Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (5): 660-671.DOI: 10.17521/cjpe.2021.0321
Special Issue: 凋落物
• Research Articles • Previous Articles Next Articles
DU Ting1, CHEN Yu-Lian1, BI Jing-Hui2, YANG Yu-Ting1, ZHANG Li1, YOU Cheng-Ming1, TAN Bo1, XU Zhen-Feng1, WANG Li-Xia1, LIU Si-Ning1, LI Han1,*()
Received:
2021-09-09
Accepted:
2022-04-22
Online:
2023-05-20
Published:
2022-04-22
Supported by:
DU Ting, CHEN Yu-Lian, BI Jing-Hui, YANG Yu-Ting, ZHANG Li, YOU Cheng-Ming, TAN Bo, XU Zhen-Feng, WANG Li-Xia, LIU Si-Ning, LI Han. Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China[J]. Chin J Plant Ecol, 2023, 47(5): 660-671.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0321
Fig. 1 Daily mean temperature of litter bags on different gap positions at each litter decomposing period (mean ± SE, n = 3). Different lowercase letters indicate significant differences among different gap positions during the same decomposition period (p < 0.05). The shadowed areas indicate winter, the non-shadowed areas indicate growing season.
变异来源 Source of variance | df | 总酚含量 Total phenols content | 总酚损失速率 Total phenols loss rate | ||
---|---|---|---|---|---|
F | p | F | p | ||
物种 Species (S) | 5 | 715.799 | <0.001 | 123.633 | <0.001 |
时期 Periods (P) | 5 | 3 048.926 | <0.001 | 360.981 | <0.001 |
林窗位置 Gap positions (G) | 3 | 13.300 | <0.001 | 0.545 | 0.654 |
时期×物种 P × S | 25 | 104.919 | <0.001 | 24.689 | <0.001 |
物种×林窗位置 S × G | 15 | 4.977 | <0.001 | 0.162 | 0.999 |
时期×林窗位置 P × G | 15 | 11.187 | <0.001 | 7.881 | <0.001 |
物种×时期×林窗位置 S × P × G | 75 | 4.378 | <0.001 | 2.782 | <0.001 |
Table 1 Results of repeated measures ANOVA of the effects of species, gap position and decomposition period on litter total phenols content and loss rate in decomposing litters in the subalpine forest
变异来源 Source of variance | df | 总酚含量 Total phenols content | 总酚损失速率 Total phenols loss rate | ||
---|---|---|---|---|---|
F | p | F | p | ||
物种 Species (S) | 5 | 715.799 | <0.001 | 123.633 | <0.001 |
时期 Periods (P) | 5 | 3 048.926 | <0.001 | 360.981 | <0.001 |
林窗位置 Gap positions (G) | 3 | 13.300 | <0.001 | 0.545 | 0.654 |
时期×物种 P × S | 25 | 104.919 | <0.001 | 24.689 | <0.001 |
物种×林窗位置 S × G | 15 | 4.977 | <0.001 | 0.162 | 0.999 |
时期×林窗位置 P × G | 15 | 11.187 | <0.001 | 7.881 | <0.001 |
物种×时期×林窗位置 S × P × G | 75 | 4.378 | <0.001 | 2.782 | <0.001 |
Fig. 2 Dynamics of total phenols content in six decomposing litters in the subalpine forest (mean ± SE, n = 3). A, Juniperus saltuaria. B, Abies fargesii var. faxoniana. C, Larix mastersiana. D, Betula albosinensis. E, Salix paraplesia. F, Rhododendron lapponicum. Different lowercase letters indicate significant differences among gap positions during the same decomposition period (p < 0.05). The shadowed areas indicate winter, and the non-shadowed areas indicate growing season.
Fig. 3 Dynamics of total phenols loss rate in six decomposing litters in the subalpine forest (mean ± SE, n = 3). A, Juniperus saltuaria. B, Abies fargesii var. faxoniana. C, Larix mastersiana. D, Betula albosinensis. E, Salix paraplesia. F, Rhododendron lapponicum. Different lowercase letters indicate significant differences among gap positions during the same decomposing period (p < 0.05). The shadowed areas indicate winter, and the non-shadowed areas indicate growing season.
变异来源 Source of variance | df | 缩合单宁含量 Condensed tannins content | 缩合单宁损失速率 Condensed tannins loss rate | ||
---|---|---|---|---|---|
F | p | F | p | ||
物种 Species (S) | 5 | 931.848 | <0.001 | 1 116.526 | <0.001 |
时期 Periods (P) | 5 | 800.280 | <0.001 | 477.983 | <0.001 |
林窗位置 Gap positions (G) | 3 | 3.335 | 0.027 | 0.269 | 0.847 |
时期×物种 P × S | 25 | 330.278 | <0.001 | 114.603 | <0.001 |
物种×林窗位置 S × G | 15 | 7.423 | <0.001 | 0.163 | 0.999 7 |
时期×林窗位置 P × G | 15 | 13.836 | <0.001 | 11.297 | <0.001 |
物种×时期×林窗位置 S × P × G | 75 | 9.852 | <0.001 | 7.672 | <0.001 |
Table 2 Results of repeated measures ANOVA of the effects of species, gap position and decomposition period on litter condensed tannins content and loss rate in decomposing litters in the subalpine forest
变异来源 Source of variance | df | 缩合单宁含量 Condensed tannins content | 缩合单宁损失速率 Condensed tannins loss rate | ||
---|---|---|---|---|---|
F | p | F | p | ||
物种 Species (S) | 5 | 931.848 | <0.001 | 1 116.526 | <0.001 |
时期 Periods (P) | 5 | 800.280 | <0.001 | 477.983 | <0.001 |
林窗位置 Gap positions (G) | 3 | 3.335 | 0.027 | 0.269 | 0.847 |
时期×物种 P × S | 25 | 330.278 | <0.001 | 114.603 | <0.001 |
物种×林窗位置 S × G | 15 | 7.423 | <0.001 | 0.163 | 0.999 7 |
时期×林窗位置 P × G | 15 | 13.836 | <0.001 | 11.297 | <0.001 |
物种×时期×林窗位置 S × P × G | 75 | 9.852 | <0.001 | 7.672 | <0.001 |
Fig. 4 Dynamics of condensed tannins content in six decomposing litters in the subalpine forest (mean ± SE, n = 3). A, Juniperus saltuaria. B, Abies fargesii var. faxoniana. C, Larix mastersiana. D, Betula albosinensis. E, Salix paraplesia. F, Rhododendron lapponicum. Different lowercase letters indicate significant differences among gap positions during the same decomposition period (p < 0.05). The shadowed areas indicate winter, and the non-shadowed areas indicate growing season.
Fig. 5 Dynamics of condensed tannins loss rate in six decomposing litters in the subalpine forest (mean ± SE, n = 3). A, Juniperus saltuaria. B, Abies fargesii var. faxoniana. C, Larix mastersiana. D, Betula albosinensis. E, Salix paraplesia. F, Rhododendron lapponicum. Different lowercase letters indicate significant differences among gap positions during the same decomposing period (p < 0.05). The shadowed areas indicate winter, and the non-shadowed areas indicate growing season.
分解时期 Decomposition period | 因变量 Dependent variable | 进入最优模型的变量 Variables entering the optimal model | n | R2 |
---|---|---|---|---|
冬季 Winter | TP | DMT (+), CT0 (+), TP0 (+), FFTC (+), PAT (-), NAT (-) | 216 | 0.656* |
TPL | PAT (+), TP0 (+), DMT (-) | 216 | 0.270* | |
CT | CT0 (+), DMT (+), PAT (-) | 216 | 0.372** | |
CTL | DMT (+), CT0 (+), PAT (-) | 216 | 0.391** | |
生长季 Growing season | TP | CT0 (+) | 216 | 0.214** |
TPL | DC (+) | 216 | 0.067** | |
CT | CT0 (+) | 216 | 0.147** | |
CTL | CT0 (+) | 216 | 0.250** | |
3年 Three years | TP | DMT (+), CT0 (+), WSE (-), PAT (-) | 432 | 0.545* |
TPL | TP0 (+), NAT (+) | 432 | 0.125** | |
CT | NAT (+), CT0 (+), PAT (-) | 432 | 0.280** | |
CTL | CT0 (+), NAT (+), PAT (-) | 432 | 0.305** |
Table 3 Multiple linear regressions (stepwise method) between the total phenols/condensed tannins content, loss rate and environmental factors, initial quality of foliar litter
分解时期 Decomposition period | 因变量 Dependent variable | 进入最优模型的变量 Variables entering the optimal model | n | R2 |
---|---|---|---|---|
冬季 Winter | TP | DMT (+), CT0 (+), TP0 (+), FFTC (+), PAT (-), NAT (-) | 216 | 0.656* |
TPL | PAT (+), TP0 (+), DMT (-) | 216 | 0.270* | |
CT | CT0 (+), DMT (+), PAT (-) | 216 | 0.372** | |
CTL | DMT (+), CT0 (+), PAT (-) | 216 | 0.391** | |
生长季 Growing season | TP | CT0 (+) | 216 | 0.214** |
TPL | DC (+) | 216 | 0.067** | |
CT | CT0 (+) | 216 | 0.147** | |
CTL | CT0 (+) | 216 | 0.250** | |
3年 Three years | TP | DMT (+), CT0 (+), WSE (-), PAT (-) | 432 | 0.545* |
TPL | TP0 (+), NAT (+) | 432 | 0.125** | |
CT | NAT (+), CT0 (+), PAT (-) | 432 | 0.280** | |
CTL | CT0 (+), NAT (+), PAT (-) | 432 | 0.305** |
[1] |
Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005). A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634-641.
DOI URL |
[2] |
Bate-Smith EC (1962). The phenolic constituents of plants and their taxonomic significance. I. Dicotyledons. Journal of the Linnean Society of London, Botany, 58, 95-173.
DOI URL |
[3] | Berg B, McClaugherty C (2020). Plant Litter. 4th ed. Springer Nature, Cham, Switzerland. |
[4] |
Buckeridge KM, Grogan P (2008). Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra. Applied Soil Ecology, 39, 210-222.
DOI URL |
[5] | Chang CH, Wu FZ, Yang WQ, Tan B, Li H, Xiao S, Gou XL, He LN (2014). The dynamics of microbial community structure at different stages of log decay in an alpine forest of western Sichuan. Chinese Journal of Applied and Environmental Biology, 20, 978-985. |
[常晨晖, 吴福忠, 杨万勤, 谭波, 李晗, 肖洒, 苟小林, 何丽娜 (2014). 川西高山森林倒木不同分解阶段的微生物群落变化特征. 应用与环境生物学报, 20, 978-985.] | |
[6] |
Clein JS, Schimel JP (1994). Reduction in microbial activity in birch litter due to drying and rewetting event. Soil Biology & Biochemistry, 26, 403-406.
DOI URL |
[7] | Colmenares NG, Rodríguez G, Prieto A, Crescente O, Cabrera L (1998). Phytoconstituents and antimicrobial activity of Melaleuca leucadendron leaf essential oil from Venezuela. Ciencia, 6, 123-128. |
[8] | Deng RJ, Yang WQ, Wu FZ (2009). Effects of seasonal freeze-thaw on the enzyme activities in Abies faxoniana and Betula platyphylla litters. Chinese Journal of Applied Ecology, 20, 1026-1031. |
[邓仁菊, 杨万勤, 吴福忠 (2009). 季节性冻融对岷江冷杉和白桦凋落物酶活性的影响. 应用生态学报, 20, 1026-1031.] | |
[9] | Deng RJ, Yang WQ, Zhang J, Wu FZ (2010). Changes in litter quality of subalpine forests during one freeze-thaw season. Acta Ecologica Sinica, 30, 830-835. |
[邓仁菊, 杨万勤, 张健, 吴福忠 (2010). 季节性冻融期间亚高山森林凋落物的质量变化. 生态学报, 30, 830-835.] | |
[10] |
Domine F, Barrere M, Sarrazin D, Morin S, Arnaud L (2015). Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra. The Cryosphere, 9, 1265-1276.
DOI URL |
[11] | Du T, Liu YL, Yang YT, Zhang Y, You CM, Zhang L, Tan B, Xu ZF, Li H (2021). Effects of forest gaps on cellulose degradation during foliar litter decomposition in a subalpine forest of western Sichuan. Chinese Journal of Applied and Environmental Biology, 27, 617-624. |
[杜婷, 刘一霖, 杨玉婷, 张玉, 游成铭, 张丽, 谭波, 徐振锋, 李晗 (2021). 林窗对川西亚高山6种植物凋落叶纤维素降解的影响. 应用与环境生物学报, 27, 617-624.] | |
[12] | Duan HH (2016). Mechanism of allelopathy of phenols. Shanxi Agricultural Economy, (15), 77. |
[段罕慧 (2016). 酚类物质的化感作用的机制. 山西农经, (15), 77.] | |
[13] | Flaig W (1955). Quinones as model substances of humic acid precursors. Journal of Plant Nutrition and Soil Science, 69, 43-50. |
[14] |
Gálhidy L, Mihók B, Hagyó A, Rajkai K, Standovár T (2006). Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest. Plant Ecology, 183, 133-145.
DOI URL |
[15] |
Gavazov KS (2010). Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil, 337, 19-32.
DOI URL |
[16] |
Guo CH, Yang WQ, Wu FZ, Xu ZF, Yue K, Ni XY, Yuan J, Yang F, Tan B (2018). Effects of forest gap size on initial decomposition of twig litter in the subalpine forest of western Sichuan, China. Chinese Journal of Plant Ecology, 42, 28-37.
DOI URL |
[郭彩虹, 杨万勤, 吴福忠, 徐振锋, 岳楷, 倪祥银, 袁吉, 杨帆, 谭波 (2018). 川西亚高山森林林窗对凋落枝早期分解的影响. 植物生态学报, 42, 28-37.]
DOI |
|
[17] | Guo JF, Yang YS, Chen GS, Lin P, Xie JS (2006). A review on litter decomposition in forest ecosystem. Scientia Silvae Sinicae, 42(4), 93-100. |
[郭剑芬, 杨玉盛, 陈光水, 林鹏, 谢锦升 (2006). 森林凋落物分解研究进展. 林业科学, 42(4), 93-100.] | |
[18] |
Hagerman AE, Butler LG (1989). Choosing appropriate methods and standards for assaying tannin. Journal of Chemical Ecology, 15, 1795-1810.
DOI PMID |
[19] |
Hartzfeld PW, Forkner R, Hunter MD, Hagerman AE (2002). Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. Journal of Agricultural and Food Chemistry, 50, 1785-1790.
PMID |
[20] |
Hättenschwiler S, Hagerman AE, Vitousek PM (2003). Polyphenols in litter from tropical montane forests across a wide range in soil fertility. Biogeochemistry, 64, 129-148.
DOI URL |
[21] |
He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest. Chinese Journal of Plant Ecology, 37, 306-316.
DOI |
[何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.]
DOI |
|
[22] |
He W, Wu FZ, Zhang DJ, Yang WQ, Tan B, Zhao YY, Wu QQ (2015). The effects of forest gaps on cellulose degradation in the foliar litter of two shrub species in an alpine fir forest. Plant and Soil, 393, 109-122.
DOI URL |
[23] |
He W, Yang WQ (2020). Loss of total phenols from leaf litter of two shrub species: dual responses to alpine forest gap disturbance during winter and the growing season. Journal of Plant Ecology, 13, 369-377.
DOI URL |
[24] |
Heil M, Baumann B, Andary C, Linsenmair EK, McKey D (2002). Extraction and quantification of “condensed tannins” as a measure of plant anti-herbivore defence? Revisiting an old problem. Naturwissenschaften, 89, 519-524.
DOI URL |
[25] |
Hilli S, Stark S, Derome J (2008). Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems, 11, 270-282.
DOI URL |
[26] |
Hobbie SE, Chapin III FS (1996). Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry, 35, 327-338.
DOI URL |
[27] |
Ise T, Moorcroft PR (2006). The global-scale temperature and moisture dependencies of soil organic carbon decomposition: an analysis using a mechanistic decomposition model. Biogeochemistry, 80, 217-231.
DOI URL |
[28] |
Kuiters AT, Sarink HM (1986). Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biology & Biochemistry, 18, 475-480.
DOI URL |
[29] |
Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Hu Y (2015). Effects of forest gap on hemicellulose dynamics during foliar litter decomposition in a subalpine forest. Chinese Journal of Plant Ecology, 39, 229-238.
DOI URL |
[李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 胡义 (2015). 亚高山森林林窗对凋落物分解过程中半纤维素动态的影响. 植物生态学报, 39, 229-238.]
DOI |
|
[30] |
Li H, Xu LY, Wu FZ, Yang WQ, Ni XY, He J, Tan B, Hu Y (2016). Forest gaps alter the total phenol dynamics in decomposing litter in an alpine fir forest. PLoS ONE, 11, e0148426. DOI: 10.1371/journal.pone.0148426.
DOI |
[31] | Li T, Song JX, Zhang ZR, Jiang GQ (2020). Research progress of degradation methods of condensed tannin. Chemistry and Industry of Forest Products, 40(5), 10-16. |
[李特, 宋见喜, 张卓睿, 姜贵全 (2020). 缩合单宁降解方法研究进展. 林产化学与工业, 40(5), 10-16.] | |
[32] |
Liang RB, Liang J, Qiao MF, Xu ZF, Liu Q, Yin HJ (2015). Effects of simulated exudate C:N stoichiometry on dynamics of carbon and microbial community composition in a subalpine coniferous forest of western Sichuan, China. Chinese Journal of Plant Ecology, 39, 466-476.
DOI URL |
[梁儒彪, 梁进, 乔明锋, 徐振锋, 刘庆, 尹华军 (2015). 模拟根系分泌物C:N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响. 植物生态学报, 39, 466-476.]
DOI |
|
[33] | Liang XD, Ye WH (2001). Advances in study on forest gaps. Journal of Tropical and Subtropical Botany, 9, 355-364. |
[梁晓东, 叶万辉 (2001). 林窗研究进展. 热带亚热带植物学报, 9, 355-364.] | |
[34] |
Ni XY, Yang WQ, Li H, Xu LY, He J, Wu FZ (2014). Effects of snowpack on early foliar litter humification during winter in a subalpine forest of western Sichuan. Chinese Journal of Plant Ecology, 38, 540-549.
DOI URL |
[倪祥银, 杨万勤, 李晗, 徐李亚, 何洁, 吴福忠 (2014). 雪被斑块对川西亚高山森林6种凋落叶冬季腐殖化的影响. 植物生态学报, 38, 540-549.]
DOI |
|
[35] |
Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE (2003). Five stages of the Alaskan Arctic cold season with ecosystem implications. Arctic, Antarctic, and Alpine Research, 35, 74-81.
DOI URL |
[36] |
Ouyang XP, Tan YD, Qiu XQ (2014). Oxidative degradation of lignin for producing monophenolic compounds. Journal of Fuel Chemistry and Technology, 42, 677-682.
DOI URL |
[37] |
Preston CM, Trofymow JA (2015). The chemistry of some foliar litters and their sequential proximate analysis fractions. Biogeochemistry, 126, 197-209.
DOI URL |
[38] |
Preston CM, Nault JR, Trofymow JA (2009). Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of “Lignin”. Ecosystems, 12, 1078-1102.
DOI URL |
[39] | Raven, Evert RF, Eichhorn SE (2013). Biology of Plants. W.H. Freeman and Company Publishers, New York. |
[40] |
Rief A, Knapp BA, Seeber J (2012). Palatability of selected alpine plant litters for the decomposer Lumbricus rubellus (Lumbricidae). PLoS ONE, 7, e45345. DOI: 10.1371/journal.pone.0045345.
DOI |
[41] |
Ryan MG, Melillo JM, Ricca A (1990). A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166-171.
DOI URL |
[42] |
Schofield JA, Hagerman AE, Harold A (1998). Loss of tannins and other phenolics from willow leaf litter. Journal of Chemical Ecology, 24, 1409-1421.
DOI URL |
[43] | Song XZ, Jiang H, Zhang HL, Yu SQ, Zhou GM, Ma YD, Chang SX (2008). A review on the effects of global environment change on litter decomposition. Acta Ecologica Sinica, 28, 4414-4423. |
[宋新章, 江洪, 张慧玲, 余树全, 周国模, 马元丹, Chang SX (2008). 全球环境变化对森林凋落物分解的影响. 生态学报, 28, 4414-4423.] | |
[44] |
Swaby RJ (1950). The influence of humus on soil aggregation. Journal of Soil Science, 1, 182-194.
DOI URL |
[45] |
Tan B, Wu FZ, Yang WQ, Liu L, Yu S (2010). Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan during onset of freezing. Acta Ecologica Sinica, 30, 93-99.
DOI URL |
[46] |
Tan B, Wu FZ, Yang WQ, Yu S, Liu L, Wang A, Yang YL (2012). Activities of soil oxidordeuctase and their response to seasonal freeze-thaw in the subalpine/alpine forests of western Sichuan. Acta Ecologica Sinica, 32, 6670-6678.
DOI URL |
[谭波, 吴福忠, 杨万勤, 余胜, 刘利, 王奥, 杨玉莲 (2012). 川西亚高山/高山森林土壤氧化还原酶活性及其对季节性冻融的响应. 生态学报, 32, 6670-6678.] | |
[47] | The State Forestry Administration of the Peopleʼs Republic of China (1999). The Analysis Methods of Forest Soil: the Forestry Industry Standard of the People’s Republic of China LY/T 1228-1999, LY/T 1237-1999. China Standard Press, Beijing. |
[ 中华人民共和国国家林业局 (1999). 森林土壤分析方法: 中华人民共和国林业行业标准 LY/T 1228-1999, 1237-1999. 中国标准出版社, 北京.] | |
[48] |
Torti SD, Dearing MD, Kursar TA (1995). Extraction of phenolic compounds from fresh leaves: a comparison of methods. Journal of Chemical Ecology, 21, 117-125.
DOI PMID |
[49] |
Wu FZ, Yang WQ, Zhang J, Deng RJ (2010). Fine root decomposition in two subalpine forests during the freeze-thaw season. Canadian Journal of Forest Research, 40, 298-307.
DOI URL |
[50] | Wu QG, Wu FZ, Tan B, Yang WQ, He W, Ni XY (2016). Effects of gap sizes on foliar litter decomposition in alpine forests. Acta Ecologica Sinica, 36, 3537-3545. |
[吴庆贵, 吴福忠, 谭波, 杨万勤, 何伟, 倪祥银 (2016). 高山森林林窗对凋落叶分解的影响. 生态学报, 36, 3537-3545.] | |
[51] | Xia B, Deng F, He SA (1997). Research progress of forest window. Journal of Plant Resources and Environment, 6(4), 50-57. |
[夏冰, 邓飞, 贺善安 (1997). 林窗研究进展. 植物资源与环境, 6(4), 50-57.] | |
[52] |
Yang KJ, Yang WQ, Tan Y, He RY, Zhuang LY, Li ZJ, Tan B, Xu ZF (2017). Short-term responses of winter soil respiration to snow removal in a Picea asperata forest of western Sichuan. Chinese Journal of Plant Ecology, 41, 964-971.
DOI URL |
[杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋 (2017). 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应. 植物生态学报, 41, 964-971.]
DOI |
|
[53] | Yang WQ, Wang KY, Kellomäki S, Gong HD (2005). Litter dynamics of three subalpine forests in western Sichuan. Pedosphere, 15, 653-659. |
[54] |
Yang WQ, Wang KY, Kellomäki S, Zhang J (2006). Annual and monthly variations in litter macronutrients of three subalpine forests in western China. Pedosphere, 16, 788-798.
DOI URL |
[55] | Zang RG (1998). Research advances of gap regeneration dynamics. Chinese Journal of Ecology, 17, 50-58. |
[臧润国 (1998). 林隙(gap)更新动态研究进展. 生态学杂志, 17, 50-58.] | |
[56] | Zeng F, Qiu ZJ, Xu XY (2010). Review on forest litter decomposition. Ecology and Environmental Sciences, 19, 239-243. |
[曾锋, 邱治军, 许秀玉 (2010). 森林凋落物分解研究进展. 生态环境学报, 19, 239-243.]
DOI |
|
[57] |
Zhu JX, He XH, Wu FZ, Yang WQ, Tan B (2012). Decomposition of Abies faxoniana litter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China. Scandinavian Journal of Forest Research, 27, 586-596
DOI URL |
[1] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[2] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[3] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[4] | ZHENG Yang, SUN Xue-Guang, XIONG Yang-Yang, YUAN Gui-Yun, DING Gui-Jie. Effects of phyllospheric microorganisms on litter decomposition of Pinus massoniana [J]. Chin J Plant Ecol, 2023, 47(5): 687-698. |
[5] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[6] | LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin. Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest [J]. Chin J Plant Ecol, 2023, 47(5): 672-686. |
[7] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[8] | LI Xiao-Ling, ZHU Dao-Ming, YU Yu-Rong, WU Hao, MOU Li, HONG Liu, LIU Xue- Fei, BU Gui-Jun, XUE Dan, WU Lin. Effects of simulated nitrogen deposition on growth and decomposition of two bryophytes in ombrotrophic peatland, southwestern Hubei, China [J]. Chin J Plant Ecol, 2023, 47(5): 644-659. |
[9] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[10] | LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest [J]. Chin J Plant Ecol, 2023, 47(5): 618-628. |
[11] | LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region [J]. Chin J Plant Ecol, 2023, 47(2): 227-237. |
[12] | CHEN Lin-Kang, ZHAO Ping, WANG Ding, XIANG Rui, LONG Guang-Qiang. Non-additive effect of mixed decomposition of maize and potato straw [J]. Chin J Plant Ecol, 2023, 47(12): 1728-1738. |
[13] | HE Xi, FENG Qiu-Hong, ZHANG Pei-Pei, YANG Han, DENG Shao-Jun, SUN Xiao-Ping, YIN Hua-Jun. Altitudinal patterns of nutrient limiting characteristics of Abies fargesii var. faxoniana forest based on leaf and soil enzyme stoichiometry in western Sichuan, China [J]. Chin J Plant Ecol, 2023, 47(12): 1646-1657. |
[14] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[15] | FAN Fan, ZHAO Lian-Jun, MA Tian-Yi, XIONG Xin-Yu, ZHANG Yuan-Bin, SHEN Xiao-Li, LI Sheng. Community composition and structure in a 25.2 hm2 subalpine dark coniferous forest dynamics plot in Wanglang, Sichuan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1005-1017. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn