Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (2): 220-231.DOI: 10.17521/cjpe.2021.0098
Special Issue: 菌根真菌
• Research Articles • Previous Articles Next Articles
XIE Huan1, ZHANG Qiu-Fang2, ZENG Quan-Xin1, ZHOU Jia-Cong1, MA Ya-Pei1, WU Yue1, LIU Yuan-Yuan1, LIN Hui-Ying1, YIN Yun-Feng1, CHEN Yue-Min1,*()
Received:
2021-03-18
Accepted:
2021-05-27
Online:
2022-02-20
Published:
2021-07-22
Contact:
CHEN Yue-Min
Supported by:
XIE Huan, ZHANG Qiu-Fang, ZENG Quan-Xin, ZHOU Jia-Cong, MA Ya-Pei, WU Yue, LIU Yuan-Yuan, LIN Hui-Ying, YIN Yun-Feng, CHEN Yue-Min. Effects of nitrogen addition on phosphorus transformation and decomposition fungi in seedling stage of Cunninghamia lanceolata[J]. Chin J Plant Ecol, 2022, 46(2): 220-231.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0098
指标 Index | CK | LN | HN | p |
---|---|---|---|---|
SH (mm) | 50.67 ± 2.36a | 46.17 ± 1.93b | 33.67 ± 2.87c | <0.01 |
GD (mm) | 4.61 ± 0.20 | 4.48 ± 0.30 | 4.41 ± 0.52 | 0.75 |
TB (g) | 14.73 ± 0.36a | 13.69 ± 2.77ab | 13.57 ± 0.39b | 0.56 |
Leaf P (mg·kg-1) | 3.30 ± 0.47a | 2.35 ± 0.36b | 2.16 ± 0.08b | <0.01 |
Leaf N:P | 6.02 ± 1.06b | 8.33 ± 0.45a | 9.31 ± 1.35a | <0.01 |
Table 1 Effects of nitrogen (N) addition on Cunninghamia lanceolata seedling growth and leaf phosphorus (P) content (mean ± SD, n = 4)
指标 Index | CK | LN | HN | p |
---|---|---|---|---|
SH (mm) | 50.67 ± 2.36a | 46.17 ± 1.93b | 33.67 ± 2.87c | <0.01 |
GD (mm) | 4.61 ± 0.20 | 4.48 ± 0.30 | 4.41 ± 0.52 | 0.75 |
TB (g) | 14.73 ± 0.36a | 13.69 ± 2.77ab | 13.57 ± 0.39b | 0.56 |
Leaf P (mg·kg-1) | 3.30 ± 0.47a | 2.35 ± 0.36b | 2.16 ± 0.08b | <0.01 |
Leaf N:P | 6.02 ± 1.06b | 8.33 ± 0.45a | 9.31 ± 1.35a | <0.01 |
指标 Index | CK | LN | HN | p |
---|---|---|---|---|
pH | 4.55 ± 0.06a | 4.51 ± 0.06ab | 4.40 ± 0.09c | 0.03 |
TC (g·kg-1) | 16.30 ± 0.23 | 16.20 ± 0.04 | 16.61 ± 0.24 | 0.06 |
TN (g·kg-1) | 1.47 ± 0.03 | 1.48 ± 0.05 | 1.50 ± 0.02 | 0.57 |
TP (mg·kg-1) | 586.19 ± 8.49b | 611.19 ± 15.49a | 595.88 ± 9.35ab | 0.02 |
AN (mg·kg-1) | 7.97 ± 0.22b | 8.58 ± 0.49a | 8.83 ± 0.25a | 0.01 |
AP (mg·kg-1) | 23.92 ± 1.13b | 26.25 ± 1.23a | 24.40 ± 1.24b | 0.02 |
DOC (mg·kg-1) | 7.67 ± 0.60a | 6.78 ± 0.44b | 3.99 ± 0.71c | <0.01 |
DON (mg·kg-1) | 4.61 ± 0.40b | 6.68 ± 0.36a | 7.24 ± 0.71a | <0.01 |
Table 2 Effects of nitrogen addition on soil physical and chemical properties (mean ± SD, n = 4)
指标 Index | CK | LN | HN | p |
---|---|---|---|---|
pH | 4.55 ± 0.06a | 4.51 ± 0.06ab | 4.40 ± 0.09c | 0.03 |
TC (g·kg-1) | 16.30 ± 0.23 | 16.20 ± 0.04 | 16.61 ± 0.24 | 0.06 |
TN (g·kg-1) | 1.47 ± 0.03 | 1.48 ± 0.05 | 1.50 ± 0.02 | 0.57 |
TP (mg·kg-1) | 586.19 ± 8.49b | 611.19 ± 15.49a | 595.88 ± 9.35ab | 0.02 |
AN (mg·kg-1) | 7.97 ± 0.22b | 8.58 ± 0.49a | 8.83 ± 0.25a | 0.01 |
AP (mg·kg-1) | 23.92 ± 1.13b | 26.25 ± 1.23a | 24.40 ± 1.24b | 0.02 |
DOC (mg·kg-1) | 7.67 ± 0.60a | 6.78 ± 0.44b | 3.99 ± 0.71c | <0.01 |
DON (mg·kg-1) | 4.61 ± 0.40b | 6.68 ± 0.36a | 7.24 ± 0.71a | <0.01 |
处理 Treatment | OTU观测数 Observed OTU | 多样性指数 Diversity index | |||
---|---|---|---|---|---|
Shannon | Simpson | Ace | Chao 1 | ||
CK | 832 ± 128 | 4.21 ± 0.10 | 0.07 ± 0.02 | 852.98 ± 152.33 | 857.72 ± 150.93 |
LN | 643 ± 175 | 4.09 ± 0.35 | 0.07 ± 0.02 | 654.06 ± 179.93 | 661.40 ± 182.85 |
HN | 672 ± 59 | 3.66 ± 0.37 | 0.11 ± 0.04 | 689.93 ± 65.43 | 690.11 ± 62.48 |
p | 0.14 | 0.07 | 0.07 | 0.16 | 0.16 |
Table 3 Effects of nitrogen addition on alpha diversity of soil fungi community (mean ± SD, n = 4)
处理 Treatment | OTU观测数 Observed OTU | 多样性指数 Diversity index | |||
---|---|---|---|---|---|
Shannon | Simpson | Ace | Chao 1 | ||
CK | 832 ± 128 | 4.21 ± 0.10 | 0.07 ± 0.02 | 852.98 ± 152.33 | 857.72 ± 150.93 |
LN | 643 ± 175 | 4.09 ± 0.35 | 0.07 ± 0.02 | 654.06 ± 179.93 | 661.40 ± 182.85 |
HN | 672 ± 59 | 3.66 ± 0.37 | 0.11 ± 0.04 | 689.93 ± 65.43 | 690.11 ± 62.48 |
p | 0.14 | 0.07 | 0.07 | 0.16 | 0.16 |
Fig. 1 Principal coordinate analysis (PCoA) of soil fungal communities (n = 4). CK, control treatment; HN, high nitrogen treatment; LN, low nitrogen treatment.
门 Phylum | 目 Order | CK | LN | HN | p |
---|---|---|---|---|---|
子囊菌门 Ascomycota | 散囊菌目 Eurotiales | 8.51 ± 3.32 | 7.13 ± 1.92 | 11.40 ± 7.60 | 0.48 |
肉座菌目 Hypocreales | 6.56 ± 0.77 | 7.98 ± 2.64 | 4.90 ± 0.36 | 0.07 | |
粪壳目 Sordariales | 4.18 ± 0.11a | 3.34 ± 0.09b | 2.40 ± 0.50c | <0.01 | |
担子菌门 Basidiomycota | 银耳目 Tremellales | 19.30 ± 3.47b | 22.04 ± 4.20b | 29.33 ± 3.94a | 0.01 |
丝孢酵母目 Trichosporonales | 1.46 ± 1.14 | 0.69 ± 0.06 | 1.10 ± 0.22 | 0.32 | |
被孢霉门 Mortierellomycota | 被孢霉目 Mortierellales | 13.26 ± 1.20b | 18.06 ± 2.49a | 15.40 ± 1.17b | 0.01 |
Table 4 Effects of nitrogen addition on the relative abundance of main fungi at the order in soil (mean ± SD, n = 4)
门 Phylum | 目 Order | CK | LN | HN | p |
---|---|---|---|---|---|
子囊菌门 Ascomycota | 散囊菌目 Eurotiales | 8.51 ± 3.32 | 7.13 ± 1.92 | 11.40 ± 7.60 | 0.48 |
肉座菌目 Hypocreales | 6.56 ± 0.77 | 7.98 ± 2.64 | 4.90 ± 0.36 | 0.07 | |
粪壳目 Sordariales | 4.18 ± 0.11a | 3.34 ± 0.09b | 2.40 ± 0.50c | <0.01 | |
担子菌门 Basidiomycota | 银耳目 Tremellales | 19.30 ± 3.47b | 22.04 ± 4.20b | 29.33 ± 3.94a | 0.01 |
丝孢酵母目 Trichosporonales | 1.46 ± 1.14 | 0.69 ± 0.06 | 1.10 ± 0.22 | 0.32 | |
被孢霉门 Mortierellomycota | 被孢霉目 Mortierellales | 13.26 ± 1.20b | 18.06 ± 2.49a | 15.40 ± 1.17b | 0.01 |
Fig. 2 Effects of nitrogen addition on the relative abundance of fungi at the phylum level in soil (n = 4). CK, control treatment; HN, high nitrogen treatment; LN, low nitrogen treatment.
Fig. 3 Effects of nitrogen addition on soil fungi trophic mode (mean ± SD, n = 4). CK, control treatment; HN, high nitrogen treatment; LN, low nitrogen treatment. Different lowercase letters represent significant difference among different treatments (p < 0.05).
Fig. 4 Effects of nitrogen addition on soil fungi functional groups (mean ± SD, n = 4). CK, control treatment; HN, high nitrogen treatment; LN, low nitrogen treatment. Different lowercase letters represent significant difference among different treatments (p < 0.05).
Fig. 5 Correlation between different soil fungi species and environmental factors. AN, available nitrogen content; AP, available phosphorus content; DOC, dissolved organic carbon content; DON, dissolved organic nitrogen content; TC, total carbon content; TN, total nitrogen content; TP, total phosphorus content. Glo, Glomeromycota; Mor, Mortierellales; Sor, Sordariales; Tre, Tremellales. *, p < 0.05; **, p < 0.01.
Fig. 7 Conceptual diagram of the effects of nitrogen addition on soil fungi structure and Cunninghamia lanceolata growth. +, significant increase; -, significant decrease; ns, no significant change.
[1] | Ackerman D, Millet DB, Chen X (2019). Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 33, 100-107. |
[2] |
Acosta-Martínez V, Cotton J, Gardner T, Moore-Kucera J, Zak J, Wester D, Cox S (2014). Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Applied Soil Ecology, 84, 69-82.
DOI URL |
[3] |
Allison SD, LeBauer DS, Ofrecio MR, Reyes R, Ta AM, Tran TM (2009). Low levels of nitrogen addition stimulate decomposition by boreal forest fungi. Soil Biology & Biochemistry, 41, 293-302.
DOI URL |
[4] |
Azad K, Kaminskyj S (2016). A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis, 68, 73-78.
DOI URL |
[5] |
Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dörfelt H, Gube M, Jackson DJ, Reitner J, Seyfullah LJ, Schmidt AR (2014). Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Molecular Phylogenetics and Evolution, 78, 386-398.
DOI URL |
[6] |
Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008). Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology, 74, 738-744.
DOI PMID |
[7] |
Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC (2014). Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology, 20, 3646-3659.
DOI PMID |
[8] |
Cao JL, Lin TC, Yang ZJ, Zheng Y, Xie L, Xiong DC, Yang YS (2020). Warming exerts a stronger effect than nitrogen addition on the soil arbuscular mycorrhizal fungal community in a young subtropical Cunninghamia lanceolata plantation. Geoderma, 367, 114273. DOI: 10.1016/j.geoderma.2020.114273.
DOI URL |
[9] |
Carrara JE, Walter CA, Hawkins JS, Peterjohn WT, Averill C, Brzostek ER (2018). Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Global Change Biology, 24, 2721-2734.
DOI PMID |
[10] | Carter MR, Gregorich EG (1993). Soil Sampling and Methods of Analysis. The Chemical Rubber Company Press, Florida. 637-644. |
[11] |
Che RX, Wang SP, Wang YF, Xu ZH, Wang WJ, Rui YC, Wang F, Hu JM, Tao J, Cui XY (2019). Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing. Soil Biology & Biochemistry, 139, 107611.
DOI URL |
[12] |
Chen YL, Xu ZW, Xu TL, Veresoglou SD, Yang GW, Chen BD (2017). Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities. Soil Biology & Biochemistry, 115, 233-242.
DOI URL |
[13] | Chen ZJ, Gao SK, Chen Y, He PH, He Q, Qiu Q, Li JY (2020). Effects of short-term fertilization on soil fungal community structure and functional group in Eucalyptus artificial forest. Acta Ecologica Sinica, 40, 3813-3821. |
[ 陈祖静, 高尚坤, 陈园, 何平会, 何茜, 邱权, 李吉跃 (2020). 短期施肥对桉树人工林土壤真菌群落结构及功能类群的影响. 生态学报, 40, 3813-3821.] | |
[14] |
Drenovsky RE, Richards JH (2004). Critical N:P values: predicting nutrient deficiencies in desert shrublands. Plant and Soil, 259, 59-69.
DOI URL |
[15] |
Fan YX, Zhong XJ, Lin F, Liu CC, Yang LM, Wang MH, Chen GS, Chen YM, Yang YS (2019). Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 337, 246-255.
DOI URL |
[16] |
Field KJ, Pressel S (2018). Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytologist, 220, 996-1011.
DOI URL |
[17] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[18] |
Guo QX, Yan LJ, Korpelainen H, Niinemets Ü, Li CY (2019). Plant-plant interactions and N fertilization shape soil bacterial and fungal communities. Soil Biology & Biochemistry, 128, 127-138.
DOI URL |
[19] |
James TY, Stajich JE, Hittinger CT, Rokas A (2020). Toward a fully resolved fungal tree of life. Annual Review of Microbiology, 74, 291-313.
DOI URL |
[20] |
Johnson NC (2010). Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185, 631-647.
DOI URL |
[21] | Lee JS, Nam B, Lee HB, Choi YJ (2018). Molecular phylogeny and morphology reveal the underestimated diversity of Mortierella (Mortierellales) in Korea. The Korean Journal of Mycology, 46, 375-382. |
[22] | Li M, Yan W (2019). Effects of altitude on rhizosphere fungal community structure of Pinus tabulaeformis in Wula Mountain, China. Mycosystema, 38, 1992-2006. |
[ 李敏, 闫伟 (2019). 海拔对乌拉山油松根围真菌群落结构的影响. 菌物学报, 38, 1992-2006.] | |
[23] | Li RX, Huo YL, Li HJ, Wang WS, Zhang AP, Yang ZL (2018). Effect of nitrogen fertilizer reduction on endophytic fungal community composition of summer maize in north China. Transactions of the Chinese Society for Agricultural Machinery, 49, 312-318. |
[ 李瑞霞, 霍艳丽, 李洪杰, 王惟帅, 张爱平, 杨正礼 (2018). 氮肥减量对华北夏玉米节根内生真菌群落组成的影响. 农业机械学报, 49, 312-318.] | |
[24] | Li X, Li YY, An SS, Zeng QC (2016). Effects of stem and leaf decomposition in typical herbs on soil enzyme activity and microbial diversity in the south Ningxia loess hilly region of Northwest China. Chinese Journal of Applied Ecology, 27, 3182-3188. |
[ 李鑫, 李娅芸, 安韶山, 曾全超 (2016). 宁南山区典型草本植物茎叶分解对土壤酶活性及微生物多样性的影响. 应用生态学报, 27, 3182-3188.] | |
[25] |
Lundell TK, Mäkelä MR, Hildén K (2010). Lignin-modifying enzymes in filamentous basidiomycetes-Ecological, functional and phylogenetic review. Journal of Basic Microbiology, 50, 5-20.
DOI PMID |
[26] |
Maitra P, Zheng Y, Chen L, Wang YL, Ji NN, Lü PP, Gan HY, Li XC, Sun X, Zhou XH, Guo LD (2019). Effect of drought and season on arbuscular mycorrhizal fungi in a subtropical secondary forest. Fungal Ecology, 41, 107- 115.
DOI |
[27] |
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016). FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241-248.
DOI URL |
[28] |
Ning Q, Chen L, Jia ZJ, Zhang CZ, Ma DH, Li F, Zhang JB, Li DM, Han XR, Cai ZJ, Huang SM, Liu WZ, Zhu B, Li Y (2020). Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agriculture, Ecosystems and Environment, 293, 106837. DOI: 10.1016/j.agee.2020.106837.
DOI URL |
[29] | Qiao ZW, Hong JP, Li LX (2017). Effect of soluble phosphorus fungi and their combinations on adsorption-desorption of phosphorus and its transformation in a reclaimed soil. Journal of Irrigation and Drainage, 36(7), 75-79. |
[ 乔志伟, 洪坚平, 李林轩 (2017). 溶磷真菌及其组合对复垦土壤磷解析和转化的影响. 灌溉排水学报, 36(7), 75- 79.] | |
[30] | Qin XZ, Yang XP, Chen J, Feng L (2014). Optimization of incubated mycelium of Mortierella alpine based on response surface methodlogy. Xinjiang Agricultural Sciences, 51(1), 89-97. |
[ 秦新政, 杨新平, 陈竞, 冯蕾 (2014). 高山被孢霉菌丝生长条件的响应面法优化. 新疆农业科学, 51(1), 89-97.] | |
[31] |
Rosling A, Midgley MG, Cheeke T, Urbina H, Fransson P, Phillips RP (2016). Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist, 209, 1184- 1195.
DOI PMID |
[32] |
Sakamoto K, Oba Y (1994). Effect of fungal to bacterial biomass ratio on the relationship between CO2 evolution and total soil microbial biomass. Biology and Fertility of Soils, 17, 39-44.
DOI URL |
[33] |
Schappe T, Albornoz FE, Turner BL, Neat A, Condit R, Jones FA (2017). The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. Journal of Ecology, 105, 569-579.
DOI URL |
[34] |
Schimel J, Balser TC, Wallenstein M (2007). Microbial stress- response physiology and its implications for ecosystem function. Ecology, 88, 1386-1394.
DOI PMID |
[35] |
Smith JE (2009). Mycorrhizal symbiosis (third edition). Soil Science Society of America Journal, 73, 694.
DOI URL |
[36] |
Strickland MS, Rousk J (2010). Considering fungal:bacterial dominance in soils methods, controls, and ecosystem implications. Soil Biology & Biochemistry, 42, 1385-1395.
DOI URL |
[37] |
Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, et al. (2014). Fungal biogeography. Global diversity and geography of soil fungi. Science, 346, 1256688. DOI: 10.1126/science.1256688.
DOI URL |
[38] |
Turner MM, Henry HAL (2009). Interactive effects of warming and increased nitrogen deposition on 15N tracer retention in a temperate old field: seasonal trends. Global Change Biology, 15, 2885-2893.
DOI URL |
[39] |
Uroz S, Buée M, Deveau A, Mieszkin S, Martin F (2016). Ecology of the forest microbiome: highlights of temperate and boreal ecosystems. Soil Biology & Biochemistry, 103, 471-488.
DOI URL |
[40] |
Wang JQ, Shi XZ, Zheng CY, Suter H, Huang ZQ (2021). Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Science of the Total Environment, 755, 142449. DOI: 142449.10.1016/j.scitotenv.2020.142449.
DOI URL |
[41] | Xiong D, Ou J, Li LP, Yang ST, He YJ, Li CC (2019). Diversity of soil fungi in the rhizosphere of Rhododendron simsii within Pinus massoniana - R. simsii communities in central Guizhou. Journal of Southwest University (Natural Science Edition), 41(7), 21-29. |
[ 熊丹, 欧静, 李林盼, 杨舒婷, 何跃军, 李朝婵 (2019). 黔中地区马尾松-杜鹃群落杜鹃根围真菌多样性. 西南大学学报(自然科学版), 41(7), 21-29.] | |
[42] |
Yang Y, Cheng H, Gao H, An SS (2020). Response and driving factors of soil microbial diversity related to global nitrogen addition. Land Degradation and Development, 31, 190- 204.
DOI |
[43] |
Yang Y, Dou YX, Huang YM, An SS (2017). Links between soil fungal diversity and plant and soil properties on the Loess Plateau. Frontiers in Microbiology, 8, 2198.
DOI PMID |
[44] |
Yu Z, Huang Z, Wang M, Liu R, Zheng LJ, Wan XH, Hu ZH, Davis MR, Lin TC (2015). Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations. Soil Biology & Biochemistry, 90, 188-196.
DOI URL |
[45] | Zhang HF, Liu HM, Zhao JN, Li G, Lai X, Li J, Wang H, Yang DL (2018). Response of soil fungal community structure to nitrogen and water addition in Stipa baicalensis steppe. Acta Ecologica Sinica, 38, 195-205. |
[ 张海芳, 刘红梅, 赵建宁, 李刚, 赖欣, 李洁, 王慧, 杨殿林 (2018). 贝加尔针茅草原土壤真菌群落结构对氮素和水分添加的响应. 生态学报, 38, 195-205.] | |
[46] |
Zhang QF, Zhou JC, Li XJ, Liu CC, Lin WS, Zheng W, Chen YM, Yang YS (2019). Nitrogen addition accelerates the nitrogen cycle in a young subtropical Cunninghamia lanceolata (Lamb.) plantation. Annals of Forest Science, 76, 31. DOI: 10.1007/s13595-019-0817-z.
DOI URL |
[47] | Zhang W (2013). Observation of N/S Deposition Fluxes and Investigation of Simulated S Deposition Effect on Soil N2O Production of Castanopsis carlesii Forests. Master degree dissertation, Fujian Normal University, Fuzhou. 15-19. |
[ 章伟 (2013). N/S沉降通量观测及模拟氮沉降对米槠林土壤N2O产生影响研究. 硕士学位论文, 福建师范大学, 福州. 15-19.] | |
[48] |
Zhou J, Jiang X, Zhou B, Zhao BS, Ma MC, Guan DW, Li J, Chen SF, Cao FM, Shen DL, Qin J (2016). Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biology & Biochemistry, 95, 135- 143.
DOI URL |
[49] |
Zhou JC, Liu XF, Xie JS, Lyu MK, Zheng Y, You ZT, Fan YX, Lin CF, Chen GS, Chen YM, Yang YS (2019). Nitrogen addition affects soil respiration primarily through changes in microbial community structure and biomass in a subtropical natural forest. Forests, 10, 435-451.
DOI URL |
[50] |
Zhou ZH, Wang CK, Luo YQ (2020). Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11, 3072. DOI: 10.1038/s41467-020-16881-7.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn