Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (2): 232-242.DOI: 10.17521/cjpe.2021.0215
Special Issue: 生态化学计量; 青藏高原植物生态学:植物-土壤-微生物; 生物地球化学
• Research Articles • Previous Articles Next Articles
LI Dong1,2, TIAN Qiu-Xiang2, ZHAO Xiao-Xiang2,3, LIN Qiao-Ling2,3, YUE Peng-Yun2,3, JIANG Qing-Hu2, LIU Feng2,*()
Received:
2021-06-07
Accepted:
2021-09-15
Online:
2022-02-20
Published:
2021-10-15
Contact:
LIU Feng
Supported by:
LI Dong, TIAN Qiu-Xiang, ZHAO Xiao-Xiang, LIN Qiao-Ling, YUE Peng-Yun, JIANG Qing-Hu, LIU Feng. Soil extracellular enzyme activities and their stoichiometric ratio in the alpine treeline ecotones in Gongga Mountain, China[J]. Chin J Plant Ecol, 2022, 46(2): 232-242.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0215
Fig. 1 Schematic diagram of the sample sites in the alpine treeline ecotones in Gongga Mountain. F1, F2, F3 are the forest samples; S1, S2, S3 are the shrub samples; Treeline is the sample at the treeline. Altitude rises from F3 to S3 in ascending order.
森林(峨眉冷杉) Forest (Abies fabri) | 树线(峨眉冷杉) Treeline (Abies fabri) | 灌丛(毡毛栎叶杜鹃) Shrub (Rhododendron phaeochrysum var. levistratum) | 位置 Location | |||||||
---|---|---|---|---|---|---|---|---|---|---|
F3 | F2 | F1 | S1 | S2 | S3 | |||||
单位面积胸高断面积 BA (m2·hm-2) | 291.0 ± 49.0a | 235.7 ± 42.2ab | 171.1 ± 47.9abc | 110.1 ± 22.9c | 135.6 ± 17.3bc | 149.9 ± 14.7bc | 124.8 ± 19.2bc | ** | ||
叶片碳含量 Leaf carbon (C) content (mg·g-1) | 429.4 ± 35.5ab | 457.9 ± 41.1a | 431.0 ± 28.8a | 397.2 ± 25.0abc | 361.8 ± 34.3bc | 369.0 ± 26.1bc | 354.8 ± 20.2c | *** | ||
叶片氮含量 Leaf nitrogen (N) content (mg·g-1) | 13.2 ± 0.3a | 12.7 ± 0.8a | 13.1 ± 0.8a | 12.2 ± 0.5a | 8.6 ± 0.8b | 8.3 ± 0.5b | 7.9 ± 0.7b | *** | ||
叶片碳氮比 Leaf C:N | 32.5 ± 2.2c | 36.0 ± 1.4bc | 33.2 ± 2.2bc | 32.7 ± 2.4bc | 42.3 ± 2.6ab | 44.8 ± 3.4a | 45.8 ± 3.3a | *** | ||
叶片木质素:氮 Leaf lignin:N | 1.7 ± 0.1b | 1.9 ± 0.1ab | 2.0 ± 0.1ab | 2.1 ± 0.1a | 0.8 ± 0.1c | 0.7 ± 0.0c | 0.7 ± 0.1c | *** |
Table 1 Vegetation properties and leaf nutrient characteristics of dominant tree species at different locations in the treeline ecotone in Gongga Mountain (mean ± SE)
森林(峨眉冷杉) Forest (Abies fabri) | 树线(峨眉冷杉) Treeline (Abies fabri) | 灌丛(毡毛栎叶杜鹃) Shrub (Rhododendron phaeochrysum var. levistratum) | 位置 Location | |||||||
---|---|---|---|---|---|---|---|---|---|---|
F3 | F2 | F1 | S1 | S2 | S3 | |||||
单位面积胸高断面积 BA (m2·hm-2) | 291.0 ± 49.0a | 235.7 ± 42.2ab | 171.1 ± 47.9abc | 110.1 ± 22.9c | 135.6 ± 17.3bc | 149.9 ± 14.7bc | 124.8 ± 19.2bc | ** | ||
叶片碳含量 Leaf carbon (C) content (mg·g-1) | 429.4 ± 35.5ab | 457.9 ± 41.1a | 431.0 ± 28.8a | 397.2 ± 25.0abc | 361.8 ± 34.3bc | 369.0 ± 26.1bc | 354.8 ± 20.2c | *** | ||
叶片氮含量 Leaf nitrogen (N) content (mg·g-1) | 13.2 ± 0.3a | 12.7 ± 0.8a | 13.1 ± 0.8a | 12.2 ± 0.5a | 8.6 ± 0.8b | 8.3 ± 0.5b | 7.9 ± 0.7b | *** | ||
叶片碳氮比 Leaf C:N | 32.5 ± 2.2c | 36.0 ± 1.4bc | 33.2 ± 2.2bc | 32.7 ± 2.4bc | 42.3 ± 2.6ab | 44.8 ± 3.4a | 45.8 ± 3.3a | *** | ||
叶片木质素:氮 Leaf lignin:N | 1.7 ± 0.1b | 1.9 ± 0.1ab | 2.0 ± 0.1ab | 2.1 ± 0.1a | 0.8 ± 0.1c | 0.7 ± 0.0c | 0.7 ± 0.1c | *** |
土壤指标 Soil index | 森林 Forest | 树线 Treeline | 灌丛 Shrub | 位置 Location | ||||
---|---|---|---|---|---|---|---|---|
F3 | F2 | F1 | S1 | S2 | S3 | |||
有机碳含量 SOC content (mg·g-1) | 218.8 ± 34.0a | 185.8 ± 23.7ab | 171.1 ± 24.6ab | 173.9 ± 16.2ab | 139.9 ± 27.1b | 160.3 ± 7.0ab | 118.3 ± 12.3b | * |
全氮含量 TN content (mg·g-1) | 11.0 ± 1.9a | 8.7 ± 1.2ab | 9.1 ± 1.4ab | 8.5 ± 0.7ab | 7.4 ± 1.3ab | 7.9 ± 0.5ab | 6.0 ± 0.8b | * |
碳氮比 C:N | 20.2 ± 0.6a | 21.5 ± 1.5a | 18.9 ± 0.8a | 20.5 ± 0.5a | 19.0 ± 0.7a | 20.4 ± 0.7a | 19.9 ± 0.7a | NS |
可溶性有机碳含量 DOC content (μg·g-1) | 317.7 ± 53.3a | 3 109.8 ± 84.1a | 241.3 ± 29.8ab | 265.2 ± 42.5ab | 199.9 ± 56.6ab | 227.9 ± 18.8ab | 142.3 ± 23.4b | ** |
可溶性氮含量 DN content (μg·g-1) | 30.5 ± 2.3a | 34.1 ± 13.1a | 21.9 ± 3.7ab | 22.2 ± 4.1ab | 16.8 ± 3.0ab | 28.7 ± 7.7a | 11.6 ± 0.7b | ** |
可溶性碳氮比 DOC:DN | 10.4 ± 1.6a | 10.2 ± 0.8a | 11.3 ± 0.6a | 12.8 ± 2.0a | 11.4 ± 1.7a | 10.1 ± 2.4a | 12.2 ± 1.9a | NS |
铵态氮含量 NH4+-N content (μg·g-1) | 41.2 ± 11.4a | 40.5 ± 9.2a | 36.2 ± 6.9a | 36.8 ± 3.4a | 42.3 ± 15.0a | 48.1 ± 15.0a | 26.5 ± 6.3a | NS |
硝态氮含量 NO3--N content (μg·g-1) | 5.8 ± 0.5a | 5.6 ± 0.5a | 5.0 ± 0.4ab | 5.0 ± 0.5ab | 4.3 ± 0.5b | 4.5 ± 0.4ab | 3.8 ± 0.4b | *** |
pH | 4.0 ± 0.1b | 3.9 ± 0.1b | 4.3 ± 0.1a | 4.1 ± 0.1ab | 4.2 ± 0.1ab | 4.1 ± 0.1ab | 4.1 ± 0.1ab | * |
黏粒含量 Clay content (%) | 5.1 ± 0.8a | 4.9 ± 0.5a | 4.7 ± 0.9a | 3.9 ± 0.6a | 4.8 ± 0.8a | 4.3 ± 0.4a | 5.1 ± 0.6a | NS |
砂粒含量 Sand content (%) | 27.6 ± 6.2a | 28.1 ± 3.5a | 33.8 ± 7.6a | 37.3 ± 5.5a | 38.9 ± 3.8a | 33.8 ± 2.2a | 29.0 ± 4.1a | NS |
微生物生物量碳含量 MBC content (μg·g-1) | 2 905 ± 611a | 2 672 ± 203a | 2 141 ± 386a | 2 696 ± 323a | 2 242 ± 605a | 2 717 ± 142a | 1 859 ± 239a | NS |
Table 2 Soil physic-chemical properties at different locations in the treeline ecotone in Gongga Mountain (mean ± SE)
土壤指标 Soil index | 森林 Forest | 树线 Treeline | 灌丛 Shrub | 位置 Location | ||||
---|---|---|---|---|---|---|---|---|
F3 | F2 | F1 | S1 | S2 | S3 | |||
有机碳含量 SOC content (mg·g-1) | 218.8 ± 34.0a | 185.8 ± 23.7ab | 171.1 ± 24.6ab | 173.9 ± 16.2ab | 139.9 ± 27.1b | 160.3 ± 7.0ab | 118.3 ± 12.3b | * |
全氮含量 TN content (mg·g-1) | 11.0 ± 1.9a | 8.7 ± 1.2ab | 9.1 ± 1.4ab | 8.5 ± 0.7ab | 7.4 ± 1.3ab | 7.9 ± 0.5ab | 6.0 ± 0.8b | * |
碳氮比 C:N | 20.2 ± 0.6a | 21.5 ± 1.5a | 18.9 ± 0.8a | 20.5 ± 0.5a | 19.0 ± 0.7a | 20.4 ± 0.7a | 19.9 ± 0.7a | NS |
可溶性有机碳含量 DOC content (μg·g-1) | 317.7 ± 53.3a | 3 109.8 ± 84.1a | 241.3 ± 29.8ab | 265.2 ± 42.5ab | 199.9 ± 56.6ab | 227.9 ± 18.8ab | 142.3 ± 23.4b | ** |
可溶性氮含量 DN content (μg·g-1) | 30.5 ± 2.3a | 34.1 ± 13.1a | 21.9 ± 3.7ab | 22.2 ± 4.1ab | 16.8 ± 3.0ab | 28.7 ± 7.7a | 11.6 ± 0.7b | ** |
可溶性碳氮比 DOC:DN | 10.4 ± 1.6a | 10.2 ± 0.8a | 11.3 ± 0.6a | 12.8 ± 2.0a | 11.4 ± 1.7a | 10.1 ± 2.4a | 12.2 ± 1.9a | NS |
铵态氮含量 NH4+-N content (μg·g-1) | 41.2 ± 11.4a | 40.5 ± 9.2a | 36.2 ± 6.9a | 36.8 ± 3.4a | 42.3 ± 15.0a | 48.1 ± 15.0a | 26.5 ± 6.3a | NS |
硝态氮含量 NO3--N content (μg·g-1) | 5.8 ± 0.5a | 5.6 ± 0.5a | 5.0 ± 0.4ab | 5.0 ± 0.5ab | 4.3 ± 0.5b | 4.5 ± 0.4ab | 3.8 ± 0.4b | *** |
pH | 4.0 ± 0.1b | 3.9 ± 0.1b | 4.3 ± 0.1a | 4.1 ± 0.1ab | 4.2 ± 0.1ab | 4.1 ± 0.1ab | 4.1 ± 0.1ab | * |
黏粒含量 Clay content (%) | 5.1 ± 0.8a | 4.9 ± 0.5a | 4.7 ± 0.9a | 3.9 ± 0.6a | 4.8 ± 0.8a | 4.3 ± 0.4a | 5.1 ± 0.6a | NS |
砂粒含量 Sand content (%) | 27.6 ± 6.2a | 28.1 ± 3.5a | 33.8 ± 7.6a | 37.3 ± 5.5a | 38.9 ± 3.8a | 33.8 ± 2.2a | 29.0 ± 4.1a | NS |
微生物生物量碳含量 MBC content (μg·g-1) | 2 905 ± 611a | 2 672 ± 203a | 2 141 ± 386a | 2 696 ± 323a | 2 242 ± 605a | 2 717 ± 142a | 1 859 ± 239a | NS |
Fig. 2 Soil hydrolytic enzyme activities at different locations in the treeline ecotone in Gongga Mountain (mean ± SE). BG, β-1,4-glucosidase; CBH, cellobiohydrolase; LAP, leucine aminopeptidase; NAG, β-N-acetyl glucosaminidase; XYL, xylosidase. F1, F2, F3 are forest samples; S1, S2, S3 are shrub samples; Treeline is the sample at the tree line. Different lowercase letters indicate significant differences (p < 0.05) among different locations or vegetation types in the treeline ecotone.
Fig. 3 Soil oxidative enzyme activities at different locations in the treeline ecotone in Gongga Mountain (mean ± SE). CAT, Catalase; POX, phenol oxidase. F1, F2, F3 are forest samples; S1, S2, S3 are shrub samples; Treeline is the sample at the tree line. Different lowercase letters indicate significant differences (p < 0.05) among different locations or vegetation types in the treeline ecotone.
Fig. 4 Soil extracellular enzyme stoichiometry at different locations in the treeline ecotone in Gongga Mountain (mean ± SE). CQI1, CQI2 indicate carbon quality index; Ecn1, Ecn2 indicate microbial carbon and nitrogen enzyme activity stoichiometry ratios. F1, F2, F3 are the forest samples; S1, S2, S3 are the shrub samples; Treeline is the sample at the tree line. Different lowercase letters indicate significant differences (p < 0.05) between different locations or vegetation types in the treeline ecotone.
变量 Variable | BG | CBH | XYL | LAP | NAG | POX | CAT | Ecn1 | Ecn2 | CQI1 | CQI2 |
---|---|---|---|---|---|---|---|---|---|---|---|
SOC | 0.62*** | 0.52** | 0.55*** | 0.37* | 0.51** | 0.38* | 0.49** | -0.15 | -0.15 | -0.31 | -0.51** |
TN | 0.63*** | 0.52** | 0.62*** | 0.32 | 0.44** | 0.45** | 0.57*** | -0.05 | -0.13 | -0.26 | -0.49** |
C:N | -0.09 | -0.09 | -0.21 | -0.23 | -0.07 | -0.24 | -0.25 | 0.11 | 0.31 | -0.17 | 0.01 |
DOC | 0.43** | 0.32 | 0.34 | 0.18 | 0.36* | 0.37* | 0.50** | -0.11 | -0.08 | -0.07 | -0.25 |
DN | 0.16 | 0.04 | 0.25 | 0.14 | 0.12 | 0.02 | 0.18 | -0.14 | -0.12 | -0.21 | -0.08 |
DOC:DN | 0.43* | 0.46** | 0.15 | 0.23 | 0.24 | 0.51** | 0.56*** | 0.12 | -0.08 | 0.07 | -0.24 |
MBC | 0.52** | 0.34* | 0.48** | 0.25 | 0.55*** | 0.23 | 0.29 | -0.29 | -0.04 | -0.30 | -0.50** |
NO3--N | 0.59*** | 0.47** | 0.42* | 0.48** | 0.27 | 0.34 | 0.51** | -0.06 | -0.29 | -0.21 | -0.43** |
NH4+-N | 0.04 | -0.21 | -0.07 | -0.02 | -0.04 | -0.15 | -0.19 | -0.01 | -0.06 | -0.19 | -0.12 |
pH | 0.09 | 0.27 | 0.07 | 0.03 | 0.18 | 0.29 | 0.41* | -0.04 | 0.01 | 0.19 | 0.05 |
Clay | 0.08 | 0.01 | 0.10 | 0.02 | -0.23 | -0.01 | 0.09 | 0.22 | -0.11 | -0.03 | -0.01 |
Leaf C:N | -0.04 | -0.05 | 0.23 | -0.38* | 0.07 | -0.25 | -0.20 | 0.03 | 0.45** | -0.13 | -0.02 |
Leaf lignin:N | 0.10 | 0.20 | -0.32 | 0.48** | -0.09 | 0.43** | 0.07 | 0.06 | -0.50** | 0.35* | -0.06 |
CQI1 | -0.52** | -0.38* | -0.53*** | -0.15 | -0.36* | 0.39* | 0.00 | 0.04 | -0.14 | ||
CQI2 | -0.90*** | -0.76*** | -0.58*** | -0.38* | -0.63*** | -0.29 | -0.22 | 0.00 | -0.04 |
Table 3 Spearman’s correlation coefficients between environmental variables and enzyme activities and enzyme stoichiometry in the treeline ecotone in Gongga Mountain
变量 Variable | BG | CBH | XYL | LAP | NAG | POX | CAT | Ecn1 | Ecn2 | CQI1 | CQI2 |
---|---|---|---|---|---|---|---|---|---|---|---|
SOC | 0.62*** | 0.52** | 0.55*** | 0.37* | 0.51** | 0.38* | 0.49** | -0.15 | -0.15 | -0.31 | -0.51** |
TN | 0.63*** | 0.52** | 0.62*** | 0.32 | 0.44** | 0.45** | 0.57*** | -0.05 | -0.13 | -0.26 | -0.49** |
C:N | -0.09 | -0.09 | -0.21 | -0.23 | -0.07 | -0.24 | -0.25 | 0.11 | 0.31 | -0.17 | 0.01 |
DOC | 0.43** | 0.32 | 0.34 | 0.18 | 0.36* | 0.37* | 0.50** | -0.11 | -0.08 | -0.07 | -0.25 |
DN | 0.16 | 0.04 | 0.25 | 0.14 | 0.12 | 0.02 | 0.18 | -0.14 | -0.12 | -0.21 | -0.08 |
DOC:DN | 0.43* | 0.46** | 0.15 | 0.23 | 0.24 | 0.51** | 0.56*** | 0.12 | -0.08 | 0.07 | -0.24 |
MBC | 0.52** | 0.34* | 0.48** | 0.25 | 0.55*** | 0.23 | 0.29 | -0.29 | -0.04 | -0.30 | -0.50** |
NO3--N | 0.59*** | 0.47** | 0.42* | 0.48** | 0.27 | 0.34 | 0.51** | -0.06 | -0.29 | -0.21 | -0.43** |
NH4+-N | 0.04 | -0.21 | -0.07 | -0.02 | -0.04 | -0.15 | -0.19 | -0.01 | -0.06 | -0.19 | -0.12 |
pH | 0.09 | 0.27 | 0.07 | 0.03 | 0.18 | 0.29 | 0.41* | -0.04 | 0.01 | 0.19 | 0.05 |
Clay | 0.08 | 0.01 | 0.10 | 0.02 | -0.23 | -0.01 | 0.09 | 0.22 | -0.11 | -0.03 | -0.01 |
Leaf C:N | -0.04 | -0.05 | 0.23 | -0.38* | 0.07 | -0.25 | -0.20 | 0.03 | 0.45** | -0.13 | -0.02 |
Leaf lignin:N | 0.10 | 0.20 | -0.32 | 0.48** | -0.09 | 0.43** | 0.07 | 0.06 | -0.50** | 0.35* | -0.06 |
CQI1 | -0.52** | -0.38* | -0.53*** | -0.15 | -0.36* | 0.39* | 0.00 | 0.04 | -0.14 | ||
CQI2 | -0.90*** | -0.76*** | -0.58*** | -0.38* | -0.63*** | -0.29 | -0.22 | 0.00 | -0.04 |
Fig. 5 Bray-Curtis-based non-metric multidimensional scaling (NMDS) of the soil enzyme activities (A) and enzyme stoichiometry (B) in the treeline ecotone in Gongga Mountain. The stress function can test the merit of NMDS analysis results. It is generally considered that stress < 0.2 can be represented by a two-dimensional point diagram of NMDS, and its graph has some interpretative significance; when stress < 0.1, it can be considered a good ranking. Only significant factors (p < 0.05) were showed in the figure. BG, β-1,4-glucosidase; CAT, catalase; CBH, cellobiohydrolase; DN, soil dissolved nitrogen content; DOC, soil dissolved organic carbon content; LAP, leucine aminopeptidase; Leaf C:N, carbon to nitrogen ratio of leaves of dominant species; Lignin:N, leaf lignin to nitrogen ratio; MBC, microbial biomass carbon content; NAG, β-N-acetyl glucosaminidase; NO3--N, nitrate nitrogen content; POX, phenol oxidase; SOC, soil organic carbon content; TN, total nitrogen content; XYL, xylosidase. Ecn1, Ecn2 indicate microbial carbon and nitrogen enzyme activity stoichiometry ratios; CQI1, CQI2 indicate carbon quality index.
[1] |
Adair EC, Parton WJ, del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burke IC, Hart SC (2008). Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Global Change Biology, 14, 2636-2660.
DOI URL |
[2] | Allison SD, Gartner TB, Holland K, Weintraub M, Sinsabaugh RL (2007). Soil enzymes: linking proteomics and ecological processes//Hurst CJ, Crawford RL, Garland JL, Lispon DA, Mills AL, Stetzenbach LD. Manual of Environmental Microbiology. 3rd ed. American Society of Microbiology Press, Washington D.C. 704-711. |
[3] |
Banerjee S, Bora S, Thrall PH, Richardson AE (2016). Soil C and N as causal factors of spatial variation in extracellular enzyme activity across grassland-woodland ecotones. Applied Soil Ecology, 105, 1-8.
DOI URL |
[4] |
Bhardwaj N, Kumar B, Verma P (2019). A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6, 40. DOI: 10.1186/s40643-019-0276-2.
DOI URL |
[5] |
Bloom AJ, Chapin III FS, Mooney HA (1985). Resource limitation in plants-An economic analogy. Annual Review of Ecology and Systematics, 16, 363-392.
DOI URL |
[6] | Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014). Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology & Biochemistry, 68, 252-262. |
[7] |
Caldwell BA (2005). Enzyme activities as a component of soil biodiversity: a review. Pedobiologia, 49, 637-644.
DOI URL |
[8] | Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365. |
[9] |
Crim PM, Cumming JR (2020). Extracellular soil enzyme activities in high-elevation mixed red spruce forests in central Appalachia, USA. Forests, 11, 468. DOI: 10.3390/ f11040468.
DOI URL |
[10] |
Cui YX, Fang LC, Guo XB, Wang X, Zhang YJ, Li PF, Zhang XC (2018). Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biology & Biochemistry, 116, 11-21.
DOI URL |
[11] |
German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011). Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology & Biochemistry, 43, 1387-1397.
DOI URL |
[12] |
Hall SJ, Huang W, Timokhin VI, Hammel KE (2020). Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology, 101, e03113. DOI: 10.1002/ecy. 3113.
DOI |
[13] |
He QQ, Wu YH, Bing HJ, Zhou J, Wang JP (2020). Vegetation type rather than climate modulates the variation in soil enzyme activities and stoichiometry in subalpine forests in the eastern Tibetan Plateau. Geoderma, 374, 114424. DOI: 10.1016/j.geoderma.2020.114424.
DOI URL |
[14] |
Hernández DL, Hobbie SE (2010). The effects of substrate composition, quantity, and diversity on microbial activity. Plant and Soil, 335, 397-411.
DOI URL |
[15] |
Hill BH, Elonen CM, Herlihy AT, Jicha TM, Serenbetz G (2018). Microbial ecoenzyme stoichiometry, nutrient limitation, and organic matter decomposition in wetlands of the conterminous United States. Wetlands Ecology and Management, 26, 425-439.
DOI URL |
[16] | Jiang J, Song MH (2010). Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chinese Journal of Plant Ecology, 34, 979-988. |
[ 蒋婧, 宋明华 (2010). 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 34, 979-988.]
DOI |
|
[17] |
Kivlin SN, Treseder KK (2014). Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition. Biogeochemistry, 117, 23-37.
DOI URL |
[18] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
PMID |
[19] |
Liu JB, Chen J, Chen GS, Guo JF, Li YQ (2020). Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests. PLOS ONE, 15, e0220599. DOI: 10.1371/journal.pone.0220599.
DOI URL |
[20] |
Min K, Freeman C, Kang H, Choi SU (2015). The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. BioMed Research International, 2015, 825098. DOI: 10.1155/2015/825098.
DOI |
[21] |
Müller M, Oelmann Y, Schickhoff U, Böhner J, Scholten T (2017). Himalayan treeline soil and foliar C:N:P stoichiometry indicate nutrient shortage with elevation. Geoderma, 291, 21-32.
DOI URL |
[22] |
Okubo A, Matsusaka M, Sugiyama S (2016). Impacts of root symbiotic associations on interspecific variation in sugar exudation rates and rhizosphere microbial communities: a comparison among four plant families. Plant and Soil, 399, 345-356.
DOI URL |
[23] |
Peng XQ, Wang W (2016). Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biology & Biochemistry, 98, 74-84.
DOI URL |
[24] | Ran F, Liang YM, Yang Y, Yang Y, Wang GX (2014). Spatial-temporal dynamics of an Abies fabri population near the alpine treeline in the Yajiageng area of Gongga Mountain, China. Acta Ecologica Sinica, 34, 6872-6878. |
[ 冉飞, 梁一鸣, 杨燕, 杨阳, 王根绪 (2014). 贡嘎山雅家埂峨眉冷杉林线种群的时空动态. 生态学报, 34, 6872-6878.] | |
[25] |
Rumpel C, Kögel-Knabner I (2011). Deep soil organic matter -A key but poorly understood component of terrestrial C cycle. Plant and Soil, 338, 143-158.
DOI URL |
[26] |
Sagar R, Singh JS (2006). Tree density, basal area and species diversity in a disturbed dry tropical forest of northern India: implications for conservation. Environmental Conservation, 33, 256-262.
DOI URL |
[27] |
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
DOI URL |
[28] | Shi XJ, Pan JJ, Chen JY, Yang ZQ, Zhang LM, Sun B, Li ZP (2009). Effects of different types of litters on soil organic carbon mineralization. Environmental Science, 30, 1832-1837. |
[ 史学军, 潘剑君, 陈锦盈, 杨志强, 张黎明, 孙波, 李忠佩 (2009). 不同类型凋落物对土壤有机碳矿化的影响. 环境科学, 30, 1832-1837.] | |
[29] |
Sigdel SR, Liang E, Wang Y, Dawadi B, Camarero JJ (2020). Tree-to-tree interactions slow down Himalayan treeline shifts as inferred from tree spatial patterns. Journal of Biogeography, 47, 1816-1826.
DOI URL |
[30] |
Sinsabaugh RL, Follstad Shah JJ (2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313-343.
DOI URL |
[31] |
Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798.
DOI URL |
[32] |
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, et al. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
DOI PMID |
[33] |
Tedersoo L, Bahram M (2019). Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biological Reviews of the Cambridge Philosophical Society, 94, 1857-1880.
DOI PMID |
[34] |
Thevenot M, Dignac MF, Rumpel C (2010). Fate of lignins in soils: a review. Soil Biology & Biochemistry, 42, 1200-1211.
DOI URL |
[35] | Wang B, Xue S, Liu GB, Zhang GH, Li G, Ren ZP (2012). Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, Northwest China. Catena, 92, 186-195. |
[36] |
Xu ZW, Yu GR, Zhang XY, He NP, Wang QF, Wang SZ, Wang RL, Zhao N, Jia YL, Wang CY (2017). Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology & Biochemistry, 104, 152-163.
DOI URL |
[37] |
Yin R, Deng H, Wang HL, Zhang B (2014). Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China. Catena, 115, 96-103.
DOI URL |
[38] |
Zeglin LH, Kluber LA, Myrold DD (2013). The importance of amino sugar turnover to C and N cycling in organic horizons of old-growth Douglas-fir forest soils colonized by ectomycorrhizal mats. Biogeochemistry, 112, 679-693.
DOI URL |
[39] |
Zhang Y, Li C, Wang ML (2019). Linkages of C:N:P stoichiometry between soil and leaf and their response to climatic factors along altitudinal gradients. Journal of Soils and Sediments, 19, 1820-1829.
DOI |
[40] |
Zheng HF, Liu Y, Zhang J, Chen YM, Yang L, Li HJ, Wang LF (2018). Factors influencing soil enzyme activity in China’s forest ecosystems. Plant Ecology, 219, 31-44.
DOI URL |
[41] |
Zhou LH, Liu SS, Shen HH, Zhao MY, Xu LC, Xing AJ, Fang JY (2020). Soil extracellular enzyme activity and stoichiometry in Chinaʼs forests. Functional Ecology, 34, 1461-1471.
DOI URL |
[42] |
Zuo YP, Li JP, Zeng H, Wang W (2018). Vertical pattern and its driving factors in soil extracellular enzyme activity and stoichiometry along mountain grassland belts. Biogeochemistry, 141, 23-39.
DOI URL |
[1] | DENG Wen-Jie, WU Hua-Zheng, LI Tian-Xiang, ZHOU Li-Na, HU Ren-Yong, JIN Xin-Jie, ZHANG Yong-Pu, ZHANG Yong-Hua, LIU Jin-Liang. Main vegetation types and characteristics in Dongtou National Marine Park, Zhejiang, China [J]. Chin J Plant Ecol, 2024, 48(2): 254-268. |
[2] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[3] | WANG Guo-Hong, GUO Ke, XIE Zong-Qiang, TANG Zhi-Yao, JIANG Yan-Ling, FANG Jing-Yun. Interpretations, supplements, and modifications of some protocols for compiling Vegegraphy of China [J]. Chin J Plant Ecol, 2022, 46(3): 368-372. |
[4] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[5] | Yan-Fang LIU, Weng-Ying WANG, Nan-Ji SUO, Hua-Kun ZHOU, Xu-Feng MAO, Shi-Xiong WANG, Zhe CHEN. Relationship between plant community types and soil nematode communities in Haibei, Qinghai, China [J]. Chin J Plant Ecol, 2022, 46(1): 27-39. |
[6] | ZHANG Huan, ZHANG Yun-Ling, ZHANG Yan-Cai, YAN Ping. Main plant communities and characteristics of Desert Grassland Nature Reserve in Qitai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(8): 918-924. |
[7] | MOU Li, WU Lin, LIU Xue-Fei, LI Xiao-Ling, WANG Han, WU Hao, YU Yu-Rong, DU Sheng-Lan. Characteristics and environmental factors controlling methane emission from a Sphagnum bog with different plant cover types in a subalpine area, southwest of Hubei, China [J]. Chin J Plant Ecol, 2021, 45(2): 131-143. |
[8] | HE Lu-Yan, HOU Man-Fu, TANG Wei, LIU Yu-Ting, ZHAO Jun. Vegetation types and their characteristics in karst forests of Junzi Mountain in East Yunnan, China [J]. Chin J Plant Ecol, 2021, 45(12): 1380-1390. |
[9] | ZHOU Xiong, SUN Peng-Sen, ZHANG Ming-Fang, LIU Shi-Rong. Spatio-temporal characteristics of vegetation water use efficiency and their relationships with climatic factors in alpine and subalpine area of southwestern China [J]. Chin J Plant Ecol, 2020, 44(6): 628-641. |
[10] | FANG Jing-Yun, GUO Ke, WANG Guo-Hong, TANG Zhi-Yao, XIE Zong-Qiang, SHEN Ze-Hao, WANG Ren-Qing, QIANG Sheng, LIANG Cun-Zhu, DA Liang-Jun, YU Dan. Vegetation classification system and classification of vegetation types used for the compilation of vegetation of China [J]. Chin J Plant Ecol, 2020, 44(2): 96-110. |
[11] | Yong-Chang SONG, En-Rong YAN, Kun SONG. An update of the vegetation classification in China [J]. Chin J Plan Ecolo, 2017, 41(2): 269-278. |
[12] | Wen-Xuan XU, Wei-Kang YANG, Chi ZHANG, Mu-Yang WANG. Main plant communities and characteristics of Kalamaili Ungulate Nature Reserve in east Junggar Basin [J]. Chin J Plant Ecol, 2016, 40(5): 502-507. |
[13] | CHEN Ya-Mei, HE Run-Lian, DENG Chang-Chun, LIU Yang, YANG Wan-Qin, ZHANG Jian. Litter cellulolytic enzyme activities in alpine timberline ecotone of western Sichuan [J]. Chin J Plant Ecol, 2014, 38(4): 334-342. |
[14] | WANG Dai-Hua, WANG You-Fang, ZUO Qin, LI Min, WU Wen-Ying, HUANG Jian-Hua, ZHAO Ming-Shui. Bryophyte species diversity in seven typical forests of the West Tianmu Mountain in Zhe- jiang, China [J]. Chin J Plant Ecol, 2012, 36(6): 550-559. |
[15] | YU Zhen, SUN Peng-Sen, LIU Shi-Rong. Phenological change of main vegetation types along a North-South Transect of Eastern China [J]. Chin J Plant Ecol, 2010, 34(3): 316-329. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn