Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (4): 334-342.DOI: 10.3724/SP.J.1258.2014.00030
Special Issue: 生态化学计量
Previous Articles Next Articles
CHEN Ya-Mei, HE Run-Lian, DENG Chang-Chun, LIU Yang*(), YANG Wan-Qin, ZHANG Jian
Received:
2013-11-18
Accepted:
2014-02-07
Online:
2014-11-18
Published:
2014-04-08
Contact:
LIU Yang
CHEN Ya-Mei, HE Run-Lian, DENG Chang-Chun, LIU Yang, YANG Wan-Qin, ZHANG Jian. Litter cellulolytic enzyme activities in alpine timberline ecotone of western Sichuan[J]. Chin J Plant Ecol, 2014, 38(4): 334-342.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00030
植被类型 Vegetation type | 凋落物含水量 Litter water content (%) | 凋落物表层温度 Surface litter temperature (℃) | 雪被厚度 Snow cover thickness (cm) |
---|---|---|---|
高山草甸 Alpine meadow | 41 ± 5a | 1.8 ± 2.5a | 0.0 ± 0.0a |
高山灌丛 Alpine shrub | 62 ± 7b | 3.9 ± 6.4b | 4.1 ± 2.2b |
针叶林 Coniferous forest | 55 ± 1b | -0.3 ± 0.3a | 1.3 ± 1.0a |
Table 1 Litter water content, surface litter temperature, and snow cover thickness in the alpine timberline ecotone (mean ± SD)
植被类型 Vegetation type | 凋落物含水量 Litter water content (%) | 凋落物表层温度 Surface litter temperature (℃) | 雪被厚度 Snow cover thickness (cm) |
---|---|---|---|
高山草甸 Alpine meadow | 41 ± 5a | 1.8 ± 2.5a | 0.0 ± 0.0a |
高山灌丛 Alpine shrub | 62 ± 7b | 3.9 ± 6.4b | 4.1 ± 2.2b |
针叶林 Coniferous forest | 55 ± 1b | -0.3 ± 0.3a | 1.3 ± 1.0a |
变量 Variable | 凋落物层次 Litter layer | 植被类型 Vegetation type | 凋落物层次×植被类型 Litter layer × Vegetation type | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
羧甲基纤维素酶 β-1,4-endoglucanase | 1 | 58.669 | < 0.001 | 2 | 8.762 | < 0.010 | 2 | 0.222 | 0.803 | ||
微晶纤维素酶 β-1,4-exoglucanase | 1 | 0.069 | 0.795 | 2 | 0.207 | 0.815 | 2 | 1.724 | 0.200 | ||
β-葡萄糖苷酶 β-1,4-glucosidase | 1 | 55.989 | < 0.001 | 2 | 2.241 | 0.128 | 2 | 2.085 | 0.146 | ||
纤维素含量 Cellulose content | 1 | 84.515 | < 0.001 | 2 | 1.272 | 0.299 | 2 | 10.024 | 0.001 | ||
C含量 C content | 1 | 92.313 | < 0.001 | 2 | 32.110 | < 0.010 | 2 | 11.135 | < 0.010 | ||
N含量 N content | 1 | 5.290 | 0.030 | 2 | 16.722 | < 0.010 | 2 | 12.378 | < 0.010 | ||
P含量 P content | 1 | 1.425 | 0.244 | 2 | 8.302 | 0.002 | 2 | 9.394 | 0.001 | ||
C:N | 1 | 47.476 | < 0.001 | 2 | 12.932 | < 0.010 | 2 | 8.864 | 0.001 | ||
C:P | 1 | 31.050 | < 0.001 | 2 | 13.771 | < 0.001 | 2 | 13.308 | < 0.001 | ||
N:P | 1 | 3.149 | 0.089 | 2 | 14.313 | < 0.001 | 2 | 31.118 | < 0.001 |
Table 2 Results of two-way ANOVA for testing the main effects of vegetation types (coniferous forest, alpine shrub and alpine meadow), litter layers (humus layer, fresh litter layer and fermentation layer) and their interactions on cellulolytic enzyme activities and litter qualities
变量 Variable | 凋落物层次 Litter layer | 植被类型 Vegetation type | 凋落物层次×植被类型 Litter layer × Vegetation type | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
羧甲基纤维素酶 β-1,4-endoglucanase | 1 | 58.669 | < 0.001 | 2 | 8.762 | < 0.010 | 2 | 0.222 | 0.803 | ||
微晶纤维素酶 β-1,4-exoglucanase | 1 | 0.069 | 0.795 | 2 | 0.207 | 0.815 | 2 | 1.724 | 0.200 | ||
β-葡萄糖苷酶 β-1,4-glucosidase | 1 | 55.989 | < 0.001 | 2 | 2.241 | 0.128 | 2 | 2.085 | 0.146 | ||
纤维素含量 Cellulose content | 1 | 84.515 | < 0.001 | 2 | 1.272 | 0.299 | 2 | 10.024 | 0.001 | ||
C含量 C content | 1 | 92.313 | < 0.001 | 2 | 32.110 | < 0.010 | 2 | 11.135 | < 0.010 | ||
N含量 N content | 1 | 5.290 | 0.030 | 2 | 16.722 | < 0.010 | 2 | 12.378 | < 0.010 | ||
P含量 P content | 1 | 1.425 | 0.244 | 2 | 8.302 | 0.002 | 2 | 9.394 | 0.001 | ||
C:N | 1 | 47.476 | < 0.001 | 2 | 12.932 | < 0.010 | 2 | 8.864 | 0.001 | ||
C:P | 1 | 31.050 | < 0.001 | 2 | 13.771 | < 0.001 | 2 | 13.308 | < 0.001 | ||
N:P | 1 | 3.149 | 0.089 | 2 | 14.313 | < 0.001 | 2 | 31.118 | < 0.001 |
Fig. 1 Cellulolytic enzyme activities in different litter layers in the alpine timberline ecotone (mean ± SD). H, humus layer; LF, fresh litter layer and fermentation layer. F, coniferous forest; M, alpine meadow; S, alpine shrub. Different lower-case letters indicate significant differences between the H layer and the LF layer of litter within the same vegetation type (t-test, p < 0.05). Different capital letters indicate significant differences among vegetation types within the same litter layer ( p < 0.05).
凋落物层次 Litter layer | 植被类型 Vegetation type | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C:N | C:P | N:P | 纤维素 Cellulose (mg·g-1) |
---|---|---|---|---|---|---|---|---|
LF | M | 381.5 ± 23.5aA | 8.7 ± 1.5aA | 1.0 ± 0.2aA | 45.3 ± 9.1aA | 413.0 ± 113.4aA | 9.0 ± 0.9aA | 253.4 ± 64.1aA |
S | 387.3 ± 78.6aA | 13.5 ± 2.4aB | 1.6 ± 0.3aB | 29.2 ± 6.3aB | 238.4 ± 33.8aB | 8.3 ± 0.9aA | 167.3 ± 34.5aB | |
F | 448.8 ± 37.5aA | 9.0 ± 1.1aA | 1.1 ± 0.2aA | 50.7 ± 9.7aA | 410.1 ± 88.2aA | 8.1 ± 0.3aA | 151.6 ± 49.1aBC | |
H | M | 118.3 ± 28.9bA | 6.4 ± 1.5aA | 1.2 ± 0.1aA | 18.6 ± 2.0bA | 97.2 ± 12.6bA | 5.3 ± 0.8bA | 25.1 ± 7.7bA |
S | 244.5 ± 47.6bB | 9.3 ± 1.7bB | 1.2 ± 0.2bA | 26.2 ± 1.4aB | 211.8 ± 39.2aB | 8.1 ± 1.2aB | 67.9 ± 29.0bB | |
F | 375.5 ± 34.6aC | 11.5 ± 0.5bC | 1.1 ± 0.1aA | 32.7 ± 4.2aC | 339.9 ± 62.8aC | 10.4 ± 1.0bC | 72.4 ± 34.2bBC |
Table 3 Quality characteristics of different litter layers in the alpine timberline ecotone (mean ± SD)
凋落物层次 Litter layer | 植被类型 Vegetation type | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C:N | C:P | N:P | 纤维素 Cellulose (mg·g-1) |
---|---|---|---|---|---|---|---|---|
LF | M | 381.5 ± 23.5aA | 8.7 ± 1.5aA | 1.0 ± 0.2aA | 45.3 ± 9.1aA | 413.0 ± 113.4aA | 9.0 ± 0.9aA | 253.4 ± 64.1aA |
S | 387.3 ± 78.6aA | 13.5 ± 2.4aB | 1.6 ± 0.3aB | 29.2 ± 6.3aB | 238.4 ± 33.8aB | 8.3 ± 0.9aA | 167.3 ± 34.5aB | |
F | 448.8 ± 37.5aA | 9.0 ± 1.1aA | 1.1 ± 0.2aA | 50.7 ± 9.7aA | 410.1 ± 88.2aA | 8.1 ± 0.3aA | 151.6 ± 49.1aBC | |
H | M | 118.3 ± 28.9bA | 6.4 ± 1.5aA | 1.2 ± 0.1aA | 18.6 ± 2.0bA | 97.2 ± 12.6bA | 5.3 ± 0.8bA | 25.1 ± 7.7bA |
S | 244.5 ± 47.6bB | 9.3 ± 1.7bB | 1.2 ± 0.2bA | 26.2 ± 1.4aB | 211.8 ± 39.2aB | 8.1 ± 1.2aB | 67.9 ± 29.0bB | |
F | 375.5 ± 34.6aC | 11.5 ± 0.5bC | 1.1 ± 0.1aA | 32.7 ± 4.2aC | 339.9 ± 62.8aC | 10.4 ± 1.0bC | 72.4 ± 34.2bBC |
纤维素酶种类 Cellulose sort | 凋落物层次 Litter layer | C | N | P | C:N | C:P | N:P | 纤维素Cellulose |
---|---|---|---|---|---|---|---|---|
羧甲基纤维素酶 β-1,4-endoglucanase | LF | 0.206 | 0.082 | 0.072 | 0.116 | 0.001 | -0.176 | -0.586* |
微晶纤维素酶 β-1,4-exoglucanase | LF | -0.131 | 0.605* | 0.573* | -0.545* | -0.491 | 0.009 | -0.079 |
β-葡萄糖苷酶 β-1,4-glucosidase | LF | -0.381 | 0.696** | 0.557* | -0.647** | -0.601* | 0.121 | -0.356 |
羧甲基纤维素酶 β-1,4-endoglucanase | H | 0.801** | 0.752** | 0.100 | -0.002 | -0.132 | -0.403 | 0.535* |
微晶纤维素酶 β-1,4-exoglucanase | H | 0.449 | 0.370 | 0.382 | -0.120 | -0.113 | 0.047 | 0.531* |
β-葡萄糖苷酶 β-1,4-glucosidase | H | 0.626* | 0.610* | 0.289 | -0.141 | -0.220 | -0.279 | 0.405 |
Table 4 Correlations between cellulolytic enzyme activities and litter quality
纤维素酶种类 Cellulose sort | 凋落物层次 Litter layer | C | N | P | C:N | C:P | N:P | 纤维素Cellulose |
---|---|---|---|---|---|---|---|---|
羧甲基纤维素酶 β-1,4-endoglucanase | LF | 0.206 | 0.082 | 0.072 | 0.116 | 0.001 | -0.176 | -0.586* |
微晶纤维素酶 β-1,4-exoglucanase | LF | -0.131 | 0.605* | 0.573* | -0.545* | -0.491 | 0.009 | -0.079 |
β-葡萄糖苷酶 β-1,4-glucosidase | LF | -0.381 | 0.696** | 0.557* | -0.647** | -0.601* | 0.121 | -0.356 |
羧甲基纤维素酶 β-1,4-endoglucanase | H | 0.801** | 0.752** | 0.100 | -0.002 | -0.132 | -0.403 | 0.535* |
微晶纤维素酶 β-1,4-exoglucanase | H | 0.449 | 0.370 | 0.382 | -0.120 | -0.113 | 0.047 | 0.531* |
β-葡萄糖苷酶 β-1,4-glucosidase | H | 0.626* | 0.610* | 0.289 | -0.141 | -0.220 | -0.279 | 0.405 |
[1] | Aber JD, Melillo J (1991). Terrestrial Ecosystems. Saunders College Publishing, Toronto. |
[2] | Aber JD, Melillo J, McClaugherty C (1990). Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany, 68, 2201-2208. |
[3] |
Allen AP, Gillooly JF (2009). Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecology Letters, 12, 369-384.
URL PMID |
[4] | Allison SD, Vitousek PM (2004). Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica, 36, 285-296. |
[5] | Andersson M, Kjøller A, Struwe S (2004). Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests. Soil Biology & Biochemistry, 36, 1527-1537. |
[6] | Baker WL, Hongaker JJ, Weisberg PJ (1995). Using aerial photography and GIS to map the forest-tundra ecotone in Rocky Mountain National Park, Colorado, for global change research. Photogrammetric Engineering & Remote Sensing, 61, 313-320. |
[7] | Berg B, Matzner E (1997). Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews, 5, 1-25. |
[8] | Boddy L, Frankland J, van West P(2007). Ecology of Saprotrophic Basidiomycetes. Academic Press, San Diego, USA. |
[9] |
Criquet S (2002). Measurement and characterization of cellulase activity in sclerophyllous forest litter. Journal of Microbiological Methods, 50, 165-173.
URL PMID |
[10] | Criquet S, Tagger S, Vogt G, Iacazio G, LePetit J (1999). Laccase activity of forest litter. Soil Biology & Biochemistry, 31, 1239-1244. |
[11] | Deng SP, Tabatabai MA (1994). Cellulase activity of soils. Soil Biology & Biochemistry, 26, 1347-1354. |
[12] | Dilly O, Munch JC (1996). Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus glutinosa(L.) Gaertn.) forest. Soil Biology & Biochemistry, 28, 1073-1081. |
[13] | Doyle J, Pavel R, Barness G, Steinberger Y (2006). Cellulase dynamics in a desert soil. Soil Biology & Biochemistry, 38, 371-376. |
[14] |
Elisashvili V, Kachlishvili E, Penninckx M (2008). Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology, 35, 1531-1538.
URL PMID |
[15] | Fioretto A, Papa S, Curcio E, Sorrentino G, Fuggi A (2000). Enzyme dynamics on decomposing leaf litter of Cistus incanus and Myrtus communis in a Mediterranean ecosystem. Soil Biology & Biochemistry, 32, 1847-1855. |
[16] | Fioretto A, Papa S, Pellegrino A, Fuggi A (2007). Decomposition dynamics of Myrtus communis and Quercus ilex leaf litter: mass loss, microbial activity and quality change. Applied Soil Ecology, 36, 32-40. |
[17] | Fujii K, Uemura M, Hayakawa C, Funakawa S, Kosaki T (2013). Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biology & Biochemistry, 57, 109-115. |
[18] | Güsewell S, Gessner MO (2009). N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 23, 211-219. |
[19] | IPCC(Intergovernmental Panel on Climate Change) (2007). Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA eds. Climate Change in 2007: Mitigation. Cambridge University Press, Cambridge, UK. |
[20] | Joshi SR, Sharma GD, Mishra RR (1993). Microbial enzyme activities related to litter decomposition near a highway in a sub-tropical forest of northeast India. Soil Biology & Biochemistry, 25, 1763-1770. |
[21] | Kähkönen MA, Hakulinen R (2011). Hydrolytic enzyme activities, carbon dioxide production and the growth of litter degrading fungi in different soil layers in a coniferous forest in Northern Finland. European Journal of Soil Biology, 47, 108-113. |
[22] | Kanazawa S, Miyashita K (1987). Cellulase activity in forest soils. Soil Science and Plant Nutrition, 33, 399-406. |
[23] | Kappelle M, van Vuuren MMI, Baas P (1999). Effects of climate change on biodiversity: a review and identification of key research issues. Biodiversity & Conservation, 8, 1383-1397. |
[24] | Koide K, Osono T, Takeda H (2005). Fungal succession and decomposition of Camellia japonica leaf litter. Ecological Research, 20, 559-609. |
[25] | Kshattriya S, Sharma GD, Mishra RR (1992). Enzyme activities related to litter decomposition in forests of different age and altitude in northeast India. Soil Biology & Biochemistry, 24, 265-270. |
[26] | Linkins AE, Sinsabaugh RL, McClaugherty CA, Melills JM (1990). Cellulase activity on decomposing leaf litter in microcosms. Plant and Soil, 123, 17-25. |
[27] | Liu Y, Zhang J, Yang WQ, Wu FZ, Huang X, Yan BG, Wen WQ, Hu KB (2011). Ground coverage and soil hydrological action of alpine treeline ecotone in Western Sichuan. Scientia Silvae Sinicae, 47(3), 1-6. (in Chinese with English abstract) |
[ 刘洋, 张健, 杨万勤, 吴福忠, 黄旭, 闫帮国, 文维全, 胡开波 (2011). 川西高山树线群落交错带地被物及土壤的水文效应. 林业科学, 47(3), 1-6.] | |
[28] |
Lynd L, Cushman JH, Nichols RJ, Wyman CE (1991). Fuel ethanol from cellulosic biomass. Science, 251, 1318-1323.
URL PMID |
[29] | Moorhead DL, Sinsabaugh RL (2000). Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Applied Soil Ecology, 14, 71-79. |
[30] |
Oreskes N (2004). The scientific consensus on climate change. Science, 306, 1686.
URL PMID |
[31] | Osono T, Hirose D, Fujimaki R (2006). Fungal colonization as affected by litter depth and decomposition stage of needle litter. Soil Biology & Biochemistry, 38, 2743-2752. |
[32] | Prescott CE (2005). Do rates of litter decomposition tell us anything we really need to know? Forest Ecology and Management, 220, 66-74. |
[33] |
Rabinovich ML, Melnick MS, Bolobova AV (2002). The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow), 67, 850-871.
URL PMID |
[34] | Rowland AP, Roberts JD (1994). Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Communications in Soil Science & Plant Analysis, 25, 269-277. |
[35] |
Sánchez C (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27, 185-194.
URL PMID |
[36] | Schmidt SK, Lipson DA (2004). Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant and Soil, 259, 1-7. |
[37] |
Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-799.
URL PMID |
[38] | Sinsabaugh RL, Moorhead DL (1994). Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biology & Biochemistry, 26, 1305-1311. |
[39] | Sinsabaugh RL, Antibus RK, Linkins AE (1991). An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agriculture, Ecosystems & Environment, 34, 43-54. |
[40] |
Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T (1992). Wood decomposition over a first-order watershed: mass loss as a function of lignocellulase activity. Soil Biology & Biochemistry, 24, 743-749.
DOI URL |
[41] |
Sinsabaugh RL, Carreiro MM, Repert DA (2002). Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 60, 1-24.
DOI URL |
[42] | Šnajdr J, Valášková V, Merhautová V, Cajthaml T, Baldrian P (2008a). Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme and Microbial Technology, 43, 186-192. |
[43] | Šnajdr J, Valášková V, Merhautová Vr, Herinková J, Cajthaml T, Baldrian P (2008b). Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology & Biochemistry, 40, 2068-2075. |
[44] | Steffen KT, Cajthaml T, Šnajdr J, Baldrian P (2007). Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Research in Microbio- logy, 158, 447-455. |
[45] | Sterner RW, Hessen DO (1994). Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics, 25, 1-29. |
[46] | Waldrop MP, Balser TC, Fireston MK (2000). Linking microbial community composition to function in a tropical soil. Soil Biology & Biochemistry, 32, 1837-1846. |
[47] | Walther GR, Beissner S, Burga CA (2005). Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16, 541-548. |
[48] | Waring BG (2013). Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biology & Biochemistry, 64, 89-95. |
[49] | Wittmann C, Kähkönen MA, Ilvesniemi H, Kurola J, Salkinoja- Salonen MS (2004). Areal activities and stratification of hydrolytic enzymes involved in the biochemical cycles of carbon, nitrogen, sulphur and phosphorus in podsolized boreal forest soils. Soil Biology & Biochemistry, 36, 425-433. |
[50] | Zhang RQ, Sun ZJ, Wang C, Yuan TY (2008). Ecological process of leaf litter decomposition tropical rainforest in Xishuangbanna, SW China. III. Enzyme dynamics. Journal of Plant Ecology (Chinese Version), 32, 622-631. (in Chinese with English abstract) |
[ 张瑞清, 孙振钧, 王冲, 袁堂玉 (2008). 西双版纳热带雨林凋落叶分解的生态过程. III. 酶活性动态. 植物生态学报, 32, 622-631.] |
[1] | DENG Wen-Jie, WU Hua-Zheng, LI Tian-Xiang, ZHOU Li-Na, HU Ren-Yong, JIN Xin-Jie, ZHANG Yong-Pu, ZHANG Yong-Hua, LIU Jin-Liang. Main vegetation types and characteristics in Dongtou National Marine Park, Zhejiang, China [J]. Chin J Plant Ecol, 2024, 48(2): 254-268. |
[2] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[3] | WANG Guo-Hong, GUO Ke, XIE Zong-Qiang, TANG Zhi-Yao, JIANG Yan-Ling, FANG Jing-Yun. Interpretations, supplements, and modifications of some protocols for compiling Vegegraphy of China [J]. Chin J Plant Ecol, 2022, 46(3): 368-372. |
[4] | LI Dong, TIAN Qiu-Xiang, ZHAO Xiao-Xiang, LIN Qiao-Ling, YUE Peng-Yun, JIANG Qing-Hu, LIU Feng. Soil extracellular enzyme activities and their stoichiometric ratio in the alpine treeline ecotones in Gongga Mountain, China [J]. Chin J Plant Ecol, 2022, 46(2): 232-242. |
[5] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[6] | Yan-Fang LIU, Weng-Ying WANG, Nan-Ji SUO, Hua-Kun ZHOU, Xu-Feng MAO, Shi-Xiong WANG, Zhe CHEN. Relationship between plant community types and soil nematode communities in Haibei, Qinghai, China [J]. Chin J Plant Ecol, 2022, 46(1): 27-39. |
[7] | ZHANG Huan, ZHANG Yun-Ling, ZHANG Yan-Cai, YAN Ping. Main plant communities and characteristics of Desert Grassland Nature Reserve in Qitai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(8): 918-924. |
[8] | MOU Li, WU Lin, LIU Xue-Fei, LI Xiao-Ling, WANG Han, WU Hao, YU Yu-Rong, DU Sheng-Lan. Characteristics and environmental factors controlling methane emission from a Sphagnum bog with different plant cover types in a subalpine area, southwest of Hubei, China [J]. Chin J Plant Ecol, 2021, 45(2): 131-143. |
[9] | HE Lu-Yan, HOU Man-Fu, TANG Wei, LIU Yu-Ting, ZHAO Jun. Vegetation types and their characteristics in karst forests of Junzi Mountain in East Yunnan, China [J]. Chin J Plant Ecol, 2021, 45(12): 1380-1390. |
[10] | ZHOU Xiong, SUN Peng-Sen, ZHANG Ming-Fang, LIU Shi-Rong. Spatio-temporal characteristics of vegetation water use efficiency and their relationships with climatic factors in alpine and subalpine area of southwestern China [J]. Chin J Plant Ecol, 2020, 44(6): 628-641. |
[11] | FANG Jing-Yun, GUO Ke, WANG Guo-Hong, TANG Zhi-Yao, XIE Zong-Qiang, SHEN Ze-Hao, WANG Ren-Qing, QIANG Sheng, LIANG Cun-Zhu, DA Liang-Jun, YU Dan. Vegetation classification system and classification of vegetation types used for the compilation of vegetation of China [J]. Chin J Plant Ecol, 2020, 44(2): 96-110. |
[12] | Yong-Chang SONG, En-Rong YAN, Kun SONG. An update of the vegetation classification in China [J]. Chin J Plan Ecolo, 2017, 41(2): 269-278. |
[13] | Wen-Xuan XU, Wei-Kang YANG, Chi ZHANG, Mu-Yang WANG. Main plant communities and characteristics of Kalamaili Ungulate Nature Reserve in east Junggar Basin [J]. Chin J Plant Ecol, 2016, 40(5): 502-507. |
[14] | WANG Dai-Hua, WANG You-Fang, ZUO Qin, LI Min, WU Wen-Ying, HUANG Jian-Hua, ZHAO Ming-Shui. Bryophyte species diversity in seven typical forests of the West Tianmu Mountain in Zhe- jiang, China [J]. Chin J Plant Ecol, 2012, 36(6): 550-559. |
[15] | LI Xiao-Feng, XU Xiao, WANG Bi-Xia, HUANG You-You, WANG Zhi-Feng, LI Jun-Yu. Effects of forest litter layer on regeneration of Populus cathayana natural population in Xiaowutai Mountains in China [J]. Chin J Plant Ecol, 2012, 36(2): 109-116. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 3552
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1641
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn