然林不同季节土壤微生物群落结构的影响. 土壤学报, 55, 1534-1544.] | |
[63] | Zhou SX, Huang CD, Xiang YB, Han BH, Xiao YX, Tang JD (2016 a). Effects of simulated nitrogen deposition on lignin and cellulose degradation of foliar litter in natural evergreen broad-leaved forest in Rainy Area of Western China. Chinese Journal of Applied Ecology, 27, 1368-1374. |
[ 周世兴, 黄从德, 向元彬, 韩博涵, 肖永翔, 唐剑东 (2016a). 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落物木质素和纤维素降解的影响. 应用生态学报, 27, 1368-1374.] | |
[64] | Zhou SX, Xiao YX, Xiang YB, Huang CD, Tang JD, Han BH, Luo C (2016b). Effects of simulated nitrogen deposition on the substrate quality of foliar litter in a natural evergreen broad-leaved forest in the Rainy Area of Western China. Acta Ecologica Sinica, 36, 7428-7435. |
[ 周世兴, 肖永翔, 向元彬, 黄从德, 唐剑东, 韩博涵, 罗超 (2016b). 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响. 生态学报, 36, 7428-7435.] | |
[65] |
Zhou XQ, Chen CR, Wang YF, Xu ZH, Han HY, Li LH, Wan SQ (2013). Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Science of The Total Environment, 444, 552-558.
DOI URL |
[66] |
Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ (2017). Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology & Biochemistry, 115, 433-441
DOI URL |
[1] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[3] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[4] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[5] | ZHANG Ya-Qi, PANG Dan-Bo, CHEN Lin, CAO Meng-Hao, HE Wen-Qiang, LI Xue-Bin. Response of ammonia oxidizing bacteria to nitrogen fertilization and plant litter input on desert steppe [J]. Chin J Plant Ecol, 2023, 47(5): 699-712. |
[6] | WAN Chun-Yan, YU Jun-Rui, ZHU Shi-Dan. Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species [J]. Chin J Plant Ecol, 2023, 47(10): 1386-1397. |
[7] | FENG Ji-Guang, ZHANG Qiu-Fang, YUAN Xia, ZHU Biao. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects [J]. Chin J Plant Ecol, 2022, 46(8): 855-870. |
[8] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of microbial nutrient limiting characteristics in rhizosphere and bulk soil of coniferous forests under nitrogen deposition in southwest mountain, China [J]. Chin J Plant Ecol, 2022, 46(4): 473-483. |
[9] | TIAN Lei, ZHU Yi, LI Xin, HAN Guo-Dong, REN Hai-Yan. Responses of plant phenology to warming and nitrogen addition under different precipitation conditions in a desert steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(3): 290-299. |
[10] | LI Dong, TIAN Qiu-Xiang, ZHAO Xiao-Xiang, LIN Qiao-Ling, YUE Peng-Yun, JIANG Qing-Hu, LIU Feng. Soil extracellular enzyme activities and their stoichiometric ratio in the alpine treeline ecotones in Gongga Mountain, China [J]. Chin J Plant Ecol, 2022, 46(2): 232-242. |
[11] | XIE Huan, ZHANG Qiu-Fang, ZENG Quan-Xin, ZHOU Jia-Cong, MA Ya-Pei, WU Yue, LIU Yuan-Yuan, LIN Hui-Ying, YIN Yun-Feng, CHEN Yue-Min. Effects of nitrogen addition on phosphorus transformation and decomposition fungi in seedling stage of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2022, 46(2): 220-231. |
[12] | WU Qiu-Xia, WU Fu-Zhong, HU Yi, KANG Zi-Jia, ZHANG Yao-Yi, YANG Jing, YUE Kai, NI Xiang-Yin, YANG Yu-Sheng. Difference in non-structural carbohydrates between fresh and senescent leaves of 11 tree species in a subtropical common-garden [J]. Chin J Plant Ecol, 2021, 45(7): 771-779. |
[13] | ZHU Wan-Wan, WANG Pan, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition [J]. Chin J Plant Ecol, 2021, 45(3): 309-320. |
[14] | ZHANG Hong-Jin, WANG Wei. Responses of ecosystem multifunctionality to global change: progress, problem and prospect [J]. Chin J Plant Ecol, 2021, 45(10): 1112-1126. |
[15] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn