Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (12): 1273-1284.DOI: 10.17521/cjpe.2020.0097
• Research Articles • Previous Articles Next Articles
MEI Kong-Can1,2, CHENG Lei1,2, ZHANG Qiu-Fang1,2, LIN Kai-Miao2,3, ZHOU Jia-Cong1,2, ZENG Quan-Xin1,2, WU Yue1,2, XU Jian-Guo3, ZHOU Jin-Rong1,2, CHEN Yue-Min1,2,*()
Received:
2020-04-07
Accepted:
2020-07-07
Online:
2020-12-20
Published:
2021-04-01
Contact:
CHEN Yue-Min
Supported by:
MEI Kong-Can, CHENG Lei, ZHANG Qiu-Fang, LIN Kai-Miao, ZHOU Jia-Cong, ZENG Quan-Xin, WU Yue, XU Jian-Guo, ZHOU Jin-Rong, CHEN Yue-Min. Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests[J]. Chin J Plant Ecol, 2020, 44(12): 1273-1284.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0097
DOM来源 DOM from different plant sources | 溶解有机碳含量 Dissolved organic carbon content (g·kg-1) | 溶解有机氮含量 Dissolved organic nitrogen content (mg·kg-1) | 腐殖化指数 Humification index | 酸碱度 pH |
---|---|---|---|---|
杉木 Cunninghamia lanceolata | 19.32 ± 0.90a | 7.63 ± 1.44b | 0.27 ± 0.02c | 5.44 ± 0.11b |
木荷 Schima superba | 12.77 ± 2.86b | 26.10 ± 2.11a | 1.67 ± 0.55b | 5.28 ± 0.03c |
楠木 Phoebe zherman | 6.95 ± 0.45c | 11.20 ± 2.72b | 4.36 ± 0.59a | 5.76 ± 0.02a |
p | <0.01 | <0.01 | <0.01 | <0.01 |
Table 1 Characterizations of leaves and dissolved organic matter (DOM) from different plant sources (mean ± SD)
DOM来源 DOM from different plant sources | 溶解有机碳含量 Dissolved organic carbon content (g·kg-1) | 溶解有机氮含量 Dissolved organic nitrogen content (mg·kg-1) | 腐殖化指数 Humification index | 酸碱度 pH |
---|---|---|---|---|
杉木 Cunninghamia lanceolata | 19.32 ± 0.90a | 7.63 ± 1.44b | 0.27 ± 0.02c | 5.44 ± 0.11b |
木荷 Schima superba | 12.77 ± 2.86b | 26.10 ± 2.11a | 1.67 ± 0.55b | 5.28 ± 0.03c |
楠木 Phoebe zherman | 6.95 ± 0.45c | 11.20 ± 2.72b | 4.36 ± 0.59a | 5.76 ± 0.02a |
p | <0.01 | <0.01 | <0.01 | <0.01 |
土壤酶 Soil enzyme | 缩写 Abbreviation | 底物 Substrate | 功能 Function |
---|---|---|---|
β-葡萄糖苷酶 β-glucosidase | βG | 4-MUB-β-D-glucoside | 水解纤维素 Hydrolyze cellulose |
纤维素水解酶 Cellobiohydrolase | CBH | 4-MUB-β-D-cellobioside | 水解纤维素 Hydrolyze cellulose |
过氧化物酶 Peroxidase | PEO | L-dihydroxyphenylalanine | 降解木质素 Degrade lignin |
多酚氧化酶 Polyphenol oxidase | PPO | L-dihydroxyphenylalanine | 降解木质素 Degrade lignin |
Table 2 Substrates and functions of four soil enzymes related to carbon cycling
土壤酶 Soil enzyme | 缩写 Abbreviation | 底物 Substrate | 功能 Function |
---|---|---|---|
β-葡萄糖苷酶 β-glucosidase | βG | 4-MUB-β-D-glucoside | 水解纤维素 Hydrolyze cellulose |
纤维素水解酶 Cellobiohydrolase | CBH | 4-MUB-β-D-cellobioside | 水解纤维素 Hydrolyze cellulose |
过氧化物酶 Peroxidase | PEO | L-dihydroxyphenylalanine | 降解木质素 Degrade lignin |
多酚氧化酶 Polyphenol oxidase | PPO | L-dihydroxyphenylalanine | 降解木质素 Degrade lignin |
处理 Treatment | 土壤总有机碳含量 Total soil organic carbon content (g·kg-1) | 总氮含量 Total soil nitrogen content (g·kg-1) | 碳氮比 C:N | 酸碱度 pH | 溶解有机碳含量 Dissolved organic carbon content (mg·kg-1) | 溶解有机氮含量 Dissolved organic nitrogen content (mg·kg-1) |
---|---|---|---|---|---|---|
CT | 75.96 ± 0.14a | 4.72 ± 0.13ab | 16.11 ± 0.45ab | 4.49 ± 0.02b | 32.65 ± 12.20b | 5.39 ± 1.32b |
CL | 70.94 ± 2.17a | 4.26 ± 0.23b | 16.69 ± 0.72a | 4.70 ± 0.12a | 139.02 ± 24.90a | 26.95 ± 8.65a |
SL | 70.55 ± 1.77a | 4.53 ± 0.10ab | 15.58 ± 0.07b | 4.72 ± 0.09a | 154.06 ± 56.81a | 9.42 ± 1.44b |
PL | 75.63 ± 5.22a | 4.89 ± 0.40a | 15.48 ± 0.31b | 4.59 ± 0.12ab | 110.24 ± 20.41a | 6.51 ± 1.78b |
p | 0.10 | 0.06 | 0.04 | 0.06 | 0.01 | <0.01 |
Table 3 Effects of dissolved organic matter (DOM) addition on physicochemical properties of the soil (mean ± SD)
处理 Treatment | 土壤总有机碳含量 Total soil organic carbon content (g·kg-1) | 总氮含量 Total soil nitrogen content (g·kg-1) | 碳氮比 C:N | 酸碱度 pH | 溶解有机碳含量 Dissolved organic carbon content (mg·kg-1) | 溶解有机氮含量 Dissolved organic nitrogen content (mg·kg-1) |
---|---|---|---|---|---|---|
CT | 75.96 ± 0.14a | 4.72 ± 0.13ab | 16.11 ± 0.45ab | 4.49 ± 0.02b | 32.65 ± 12.20b | 5.39 ± 1.32b |
CL | 70.94 ± 2.17a | 4.26 ± 0.23b | 16.69 ± 0.72a | 4.70 ± 0.12a | 139.02 ± 24.90a | 26.95 ± 8.65a |
SL | 70.55 ± 1.77a | 4.53 ± 0.10ab | 15.58 ± 0.07b | 4.72 ± 0.09a | 154.06 ± 56.81a | 9.42 ± 1.44b |
PL | 75.63 ± 5.22a | 4.89 ± 0.40a | 15.48 ± 0.31b | 4.59 ± 0.12ab | 110.24 ± 20.41a | 6.51 ± 1.78b |
p | 0.10 | 0.06 | 0.04 | 0.06 | 0.01 | <0.01 |
Fig. 1 Effects of dissolved organic matter (DOM) addition on soil microbial biomass (mean ± SD). Different lowercase letters indicate significant difference among different treatments (p < 0.05). CL, Cunninghamia lanceolata leaf DOM addition treatment; CT, control treatment; PL, Phoebe zherman leaf DOM addition treatment; SL, Schima superba leaf DOM addition treatment.
Fig. 2 Effects of dissolved organic matter (DOM) addition on soil enzyme activities (mean ± SD). Different lowercase letters indicate significant difference among different treatments (p < 0.05). CL, Cunninghamia lanceolata leaf DOM addition treatment; CT, control treatment; PL, Phoebe zherman leaf DOM addition treatment; SL, Schima superba leaf DOM addition treatment.
DOM性质 DOM property | 土壤理化性质 Soil physical and chemical properties | 微生物生物量Microbial biomass | 土壤酶活性 Soil enzyme activities | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | TN | C:N | pH | DOC | DON | MBC | MBN | βG | CBH | PEO | PPO | |
L-DOC | -0.79* | -0.73* | 0.69* | 0.59 | 0.12 | 0.83** | 0.14 | -0.78* | 0.87** | 0.94** | -0.10 | -0.25 |
L-DON | -0.15 | 0.16 | -0.52 | 0.14 | 0.16 | -0.46 | -0.25 | -0.27 | -0.51 | -0.30 | -0.20 | -0.84** |
L-HIX | 0.81** | 0.79* | -0.69* | -0.59 | -0.52 | -0.76* | 0.04 | 0.90** | -0.86* | -0.93* | -0.08 | 0.44 |
L-pH | 0.52 | 0.65 | -0.14 | -0.47 | -0.39 | -0.19 | 0.14 | 0.86** | -0.34 | -0.54 | 0.09 | 0.88** |
Table 4 Correlation analysis of soil physical and chemical properties, microbial biomass and enzyme activities with properties of dissolved organic matter (DOM) of fresh leaves
DOM性质 DOM property | 土壤理化性质 Soil physical and chemical properties | 微生物生物量Microbial biomass | 土壤酶活性 Soil enzyme activities | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | TN | C:N | pH | DOC | DON | MBC | MBN | βG | CBH | PEO | PPO | |
L-DOC | -0.79* | -0.73* | 0.69* | 0.59 | 0.12 | 0.83** | 0.14 | -0.78* | 0.87** | 0.94** | -0.10 | -0.25 |
L-DON | -0.15 | 0.16 | -0.52 | 0.14 | 0.16 | -0.46 | -0.25 | -0.27 | -0.51 | -0.30 | -0.20 | -0.84** |
L-HIX | 0.81** | 0.79* | -0.69* | -0.59 | -0.52 | -0.76* | 0.04 | 0.90** | -0.86* | -0.93* | -0.08 | 0.44 |
L-pH | 0.52 | 0.65 | -0.14 | -0.47 | -0.39 | -0.19 | 0.14 | 0.86** | -0.34 | -0.54 | 0.09 | 0.88** |
Fig. 3 Redundant analysis of the effect of dissolved organic matter (DOM) input on soil enzyme activities. CL, Cunninghamia lanceolata leaf DOM addition treatment; CT, control treatment; PL, Phoebe zherman leaf DOM addition treatment; SL, Schima superba leaf DOM addition treatment. βG, β-glucosidase; CBH, cellulolytic enzymes; PEO, peroxidase; PPO, polyphenol oxidase. DOC, soil dissolved organic carbon content; DON, soil dissolved organic nitrogen content; MBN, microbial biomass nitrogen content; SOC, total soil organic carbon content. The solid arrows represent species factors and the dotted arrows represent environmental factors. The notes of variables in lower right corner of the picture represent the corresponding proportion of environmental factors that have a significant effect on changes in soil enzyme activities.
[1] |
Ågren GI, Bosatta E, Magill AH (2001). Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia, 128, 94-98.
DOI URL PMID |
[2] | Allison SD, Vitousek PM (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 37, 937-944. |
[3] | Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2010). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function//Shukla G, Varma A. Soil Enzymology. Springer, Berlin, Germany. 229-243. |
[4] | Bao Y, Gao Y, Zeng XM, Yuan P, Si YT, Chen YM, Chen YY (2018). Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China. Chinese Journal of Plant Ecology, 42, 508-516. |
[ 鲍勇, 高颖, 曾晓敏, 袁萍, 司友涛, 陈岳民, 陈滢伊 (2018). 中亚热带3种典型森林土壤碳氮含量和酶活性的关系. 植物生态学报, 42, 508-516.] | |
[5] | Boddy E, Hill PW, Farrar J, Jones DL (2007). Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biology & Biochemistry, 39, 827-835. |
[6] | Chen GS, Yang ZJ, Gao R, Xie JS, Guo JF, Huang ZQ, Yang YS (2013). Carbon storage in a chronosequence of Chinese fir plantations in southern China. Forest Ecology and Management, 300, 68-76. |
[7] |
Chen J, Luo YQ, Li JW, Zhou XH, Cao JJ, Wang RW, Wang YQ, Shelton S, Jin Z, Walker LM, Feng ZZ, Niu SL, Feng WT, Jian SY, Zhou LY (2017). Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biology, 23, 1328-1337.
URL PMID |
[8] | Chen X, Hao B, Jing X, He JS, Ma W, Zhu B (2019). Minor responses of soil microbial biomass, community structure and enzyme activities to nitrogen and phosphorus addition in three grassland ecosystems. Plant and Soil, 444, 21-37. |
[9] | Curtin D, Campbell CA, Jalil A (1998). Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biology & Biochemistry, 30, 57-64. |
[10] | Du YX, Zhang YY, Chen FZ, Chang YG, Liu ZW (2016). Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: an insight into the fate of allochthonous DOM in alpine lakes affected by climate change. Science of the Total Environment, 568, 216-225. |
[11] | Fan YX, Zhong XJ, Lin TC, Lyu MK, Wang MH, Hu WF, Yang ZJ, Chen GS, Guo JF, Yang YS (2020). Effects of nitrogen addition on DOM-induced soil priming effects in a subtropical plantation forest and a natural forest. Biology and Fertility of Soils, 56, 205-216. |
[12] |
Fang Y, Nazaries L, Singh BK, Singh BP (2018). Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Global Change Biology, 24, 2775-2790.
URL PMID |
[13] |
Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277-280.
DOI URL PMID |
[14] | Gao YQ, Dai XQ, Wang JL, Fu XL, Kou L, Wang HM (2019). Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations. Chinese Journal of Plant Ecology, 43, 258-272. |
[ 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民 (2019). 亚热带人工林下植被根际土壤酶化学计量特征. 植物生态学报, 43, 258-272.] | |
[15] | Gauthier A, Amiotte-Suchet P, Nelson PN, Lévêque J, Zeller B, Hénault C (2010). Dynamics of the water extractable organic carbon pool during mineralisation in soils from a Douglas fir plantation and an oak-beech forest—An incubation experiment. Plant and Soil, 330, 465-479. |
[16] | Guo JF, Yang YS, Chen GS, Lin P (2005). Dissolved organic carbon and nitrogen in precipitation, throughfall and stemflow from Schima superba and Cunninghamia lanceolata plantations in subtropical China. Journal of Forestry Research, 16, 19-22. |
[17] | Inubushi K, Brookes PC, Jenkinson DS (1991). Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigation-extraction method. Soil Biology & Biochemistry, 23, 737-741. |
[18] | Ji YH, Zhang QF, Zhou JC, You ZT, Xu PC, Lin WS, Chen YM, Yang YS (2018). Spectral characteristics and quantities of dissolved organic matter released from leaves with competitive and stress-tolerant ecological strategies in a subtropical region. Acta Ecologica Sinica, 38, 3998-4007. |
[ 纪宇皝, 张秋芳, 周嘉聪, 游章湉, 徐鹏程, 林伟盛, 陈岳民, 杨玉盛 (2018). 亚热带地区竞争型和忍耐型树种叶片可溶性有机质数量及光谱学特征. 生态学报, 38, 3998-4007.] | |
[19] | Jiang Y, Lei Y, Qin W, Korpelainen H, Li C (2019). Revealing microbial processes and nutrient limitation in soil through ecoenzymatic stoichiometry and glomalin-related soil proteins in a retreating glacier forefield. Geoderma, 338, 313-324. |
[20] | Jing X, Chen X, Tang M, Ding ZJ, Jiang L, Li P, Ma SH, Tian D, Xu LC, Zhu JX, Ji CJ, Shen HH, Zheng CY, Fang JY, Zhu B (2017). Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests. Science of the Total Environment, 607-608, 806-815. |
[21] | Jones DL, Willett VB (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 38, 991-999. |
[22] | Kalbitz K, Geyer W, Geyer S (1999). Spectroscopic properties of dissolved humic substances—A reflection of land use history in a fen area. Biogeochemistry, 47, 219-238. |
[23] | Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000). Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science, 165, 277-304. |
[24] | Kang GL, Gao R, Yang YS, Chen GS, Yang ZJ, Si YT (2014). Quantities and qualities of leaf-leached DOM of four species in a secondary Castanopsis carlesii forest. Journal of Subtropical Resources and Environment, 9, 30-37. |
[ 康根丽, 高人, 杨玉盛, 陈光水, 杨智杰, 司友涛 (2014). 米槠次生林内4种植物叶片DOM的数量和质量特征. 亚热带资源与环境学报, 9, 30-37.] | |
[25] | Kotroczó Z, Veres Z, Fekete I, Krakomperger Z, Tóth JA, Lajtha K, Tóthmérész B (2014). Soil enzyme activity in response to long-term organic matter manipulation. Soil Biology & Biochemistry, 70, 237-243. |
[26] | Li YL, Zhang XB, Ren FL, Sun N, Xu M, Xu MG (2020). A meta-analysis of long-term fertilization impact on soil dissolved organic carbon and nitrogen across Chinese cropland. Scientia Agricultura Sinica, 53, 1224-1233. |
[ 李亚林, 张旭博, 任凤玲, 孙楠, 徐梦, 徐明岗 (2020). 长期施肥对中国农田土壤溶解性有机碳氮含量影响的整合分析. 中国农业科学, 53, 1224-1233.] | |
[27] | Lin KM, Zhang ZQ, Ye FM, Lin Y, Li QS (2010). Dynamic analysis of decomposition characteristics and content change of nutrient elements of leaf litter of Cunninghamia lanceolata, Phoebe bournei and Schima superba under C. lanceolata artificial forest. Journal of Plant Resources and Environment, 19(2), 34-39. |
[ 林开敏, 章志琴, 叶发茂, 林艳, 李卿叁 (2010). 杉木人工林下杉木、楠木和木荷叶凋落物分解特征及营养元素含量变化的动态分析. 植物资源与环境学报, 19(2), 34-39.] | |
[28] | Luo G, Li L, Friman VP, Guo J, Guo S, Shen Q, Ling N (2018). Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: a meta-analysis. Soil Biology & Biochemistry, 124, 105-115. |
[29] | Lyu M, Xie J, Vadeboncoeur MA, Wang M, Qiu X, Ren Y, Jiang M, Yang Y, Kuzyakov Y (2018). Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils. Biology and Fertility of Soils, 54, 925-934. |
[30] | Miano TM, Senesi N (1992). Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Science of the Total Environment, 117, 41-51. |
[31] | Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998). Boreal forest plants take up organic nitrogen. Nature, 392, 914-916. |
[32] | Ni MY, Zhang QF, Gao JT, Zheng Y, Zhou JC, Chen YM, Yang YS (2018). Seasonal response of extracellular enzyme activity to precipitation exclusion in a subtropical Cunninghamia lanceolata plantation. Acta Ecologica Sinica, 38, 2119-2127. |
[ 倪梦颖, 张秋芳, 高金涛, 郑永, 周嘉聪, 陈岳民, 杨玉盛 (2018). 亚热带杉木人工林土壤胞外酶活性对隔离降雨的季节响应. 生态学报, 38, 2119-2127.] | |
[33] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[34] | Peterson ME, Curtin D, Thomas S, Clough TJ, Meenken ED (2013). Denitrification in vadose zone material amended with dissolved organic matter from topsoil and subsoil. Soil Biology & Biochemistry, 61, 96-104. |
[35] |
Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013.
URL PMID |
[36] | Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315. |
[37] |
Schimel J, Balser TC, Wallenstein M (2007). Microbial stress response physiology and its implications for ecosystem function. Ecology, 88, 1386-1394.
DOI URL PMID |
[38] | Singh JS, Gupta VK (2018). Soil microbial biomass: a key soil driver in management of ecosystem functioning. Science of the Total Environment, 634, 497-500. |
[39] | Sinsabaugh RL (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology & Biochemistry, 42, 391-404. |
[40] |
Sinsabaugh RL, Carreiro MM, Repert DA (2002). Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 60, 1-24.
DOI URL |
[41] | Šnajdr J, Valášková V, Merhautová V, Herinková J, Cajthaml T, Baldrian P (2008). Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology & Biochemistry, 40, 2068-2075. |
[42] | Song XZ, Chen XF, Zhou GM, Jiang H, Peng CH (2017). Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers. Agricultural and Forest Meteorology, 247, 467-475. |
[43] | Soussana JF, Lemaire G (2014). Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems & Environment, 190, 9-17. |
[44] | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707. |
[45] | Wan JJ, Guo JF, Ji SR, Ren WL, Yang YS (2016). Effects of dissolved organic matter input on soil CO2 emission and microbial community composition in a subtropical forest. Scientia Silvae Sinicae, 52(2), 106-113. |
[ 万菁娟, 郭剑芬, 纪淑蓉, 任卫岭, 杨玉盛 (2016). 可溶性有机物输入对亚热带森林土壤CO2排放及微生物群落的影响. 林业科学, 52(2), 106-113.] | |
[46] | Wang JY, Song CC, Wang XW, Wang LL (2011). Progress in the study of effect of freeze-thaw processes on the organic carbon pool and microorganisms in soils. Journal of Glaciology and Geocryology, 33, 442-452. |
[ 王娇月, 宋长春, 王宪伟, 王丽丽 (2011). 冻融作用对土壤有机碳库及微生物的影响研究进展. 冰川冻土, 33, 442-452.] | |
[47] | Wang QK, Wang SL, He TX, Liu L, Wu JB (2014). Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils. Soil Biology & Biochemistry, 71, 13-20. |
[48] | Wang XB, Song DL, Liang GQ, Zhang Q, Ai C, Zhou W (2015). Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Applied Soil Ecology, 96, 265-272. |
[49] | Wei CC, Liu XF, Lin CF, Li XF, Li Y, Zheng YX (2018). Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China. Chinese Journal of Plant Ecology, 42, 692-702. |
[ 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄 (2018). 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响. 植物生态学报, 42, 692-702.] | |
[50] | Wieder WR, Cleveland CC, Townsend AR (2008). Tropical tree species composition affects the oxidation of dissolved organic matter from litter. Biogeochemistry, 88, 127-138. |
[51] | Xiao W, Chen X, Jing X, Zhu B (2018). A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biology & Biochemistry, 123, 21-32. |
[52] | Zhang CX, Nan ZB (2010). Research progress of soil microbial biomass in China. Pratacultural Science, 27, 50-57. |
[ 张成霞, 南志标 (2010). 土壤微生物生物量的研究进展. 草业科学, 27, 50-57.] | |
[53] | Zheng HF, Liu Y, Zhang J, Chen YM, Yang L, Li HJ, Wang LF (2018). Factors influencing soil enzyme activity in China’s forest ecosystems. Plant Ecology, 219, 31-44. |
[54] | Zhou JB, Chen ZJ, Zheng XF (2005). Soluble organic nitrogen in soil and its roles in the supply and transformation of N. Chinese Journal of Soil Science, 36, 244-248. |
[ 周建斌, 陈竹君, 郑险峰 (2005). 土壤可溶性有机氮及其在氮素供应及转化中的作用. 土壤通报, 36, 244-248.] | |
[55] | Zhou JC, Liu XF, Zheng Y, Ji YH, Li XF, Xu PC, Chen YM, Yang YS (2017). Effects of nitrogen deposition on soil microbial biomass and enzyme activities in Castanopsis carlesii natural forests in subtropical regions. Acta Ecologica Sinica, 37, 127-135. |
[ 周嘉聪, 刘小飞, 郑永, 纪宇皝, 李先锋, 徐鹏程, 陈岳民, 杨玉盛 (2017). 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响. 生态学报, 37, 127-135.] | |
[56] |
Zhou Y, Boutton TW, Wu XB (2018). Soil phosphorus does not keep pace with soil carbon and nitrogen accumulation following woody encroachment. Global Change Biology, 24, 1992-2007.
DOI URL PMID |
[57] | Zhu ZK, Ge T, Luo Y, Liu SL, Xu XL, Tong CL, Shibistova O, Guggenberger G, Wu JS (2018). Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biology & Biochemistry, 121, 67-76. |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[3] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[4] | WAN Chun-Yan, YU Jun-Rui, ZHU Shi-Dan. Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species [J]. Chin J Plant Ecol, 2023, 47(10): 1386-1397. |
[5] | GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms [J]. Chin J Plant Ecol, 2022, 46(7): 797-810. |
[6] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of microbial nutrient limiting characteristics in rhizosphere and bulk soil of coniferous forests under nitrogen deposition in southwest mountain, China [J]. Chin J Plant Ecol, 2022, 46(4): 473-483. |
[7] | WU Qiu-Xia, WU Fu-Zhong, HU Yi, KANG Zi-Jia, ZHANG Yao-Yi, YANG Jing, YUE Kai, NI Xiang-Yin, YANG Yu-Sheng. Difference in non-structural carbohydrates between fresh and senescent leaves of 11 tree species in a subtropical common-garden [J]. Chin J Plant Ecol, 2021, 45(7): 771-779. |
[8] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[9] | XIE Meng-Yi, FENG Xiu-Xiu, MA Huan-Fei, HU Han, WANG Jie-Ying, GUO Yao-Xin, REN Cheng-Jie, WANG Jun, ZHAO Fa-Zhu. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains [J]. Chin J Plant Ecol, 2020, 44(8): 885-894. |
[10] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
[11] | CHEN Si-Lu, CAI Jin-Song, LIN Cheng-Fang, SONG Hao-Wei, YANG Yu-Sheng. Response of leaf litter decomposition of different tree species to nitrogen addition in a subtropical forest [J]. Chin J Plant Ecol, 2020, 44(3): 214-227. |
[12] | CHE Jian, ZHENG Jie, JIANG Ya, JIN Yi, YI Yin. Separation of phylogeny and ecological behaviors between evergreen and deciduous woody angiosperms in the subtropical forest dynamics plots of China [J]. Chin J Plant Ecol, 2020, 44(10): 1007-1014. |
[13] | ZHANG Zhen-Zhen, ZHAO Ping, ZHANG Jin-Xiu, SI Yao. Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2019, 43(2): 131-138. |
[14] | ZOU Zan, CHEN Jin-Song, LI Yang, SONG Hui-Xing. Effects of transportation direction of photosynthate on soil microbial processes in the rhizosphere of Phyllostachys bissetii [J]. Chin J Plant Ecol, 2018, 42(8): 863-872. |
[15] | WEI Cui-Cui, LIU Xiao-Fei, LIN Cheng-Fang, LI Xian-Feng, LI Yan, ZHENG Yu-Xiong. Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China [J]. Chin J Plant Ecol, 2018, 42(6): 692-702. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn