Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (5): 528-538.DOI: 10.17521/cjpe.2020.0139
Special Issue: 青藏高原植物生态学:植物-土壤-微生物; 微生物生态学
• Research Articles • Previous Articles Next Articles
WANG Zi-Wei1,2,3, WAN Song-Ze3, JIANG Hong-Mao1,2, HU Yang1,2, MA Shu-Qin4, CHEN You-Chao5, LU Xu-Yang1,*()
Received:
2020-05-11
Accepted:
2020-07-17
Online:
2021-05-20
Published:
2020-08-10
Contact:
LU Xu-Yang
Supported by:
WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau[J]. Chin J Plant Ecol, 2021, 45(5): 528-538.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0139
草地类型 Grassland type | INV (mg·g-1·24 h-1) | CEL (mg·g-1·72 h-1) | βG (IU·g-1) | PPO (μg·g-1·3 h-1) | POD (mg·g-1·2 h -1) | ARY (IU·g-1) | NAG (IU·g-1) |
---|---|---|---|---|---|---|---|
AM (n = 5) | 1.054 ± 0.203a | 0.131 ± 0.040a | 0.473 ± 0.076ab | 241.016 ± 17.560ab | 0.094 ± 0.013ab | 0.683 ± 0.344b | 115.463 ± 23.098a |
AS (n = 5) | 1.018 ± 0.389ab | 0.068 ± 0.016b | 0.471 ± 0.129ab | 212.752 ± 22.048b | 0.090 ± 0.010ab | 1.277 ± 0.280ab | 136.778 ± 52.330a |
AMS (n = 3) | 0.560 ± 0.148b | 0.095 ± 0.045ab | 0.559 ± 0.058ab | 220.874 ± 25.974ab | 0.123 ± 0.051a | 1.31 ± 0.870ab | 116.926 ± 80.235a |
ADS (n = 5) | 0.666 ± 0.408ab | 0.081 ± 0.026b | 0.426 ± 0.167b | 230.504 ± 25.391ab | 0.082 ± 0.024b | 1.062 ± 0.855ab | 102.718 ± 25.936a |
AD (n = 3) | 0.595 ± 0.206ab | 0.085 ± 0.023ab | 0.631 ± 0.041a | 256.640 ± 43.417a | 0.083 ± 0.021ab | 1.831 ± 0.951a | 119.756 ± 124.068a |
草地类型 Grassland type | LAP (IU·g-1) | L-ASP (IU·g-1) | NAGLU (IU·g-1) | NR (mg·g-1·24 h-1) | NiRs (mg·g-1·24 h-1) | ASP (IU·g-1) | ALP (mg·g-1·24 h-1) |
AM (n = 5) | 2.399 ± 0.847a | 2.750 ± 0.661a | 4.188 ± 2.274a | 7.026 ± 0.652a | 2.949 ± 0.148b | 219.661 ± 102.660a | 14.292 ± 3.340ab |
AS (n = 5) | 2.661 ± 0.843a | 2.887 ± 0.729a | 2.978 ± 0.991a | 6.638 ± 0.714a | 3.139 ± 0.080a | 296.056 ± 196.915a | 17.818 ± 2.721a |
AMS (n = 3) | 2.824 ± 1.048a | 2.360 ± 0.426a | 2.248 ± 1.316a | 6.083 ± 0.612a | 3.086 ± 0.049ab | 133.919 ± 83.407a | 13.453 ± 0.439ab |
ADS (n = 5) | 2.293 ± 0.444a | 2.607 ± 0.493a | 2.800 ± 1.232a | 6.310 ± 0.662a | 3.027 ± 0.121ab | 341.565 ± 233.176a | 12.698 ± 5.912ab |
AD (n = 3) | 1.956 ± 0.521a | 2.778 ± 0.241a | 3.959 ± 2.150a | 6.360 ± 0.915a | 3.104 ± 0.033ab | 257.471 ± 123.057a | 8.990 ± 3.381b |
Table 1 Soil enzyme activities among different types of alpine grasslands on the Qingzang Plateau (mean ± SD)
草地类型 Grassland type | INV (mg·g-1·24 h-1) | CEL (mg·g-1·72 h-1) | βG (IU·g-1) | PPO (μg·g-1·3 h-1) | POD (mg·g-1·2 h -1) | ARY (IU·g-1) | NAG (IU·g-1) |
---|---|---|---|---|---|---|---|
AM (n = 5) | 1.054 ± 0.203a | 0.131 ± 0.040a | 0.473 ± 0.076ab | 241.016 ± 17.560ab | 0.094 ± 0.013ab | 0.683 ± 0.344b | 115.463 ± 23.098a |
AS (n = 5) | 1.018 ± 0.389ab | 0.068 ± 0.016b | 0.471 ± 0.129ab | 212.752 ± 22.048b | 0.090 ± 0.010ab | 1.277 ± 0.280ab | 136.778 ± 52.330a |
AMS (n = 3) | 0.560 ± 0.148b | 0.095 ± 0.045ab | 0.559 ± 0.058ab | 220.874 ± 25.974ab | 0.123 ± 0.051a | 1.31 ± 0.870ab | 116.926 ± 80.235a |
ADS (n = 5) | 0.666 ± 0.408ab | 0.081 ± 0.026b | 0.426 ± 0.167b | 230.504 ± 25.391ab | 0.082 ± 0.024b | 1.062 ± 0.855ab | 102.718 ± 25.936a |
AD (n = 3) | 0.595 ± 0.206ab | 0.085 ± 0.023ab | 0.631 ± 0.041a | 256.640 ± 43.417a | 0.083 ± 0.021ab | 1.831 ± 0.951a | 119.756 ± 124.068a |
草地类型 Grassland type | LAP (IU·g-1) | L-ASP (IU·g-1) | NAGLU (IU·g-1) | NR (mg·g-1·24 h-1) | NiRs (mg·g-1·24 h-1) | ASP (IU·g-1) | ALP (mg·g-1·24 h-1) |
AM (n = 5) | 2.399 ± 0.847a | 2.750 ± 0.661a | 4.188 ± 2.274a | 7.026 ± 0.652a | 2.949 ± 0.148b | 219.661 ± 102.660a | 14.292 ± 3.340ab |
AS (n = 5) | 2.661 ± 0.843a | 2.887 ± 0.729a | 2.978 ± 0.991a | 6.638 ± 0.714a | 3.139 ± 0.080a | 296.056 ± 196.915a | 17.818 ± 2.721a |
AMS (n = 3) | 2.824 ± 1.048a | 2.360 ± 0.426a | 2.248 ± 1.316a | 6.083 ± 0.612a | 3.086 ± 0.049ab | 133.919 ± 83.407a | 13.453 ± 0.439ab |
ADS (n = 5) | 2.293 ± 0.444a | 2.607 ± 0.493a | 2.800 ± 1.232a | 6.310 ± 0.662a | 3.027 ± 0.121ab | 341.565 ± 233.176a | 12.698 ± 5.912ab |
AD (n = 3) | 1.956 ± 0.521a | 2.778 ± 0.241a | 3.959 ± 2.150a | 6.360 ± 0.915a | 3.104 ± 0.033ab | 257.471 ± 123.057a | 8.990 ± 3.381b |
Fig. 2 Correlation analysis of different enzyme activities in alpine grasslands on the Qingzang Plateau. Abbreviations for enzymes are shown in Table 1. *, p < 0.05; **, p < 0.01.
Fig. 3 Redundancy analysis (RDA) of the effects of environmental factors on soil enzyme activity in alpine grasslands on the Qingzang Plateau. AD1-AD3 represent three samples of alpine desert; ADS1-ADS5 represent five samples of alpine desert steppe; AM1- AM5 represent five samples of alpine meadow; AMS1-AMS3 represent three samples of alpine meadow steppe; AS1-AS5 represent five samples of alpine steppe. Act, actinomycetes; APB, above-ground plant biomass; APOM, above-ground plant organic matter; APTN, above-ground plant total nitrogen; C:N, C:P, N:P represent the ratio between carbon、nitrogen and phosphorus; G+, gram-positive bacteria; G-, gram-negative bacteria; ρb, bulk density; SOM, soil organic matter; TN, total nitrogen; TP, total phosphorus; UPB, below-ground plant biomass; UPOM, below-ground plant organic matter; UPTN, below-ground plant total nitrogen. Abbreviations for enzymes are shown in Table 1.
环境因子 Environmental factor | INV | CEL | βG | PPO | POD | ARY | NAG | LAP | L-ASP | NAGLU | NR | NiRs | ASP | ALP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ρb | -0.482* | -0.346 | 0.272 | 0.211 | 0.193 | 0.013 | -0.365 | 0.103 | 0.047 | -0.137 | -0.026 | -0.020 | 0.086 | -0.168 |
pH | -0.452* | 0.234 | 0.169 | 0.049 | 0.238 | 0.074 | -0.146 | -0.033 | -0.256 | -0.155 | -0.315 | -0.016 | -0.222 | -0.245 |
SOM | 0.601** | 0.562** | -0.206 | 0.057 | 0.073 | -0.441* | 0.137 | 0.004 | 0.206 | 0.284 | 0.450* | -0.424 | -0.054 | 0.437* |
TN | 0.552** | 0.538* | -0.250 | 0.016 | 0.062 | -0.337 | 0.156 | -0.073 | 0.153 | 0.148 | 0.336 | -0.244 | -0.142 | 0.542* |
TP | -0.016 | -0.165 | -0.057 | 0.048 | -0.162 | 0.391 | -0.174 | 0.101 | -0.208 | -0.214 | -0.348 | 0.348 | -0.103 | -0.178 |
Bacteria | 0.576** | 0.582** | -0.177 | 0.033 | 0.145 | -0.386 | 0.111 | -0.064 | 0.218 | 0.249 | 0.366 | -0.280 | -0.230 | 0.364 |
Fungi | 0.543* | 0.510* | -0.152 | 0.056 | 0.214 | -0.393 | 0.173 | -0.057 | 0.327 | 0.135 | 0.320 | -0.238 | -0.229 | 0.339 |
Act | 0.584** | 0.545* | -0.136 | 0.039 | 0.024 | -0.291 | 0.219 | -0.117 | 0.175 | 0.312 | 0.332 | -0.318 | -0.288 | 0.386 |
G+ | 0.574** | 0.571** | -0.187 | 0.030 | 0.174 | -0.396 | 0.098 | -0.069 | 0.200 | 0.246 | 0.353 | -0.281 | -0.272 | 0.357 |
G- | 0.588** | 0.595** | -0.186 | 0.037 | 0.155 | -0.403 | 0.088 | -0.051 | 0.203 | 0.270 | 0.382 | -0.310 | -0.229 | 0.374 |
APB | 0.351 | 0.513* | 0.008 | -0.103 | 0.117 | -0.283 | 0.164 | -0.020 | -0.088 | 0.068 | 0.097 | -0.173 | -0.257 | 0.102 |
UPB | 0.470* | 0.557** | -0.201 | 0.110 | 0.010 | -0.426 | -0.152 | 0.022 | 0.032 | 0.323 | 0.290 | -0.335 | -0.390 | 0.163 |
APOM | 0.030 | 0.030 | -0.176 | 0.291 | 0.019 | -0.013 | -0.421 | -0.386 | 0.250 | 0.141 | 0.233 | 0.221 | 0.216 | 0.027 |
UPOM | 0.198 | 0.061 | -0.066 | -0.050 | -0.143 | 0.168 | 0.069 | -0.411 | -0.074 | 0.018 | -0.109 | 0.318 | 0.060 | -0.061 |
APTN | 0.002 | 0.153 | -0.007 | -0.123 | -0.213 | -0.295 | 0.185 | -0.220 | -0.248 | 0.319 | -0.391 | -0.045 | -0.191 | -0.138 |
UPTN | -0.200 | -0.323 | -0.017 | -0.101 | -0.169 | -0.216 | 0.062 | -0.034 | -0.034 | -0.029 | -0.356 | 0.062 | -0.012 | -0.288 |
C:N | 0.070 | 0.075 | -0.025 | 0.133 | 0.041 | -0.161 | -0.004 | 0.366 | 0.184 | 0.122 | 0.275 | -0.277 | 0.014 | -0.271 |
C:P | 0.447* | 0.324 | -0.080 | 0.068 | 0.142 | -0.462* | 0.093 | -0.015 | 0.037 | 0.193 | 0.334 | -0.507* | -0.071 | 0.364 |
N:P | 0.500* | 0.484* | -0.081 | 0.012 | 0.155 | -0.409 | 0.074 | -0.203 | -0.010 | 0.373 | 0.315 | -0.408 | -0.143 | 0.481* |
Table 2 Correlations among environmental factors and enzyme activities in alpine grasslands on the Qingzang Plateau
环境因子 Environmental factor | INV | CEL | βG | PPO | POD | ARY | NAG | LAP | L-ASP | NAGLU | NR | NiRs | ASP | ALP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ρb | -0.482* | -0.346 | 0.272 | 0.211 | 0.193 | 0.013 | -0.365 | 0.103 | 0.047 | -0.137 | -0.026 | -0.020 | 0.086 | -0.168 |
pH | -0.452* | 0.234 | 0.169 | 0.049 | 0.238 | 0.074 | -0.146 | -0.033 | -0.256 | -0.155 | -0.315 | -0.016 | -0.222 | -0.245 |
SOM | 0.601** | 0.562** | -0.206 | 0.057 | 0.073 | -0.441* | 0.137 | 0.004 | 0.206 | 0.284 | 0.450* | -0.424 | -0.054 | 0.437* |
TN | 0.552** | 0.538* | -0.250 | 0.016 | 0.062 | -0.337 | 0.156 | -0.073 | 0.153 | 0.148 | 0.336 | -0.244 | -0.142 | 0.542* |
TP | -0.016 | -0.165 | -0.057 | 0.048 | -0.162 | 0.391 | -0.174 | 0.101 | -0.208 | -0.214 | -0.348 | 0.348 | -0.103 | -0.178 |
Bacteria | 0.576** | 0.582** | -0.177 | 0.033 | 0.145 | -0.386 | 0.111 | -0.064 | 0.218 | 0.249 | 0.366 | -0.280 | -0.230 | 0.364 |
Fungi | 0.543* | 0.510* | -0.152 | 0.056 | 0.214 | -0.393 | 0.173 | -0.057 | 0.327 | 0.135 | 0.320 | -0.238 | -0.229 | 0.339 |
Act | 0.584** | 0.545* | -0.136 | 0.039 | 0.024 | -0.291 | 0.219 | -0.117 | 0.175 | 0.312 | 0.332 | -0.318 | -0.288 | 0.386 |
G+ | 0.574** | 0.571** | -0.187 | 0.030 | 0.174 | -0.396 | 0.098 | -0.069 | 0.200 | 0.246 | 0.353 | -0.281 | -0.272 | 0.357 |
G- | 0.588** | 0.595** | -0.186 | 0.037 | 0.155 | -0.403 | 0.088 | -0.051 | 0.203 | 0.270 | 0.382 | -0.310 | -0.229 | 0.374 |
APB | 0.351 | 0.513* | 0.008 | -0.103 | 0.117 | -0.283 | 0.164 | -0.020 | -0.088 | 0.068 | 0.097 | -0.173 | -0.257 | 0.102 |
UPB | 0.470* | 0.557** | -0.201 | 0.110 | 0.010 | -0.426 | -0.152 | 0.022 | 0.032 | 0.323 | 0.290 | -0.335 | -0.390 | 0.163 |
APOM | 0.030 | 0.030 | -0.176 | 0.291 | 0.019 | -0.013 | -0.421 | -0.386 | 0.250 | 0.141 | 0.233 | 0.221 | 0.216 | 0.027 |
UPOM | 0.198 | 0.061 | -0.066 | -0.050 | -0.143 | 0.168 | 0.069 | -0.411 | -0.074 | 0.018 | -0.109 | 0.318 | 0.060 | -0.061 |
APTN | 0.002 | 0.153 | -0.007 | -0.123 | -0.213 | -0.295 | 0.185 | -0.220 | -0.248 | 0.319 | -0.391 | -0.045 | -0.191 | -0.138 |
UPTN | -0.200 | -0.323 | -0.017 | -0.101 | -0.169 | -0.216 | 0.062 | -0.034 | -0.034 | -0.029 | -0.356 | 0.062 | -0.012 | -0.288 |
C:N | 0.070 | 0.075 | -0.025 | 0.133 | 0.041 | -0.161 | -0.004 | 0.366 | 0.184 | 0.122 | 0.275 | -0.277 | 0.014 | -0.271 |
C:P | 0.447* | 0.324 | -0.080 | 0.068 | 0.142 | -0.462* | 0.093 | -0.015 | 0.037 | 0.193 | 0.334 | -0.507* | -0.071 | 0.364 |
N:P | 0.500* | 0.484* | -0.081 | 0.012 | 0.155 | -0.409 | 0.074 | -0.203 | -0.010 | 0.373 | 0.315 | -0.408 | -0.143 | 0.481* |
[1] |
Adamczyk B,Kilpeläinen P,Kitunen V,Smolander A(2014).Potential activities of enzymes involved in N, C, P and S cycling in boreal forest soil under different tree species.Pedobiologia,57, 97-102.
DOI URL |
[2] |
Bach HJ,Munch JC(2000).Identification of bacterial sources of soil peptidases.Biology and Fertility of Soils,31, 219-224.
DOI URL |
[3] | Bao SD(2000).Agrochemical Analysis of Soil.Agricultural Press,Beijing. 30-83. |
[鲍士旦(2000).土壤农化分析.农业出版社,北京. 30-83.] | |
[4] |
Burns RG,Deforest JL,Marxsen J,Sinsabaugh RL,Stromberger ME,Wallenstein MD,Weintraub MN,Zoppini A(2013).Soil enzymes in a changing environment: current knowledge and future directions.Soil Biology & Biochemistry,58, 216-234.
DOI URL |
[5] |
Chen H,Li DJ,Zhao J,Zhang W,Xiao KC,Wang KL(2018).Nitrogen addition aggravates microbial carbon limitation: Evidence from ecoenzymatic stoichiometry.Geoderma,329, 61-64.
DOI URL |
[6] |
Djukic I,Zehetner F,Mentler A,Gerzabek MH(2010).Microbial community composition and activity in different Alpine vegetation zones.Soil Biology & Biochemistry,42, 155-161.
DOI URL |
[7] | Duan MJ,Gao QZ,Guo YQ,Wan YF,Li YE,Ganzhuzhabu ,Danjiuluobu ,Wei LT,Xiraozhuoma LT(2011).Species diversity distribution pattern of alpine grassland communities along an altitudinal gradient in the Northern Tibet.Pratacultural Science,28, 1845-1850. |
[段敏杰,高清竹,郭亚奇,万运帆,李玉娥,干珠扎布,旦久罗布,韦兰亭,西饶卓玛(2011).藏北高寒草地植物群落物种多样性沿海拔梯度的分布格局.草业科学,28, 1845-1850.] | |
[8] |
Fu G,Shen ZX(2017).Response of alpine soils to nitrogen addition on the Tibetan Plateau: a meta-analysis.Applied Soil Ecology,114, 99-104.
DOI URL |
[9] | Guan SY(1986).Journal of Natural Resources,Agriculture Press,Beijing. 294-297. |
[关松荫(1986).土壤酶及其研究方法.农业出版社,北京. 294-297.] | |
[10] |
He QQ,Wu YH,Bing HJ,Zhou J,Wang JP(2020).Vegetation type rather than climate modulates the variation in soil enzyme activities and stoichiometry in subalpine forests in the eastern Tibetan Plateau.Geoderma,374, 114424. DOI:10.1016/j.geoderma.2020.114424.
DOI URL |
[11] |
Henry HAL(2013).Reprint of “Soil extracellular enzyme dynamics in a changing climate”.Soil Biology & Biochemistry,56, 53-59.
DOI URL |
[12] |
Hernández DL,Hobbie SE(2010).The effects of substrate composition, quantity, and diversity on microbial activity.Plant and Soil,335, 397-411.
DOI URL |
[13] |
Hong JT,Wang XD,Wu JB(2014).Stoichiometry of root and leaf nitrogen and phosphorus in a dry alpine steppe on the Northern Tibetan Plateau.PLOS ONE,9, e109052. DOI:10.1371/journal.pone.0109052.
DOI URL |
[14] |
Jian SY,Li JW,Chen J,Wang GS,Mayes MA,Dzantor KE,Hui DF,Luo YQ(2016).Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis.Soil Biology & Biochemistry,101, 32-43.
DOI URL |
[15] |
Jing X,Chen X,Xiao W,Lin L,Wang C,He JS,Zhu B(2018).Soil enzymatic responses to multiple environmental drivers in the Tibetan grasslands: insights from two manipulative field experiments and a meta-analysis.Pedobiologia,71, 50-58.
DOI URL |
[16] |
Jing X,Sanders NJ,Shi Y,Chu HY,Classen AT,Zhao K,Chen LT,Shi Y,Jiang YX,He JS(2015).The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate.Nature Communications,6, 8159. DOI:10.1038/ncomms9159.
DOI PMID |
[17] |
Katsuyama C,Kondo N,Suwa Y,Yamagishi T,Itoh M,Ohte N,Kimura H,Nagaosa K,Kato K(2008).Denitrification activity and relevant bacteria revealed by nitrite reductase gene fragments in soil of temperate mixed forest.Microbes and Environments,23, 337-345.
PMID |
[18] |
Keeler BL,Hobbie SE,Kellogg LE(2009).Effects of long- term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition.Ecosystems,12, 1-15.
DOI URL |
[19] |
Kivlin SN,Treseder KK(2014).Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition.Biogeochemistry,117, 23-37.
DOI URL |
[20] |
Kuypers MMM,Marchant HK,Kartal B(2018).The microbial nitrogen-cycling network.Nature Reviews Microbiology,16, 263-276.
DOI PMID |
[21] |
Li GL,Kim S,Han SH,Chang HN,Du DL,Son YW(2018).Precipitation affects soil microbial and extracellular enzymatic responses to warming.Soil Biology & Biochemistry,120, 212-221.
DOI URL |
[22] |
Li Y,Nie C,Liu YH,Du W,He P(2019).Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland.Science of the Total Environment,654, 264-274.
DOI URL |
[23] |
Lin B,Zhao XR,Zheng Y,Qi S,Liu XZ(2017).Effect of grazing intensity on protozoan community, microbial biomass, and enzyme activity in an alpine meadow on the Tibetan Plateau.Journal of Soils and Sediments,17, 2752-2762.
DOI URL |
[24] |
Liu SB,Razavi BS,Su X,Maharjan M,Zarebanadkouki M,Blagodatskaya E,Kuzyakov Y(2017).Spatio-temporal patterns of enzyme activities after manure application reflect mechanisms of niche differentiation between plants and microorganisms.Soil Biology & Biochemistry,112, 100-109.
DOI URL |
[25] |
Liu XC,Zhang ST(2019).Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil.Plant and Soil,440, 11-24.
DOI URL |
[26] |
Liu XJ,Zhang Y,Han WX,Tang AH,Shen JL,Cui ZL,Vitousek P,Erisman JW,Goulding K,Christie P,Fangmeier A,Zhang FS(2013).Enhanced nitrogen deposition over China.Nature,494, 459-462.
DOI URL |
[27] |
Lopez-Aizpun M,Arango-Mora C,Santamaria C,Lasheras E,Santamaria JM,Ciganda VS,Cardenas LM,Elustondo D(2018).Atmospheric ammonia concentration modulates soil enzyme and microbial activity in an oak forest affecting soil microbial biomass.Soil Biology & Biochemistry,116, 378-387.
DOI URL |
[28] |
Lu XY,Yan Y,Sun J,Zhang XK,Chen YC,Wang XD,Cheng GW(2015).Carbon, nitrogen, and phosphorus storage in alpine grassland ecosystems of Tibet: effects of grazing exclusion.Ecology and Evolution,5, 4492-4504.
DOI URL |
[29] |
Ma WJ,Li J,Gao Y,Xing F,Sun SN,Zhang T,Zhu XZ,Chen C,Li Z(2020).Responses of soil extracellular enzyme activities and microbial community properties to interaction between nitrogen addition and increased precipitation in a semi-arid grassland ecosystem.Science of the Total Environment,703, 134691. DOI:10.1016/S1002-0160(18) 60010-4.
DOI URL |
[30] |
Manzoni S,Jackson RB,Trofymow JA,Porporato A(2008).The global stoichiometry of litter nitrogen mineralization.Science,321, 684-686.
DOI URL |
[31] |
Mazzon M,Cavani L,Margon A,Sorrenti G,Ciavatta C,Marzadori C(2018).Changes in soil phenol oxidase activities due to long-term application of compost and mineral N in a walnut orchard.Geoderma,316, 70-77.
DOI URL |
[32] |
Marx MC,Wood M,Jarvis SC(2001).A microplate fluorimetric assay for the study of enzyme diversity in soils.Soil Biology & Biochemistry,33, 1633-1640.
DOI URL |
[33] | Mo ZH,Li YE,Gao QZ(2012).Simulation on productivity of main grassland ecosystems responding to climate change.Chinese Journal of Agrometeorology,33, 545-554. |
[莫志鸿,李玉娥,高清竹(2012).主要草原生态系统生产力对气候变化响应的模拟.中国农业气象,33, 545-554.] | |
[34] |
Nannipieri P,Trasar-Cepeda C,Dick RP(2018).Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis.Biology and Fertility of Soils,54, 11-19.
DOI URL |
[35] | Niu L,Liu YH,Li Y,Ouyang SN(2015).Microbial community structure of the alpine meadow under different grazing styles in Naqu prefecture of Tibet.Chinese Journal of Applied Ecology,26, 2298-2306. |
[牛磊,刘颖慧,李悦,欧阳胜男(2015).西藏那曲地区高寒草甸不同放牧方式下土壤微生物群落结构特征.应用生态学报,26, 2298-2306.] | |
[36] |
Qing Q,Yang B,Wyman CE(2010).Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes.Bioresource Technology,101, 9624-9630.
DOI PMID |
[37] |
Rui YC,Wang YF,Chen CR,Zhou XQ,Wang SP,Xu ZH,Duan JC,Kang XM,Lu SB,Luo CY(2012).Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China.Plant and Soil,357, 73-87.
DOI URL |
[38] |
Sardans J,Peñuelas J,Estiarte M(2008).Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland.Applied Soil Ecology,39, 223-235.
DOI URL |
[39] |
Sinsabaugh RL(2010).Phenol oxidase, peroxidase and organic matter dynamics of soil.Soil Biology & Biochemistry,42, 391-404.
DOI URL |
[40] |
Sinsabaugh RL,Antibus RK,Linkins AE,Mcclaugherty C,Rayburn L,Repert D,Weiland T(1992).Wood decomposition over a first-order watershed: mass loss as a function of lignocellulase activity.Soil Biology & Biochemistry,24, 743-749.
DOI URL |
[41] |
Sinsabaugh RL,Belnap J,Findlay SG,Shah JJF,Hill BH,Kuehn KA,Kuske CR,Litvak ME,Martinez NG,Moorhead DL,Warnock DD(2014).Extracellular enzyme kinetics scale with resource availability.Biogeochemistry,121, 287-304.
DOI URL |
[42] |
Sinsabaugh RL,Follstad Shah JJ(2011).Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse.Biogeochemistry,102, 31-43.
DOI URL |
[43] |
Sinsabaugh RL,Gallo ME,Lauber C,Waldrop MP,Zak DR(2005).Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition.Biogeochemistry,75, 201-215.
DOI URL |
[44] |
Sinsabaugh RL,Lauber CL,Weintraub MN,Ahmed B,Allison SD,Crenshaw C,Contosta AR,Cusack D,Frey S,Gallo ME,Gartner TB,Hobbie SE,Holland K,Keeler BL,Powers JS,Stursova M,Takacs-Vesbach C,Waldrop MP,Wallenstein MD,Zak DR,Zeglin LH(2008).Stoichiometry of soil enzyme activity at global scale.Ecology Letters,11, 1252-1264.
DOI PMID |
[45] |
Sinsabaugh RL,Moorhead DL(1994).Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition.Soil Biology & Biochemistry,26, 1305-1311.
DOI URL |
[46] |
Šnajdr J,Cajthaml T,Valášková V,Merhautová V,Petránková M,Spetz P,Leppänen K,Baldrian P(2011).Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition.Fems Microbiology Ecology,75, 291-303.
DOI URL |
[47] |
Torres IF,Bastida F,Hernandez T,Albaladejo J,Garcia C(2015).Enzyme activity, microbial biomass and community structure in a long-term restored soil under semi-arid conditions.Soil Research,53, 553-560.
DOI URL |
[48] |
Veres Z,Kotroczó Z,Fekete I,Tóth JA,Lajtha K,Townsend K,Tóthmérész B(2015).Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability.Applied Soil Ecology,92, 18-23.
DOI URL |
[49] |
von Sperber C,Kries H,Tamburini F,Bernasconi SM,Frossard E(2014).The effect of phosphomonoesterases on the oxygen isotope composition of phosphate.Geochimica Et Cosmochimica Acta,125, 519-527.
DOI URL |
[50] |
Wallenius K,Rita HN,Mikkonen A,Lappi K,Lindstrom K,Hartikainen H,Raateland A,Niemi R(2011).Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities.Soil Biology & Biochemistry,43, 1464-1473.
DOI URL |
[51] |
Wallenstein MD,McMahon SK,Schimel JP(2009).Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils.Global Change Biology,15, 1631-1639.
DOI URL |
[52] | Wang SG,Hou YL(2004).Application of phospholipid fatty acid method in soil microbial analysis.Microbiology,31, 114-117. |
[王曙光,侯彦林(2004).磷脂脂肪酸方法在土壤微生物分析中的应用.微生物学通报,31, 114-117.] | |
[53] |
Wang XX,Dong SK,Gao QZ,Zhou HK,Liu SL,Su XK,Li YY(2014).Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China.Soil Biology & Biochemistry,76, 140-142.
DOI URL |
[54] |
Wanke AL,Rovenich H,Schwanke F,Velte S,Becker S,Hehemann JH,Wawra S,Zuccaro A(2020).Plant species- specific recognition of long and short β-1,3-linked glucans is mediated by different receptor systems.The Plant Journal,102, 1142-1156.
DOI PMID |
[55] |
Weintraub SR,Wieder WR,Cleveland CC,Townsend AR(2013).Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest.Biogeochemistry,114, 313-326.
DOI URL |
[56] |
Xiao W,Chen X,Jing X,Zhu B(2018).A meta-analysis of soil extracellular enzyme activities in response to global change.Soil Biology & Biochemistry,123, 21-32.
DOI URL |
[57] |
Xu G,Liu Y,Long ZJ,Hu SL,Zhang YB,Jiang H(2018).Effects of exotic plantation forests on soil edaphon and organic matter fractions.Science of the Total Environment,626, 59-68.
DOI URL |
[58] |
Xu ZF,Hu R,Xiong P,Wan C,Cao G,Liu Q(2010).Initial soil responses to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China: nutrient availabilities, microbial properties and enzyme activities.Applied Soil Ecology,46, 291-299.
DOI URL |
[59] | Yan ZQ,Qi YC,Li SJ,Dong YS,Peng Q,He YL,Li ZL(2017).Soil microorganisms and enzyme activity of grassland ecosystem affected by changes in precipitation pattern and increase in nitrogen deposition—A review.Microbiology,44, 1481-1490. |
[闫钟清,齐玉春,李素俭,董云社,彭琴,贺云龙,李兆林(2017).降水和氮沉降增加对草地土壤微生物与酶活性的影响研究进展.微生物学通报,44, 1481-1490.] | |
[60] |
Yang YG,Yang Y,Geng YQ,Huang GL,Cui XQ,Hou M(2018).Effects of different land types on soil enzyme activity in the Qinghai lake region.Wetlands,38, 711-721.
DOI URL |
[61] |
Yu CQ,Zhang YJ,Claus H,Zeng R,Zhang XZ,Wang JS(2012).Ecological and environmental issues faced by a developing Tibet.Environmental Science & Technology,46, 1979-1980.
DOI URL |
[62] |
Zhang C,Wang J,Liu GB,Song ZL,Fang LC(2019).Impact of soil leachate on microbial biomass and diversity affected by plant diversity.Plant and Soil,439, 505-523.
DOI |
[63] | Zhang XK,Lu XY,Wang XD(2014).The spatial and temporal variation of NDVI and its relationships to climatic factors in Northern Tibet over the period of 2000-2010—Take Shantsa for example.Journal of Mountain Research,32, 475-480. |
[张晓克,鲁旭阳,王小丹(2014).2000-2010年藏北申扎县植被NDVI时空变化与气候因子的关系.山地学报,32, 475-480.] | |
[64] |
Zhang Y,Dong SK,Gao QZ,Liu SL,Ganjurjav H,Wang XX,Su XK,Wu XY(2017).Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes.Scientific Reports,7, 43077. DOI:10.1038/srep43077.
DOI PMID |
[65] |
Zhao SC,Li KJ,Zhou W,Qiu SJ,Huang SW,He P(2016).Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China.Agriculture Ecosystems & Environment,216, 82-88.
DOI URL |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[3] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[4] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[5] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[6] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[7] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[8] | ZHENG Yang, SUN Xue-Guang, XIONG Yang-Yang, YUAN Gui-Yun, DING Gui-Jie. Effects of phyllospheric microorganisms on litter decomposition of Pinus massoniana [J]. Chin J Plant Ecol, 2023, 47(5): 687-698. |
[9] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[10] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[11] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[12] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[13] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[14] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[15] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn