Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (4): 571-583.DOI: 10.17521/cjpe.2022.0177
• Research Articles • Previous Articles Next Articles
YANG Li-Lin, XING Wan-Qiu*(), WANG Wei-Guang, CAO Ming-Zhu
Received:
2022-05-05
Accepted:
2022-09-12
Online:
2023-04-20
Published:
2022-09-13
Contact:
*(20170910@hhu.edu.cn)
Supported by:
YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River[J]. Chin J Plant Ecol, 2023, 47(4): 571-583.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0177
Fig. 1 Location map of sap flow measurement system and meteorological gradient tower in the source area of Xin’anjing River. A, Photograph of the sample plot. B, Meteorological gradient tower. C, Sample trees monitored by the sap flow measurement system.
编号 No. | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 边材面积 Sapwood area (cm2) |
---|---|---|---|
1 | 11.4 | 7.7 | 79.5 |
2 | 14.4 | 8.2 | 134.7 |
3 | 15.3 | 8.7 | 148.8 |
4 | 16.6 | 9.3 | 183.8 |
5 | 18.3 | 14.1 | 263.5 |
Table 1 Basic information of sampling trees of Cunninghamia lanceolata in the source area of Xin’anjiang River
编号 No. | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 边材面积 Sapwood area (cm2) |
---|---|---|---|
1 | 11.4 | 7.7 | 79.5 |
2 | 14.4 | 8.2 | 134.7 |
3 | 15.3 | 8.7 | 148.8 |
4 | 16.6 | 9.3 | 183.8 |
5 | 18.3 | 14.1 | 263.5 |
Fig. 2 Seasonal variations of daily sap flow rate (Js) (mean ± SD) of Cunninghamia lanceolata and environmental factors during the study period. P, precipitation; Rn, net solar radiation; RH, air relative humidity; SWC, soil water content; Ta, air temperature; VPD, vapor pressure deficit.
变量 Variable | VPD | Ta | RH | Rn | SWC | Js |
---|---|---|---|---|---|---|
VPD | 1.000 | 0.586** | -0.928** | 0.701** | -0.258** | 0.871** |
Ta | 1.000 | -0.366** | 0.481** | -0.161** | 0.631** | |
RH | 1.000 | -0.634** | 0.231** | -0.751** | ||
Rn | 1.000 | -0.102** | 0.771** | |||
SWC | 1.000 | -0.172** |
Table 2 Pearson correlation coefficients between environmental factors and sap flow rates (Js) of Cunninghamia lanceolata at hourly scale during the study period (n = 3 864)
变量 Variable | VPD | Ta | RH | Rn | SWC | Js |
---|---|---|---|---|---|---|
VPD | 1.000 | 0.586** | -0.928** | 0.701** | -0.258** | 0.871** |
Ta | 1.000 | -0.366** | 0.481** | -0.161** | 0.631** | |
RH | 1.000 | -0.634** | 0.231** | -0.751** | ||
Rn | 1.000 | -0.102** | 0.771** | |||
SWC | 1.000 | -0.172** |
变量 Variable | VPD | Ta | RH | Rn | SWC | Js |
---|---|---|---|---|---|---|
VPD | 1.000 | 0.201* | -0.891** | 0.825** | -0.469** | 0.856** |
Ta | 1.000 | 0.199* | 0.263** | -0.196* | 0.492** | |
RH | 1.000 | -0.700** | 0.342** | -0.643** | ||
Rn | 1.000 | -0.380** | 0.802** | |||
SWC | 1.000 | -0.411** |
Table 3 Pearson correlation coefficients between environmental factors and sap flow rates (Js) of Cunninghamia lanceolata at daily scale during the study period (n = 161)
变量 Variable | VPD | Ta | RH | Rn | SWC | Js |
---|---|---|---|---|---|---|
VPD | 1.000 | 0.201* | -0.891** | 0.825** | -0.469** | 0.856** |
Ta | 1.000 | 0.199* | 0.263** | -0.196* | 0.492** | |
RH | 1.000 | -0.700** | 0.342** | -0.643** | ||
Rn | 1.000 | -0.380** | 0.802** | |||
SWC | 1.000 | -0.411** |
主成分 Principal component | 小时尺度 Hourly time scale | 日尺度 Daily time scale | ||||
---|---|---|---|---|---|---|
特征值 Eigen value | 方差贡献率 Percentage of variance (%) | 累计解释量 Cumulative variance (%) | 特征值 Eigen value | 方差贡献率 Percentage of variance (%) | 累计解释量 Cumulative variance (%) | |
1 | 2.96 | 59.1 | 59.1 | 2.89 | 57.9 | 57.9 |
2 | 0.95 | 18.9 | 78.0 | 1.16 | 23.3 | 81.1 |
3 | 0.68 | 13.5 | 91.6 | 0.70 | 14.1 | 95.2 |
4 | 0.39 | 7.7 | 99.3 | 0.21 | 4.3 | 99.5 |
5 | 0.04 | 0.7 | 100.0 | 0.03 | 0.5 | 100.0 |
Table 4 Eigen values and percentage of variance of environmental factors of Cunninghamia lanceolata forest in the source area of Xin’anjing River based on principal component analysis
主成分 Principal component | 小时尺度 Hourly time scale | 日尺度 Daily time scale | ||||
---|---|---|---|---|---|---|
特征值 Eigen value | 方差贡献率 Percentage of variance (%) | 累计解释量 Cumulative variance (%) | 特征值 Eigen value | 方差贡献率 Percentage of variance (%) | 累计解释量 Cumulative variance (%) | |
1 | 2.96 | 59.1 | 59.1 | 2.89 | 57.9 | 57.9 |
2 | 0.95 | 18.9 | 78.0 | 1.16 | 23.3 | 81.1 |
3 | 0.68 | 13.5 | 91.6 | 0.70 | 14.1 | 95.2 |
4 | 0.39 | 7.7 | 99.3 | 0.21 | 4.3 | 99.5 |
5 | 0.04 | 0.7 | 100.0 | 0.03 | 0.5 | 100.0 |
环境变量 Environmental variation | 小时尺度 Hourly time scale | 日尺度 Daily time scale | ||||
---|---|---|---|---|---|---|
主成分1 PC 1 | 主成分2 PC 2 | 主成分3 PC 3 | 主成分1 PC 1 | 主成分2 PC 2 | 主成分3 PC 3 | |
VPD | 0.96 | 0.04 | -0.13 | 0.97 | -0.04 | 0.12 |
Ta | 0.68 | 0.08 | 0.71 | 0.20 | 0.94 | 0.24 |
RH | -0.89 | -0.03 | 0.38 | -0.87 | 0.44 | -0.07 |
Rn | 0.82 | 0.24 | -0.04 | 0.89 | 0.08 | 0.25 |
SWC | -0.33 | 0.94 | -0.04 | -0.60 | -0.28 | 0.75 |
Table 5 Load of environmental factors of Cunninghamia lanceolata forest in the source area of Xin’anjing River on different principal components (PC)
环境变量 Environmental variation | 小时尺度 Hourly time scale | 日尺度 Daily time scale | ||||
---|---|---|---|---|---|---|
主成分1 PC 1 | 主成分2 PC 2 | 主成分3 PC 3 | 主成分1 PC 1 | 主成分2 PC 2 | 主成分3 PC 3 | |
VPD | 0.96 | 0.04 | -0.13 | 0.97 | -0.04 | 0.12 |
Ta | 0.68 | 0.08 | 0.71 | 0.20 | 0.94 | 0.24 |
RH | -0.89 | -0.03 | 0.38 | -0.87 | 0.44 | -0.07 |
Rn | 0.82 | 0.24 | -0.04 | 0.89 | 0.08 | 0.25 |
SWC | -0.33 | 0.94 | -0.04 | -0.60 | -0.28 | 0.75 |
Fig. 3 Curve fitting of sap flow rate (Js) of Cunninghamia lanceolata with net solar radiation (Rn) and vapor pressure deficit (VPD) at the daily time scale in the source area of Xin’anjiang River.
Fig. 4 Diurnal variations of sap flow rate (Js) of Cunninghamia lanceolata, vapor pressure deficit (VPD) and net solar radiation (Rn) during the study period in the source area of Xin’anjiang River (mean ± SD).
Fig. 5 Correlation coefficients of the sap flow rate (Js) of Cunninghamia lanceolata with vapor pressure deficit (VPD) and net solar radiation (Rn) during the study period under different time lags.
Fig. 7 Diurnal variations of the sap flow rate (Js) of Cunninghamia lanceolata under different soil water content (SWC) with the similar net solar radiation (Rn).
[1] |
Chen LX, Li ZD, Zhang ZQ, Zhang WJ, Zhang XF, Dong KY, Wang GY (2009). Environmental responses of four urban tree species transpiration in northern China. Chinese Journal of Applied Ecology, 20, 2861-2870.
PMID |
[陈立欣, 李湛东, 张志强, 张文娟, 张晓放, 董克宇, 王国玉 (2009). 北方四种城市树木蒸腾耗水的环境响应. 应用生态学报, 20, 2861-2870.]
PMID |
|
[2] | Chen Q, Li YH, Wang QL, Wang L, Lin S, He KN (2019). Simulation of the daily transpiration process of Larix principis-rupprechtii based on Penman-Monteith model. Science of Soil and Water Conservation, 17(5), 54-64. |
[陈琪, 李远航, 王琼琳, 王莉, 林莎, 贺康宁 (2019). 基于Penman-Monteith模型分时段模拟华北落叶松日蒸腾过程. 中国水土保持科学, 17(5), 54-64.] | |
[3] | Chi LL, Han H, Dang HZ, Zhang XL, Zhang RS (2020). Relationships between stem sap flow rate of Pinus densiflora Sieb. et Zucc. var. zhangwuensis and environmental factors. Journal of Arid Land Resources and Environment, 34, 186-191. |
[迟琳琳, 韩辉, 党宏忠, 张学利, 张日升 (2020). 彰武松树干液流特征及其与环境因子间的关系. 干旱区资源与环境, 34, 186-191.] | |
[4] | Cui HX, Tang WP, Pan L, Hu WJ, Wang XR, Dai X (2018). Characteristics of sap flow and its influencing factors of Pinus amandii in Shennongjia. Journal of Central South University of Forestry & Technology, 38(9), 89-93. |
[崔鸿侠, 唐万鹏, 潘磊, 胡文杰, 王晓荣, 戴薛 (2018). 神农架华山松树干液流特征及其影响因素. 中南林业科技大学学报, 38(9), 89-93.] | |
[5] | Dang HZ, Que XE, Feng JC, Wang MM, Zhang JX (2019). Response of sap flow rate of apple trees to environmental factors in Loess Platea of Western Shanxi Province, China. Chinese Journal of Applied Ecology, 30, 823-831. |
[党宏忠, 却晓娥, 冯金超, 王檬檬, 张金鑫 (2019). 晋西黄土区苹果树边材液流速率对环境驱动的响应. 应用生态学报, 30, 823-831.]
DOI |
|
[6] |
Deng Y, Wu S, Ke J, Zhu AJ (2021). Effects of meteorological factors and groundwater depths on plant sap flow velocities in karst critical zone. Science of the Total Environment, 781, 146764. DOI: 10.1016/j.scitotenv.2021.146764.
DOI |
[7] | Guo JR, Bai TJ, Deng WP, Chen Q, Zou Q, Zhang ZJ, Zhang Y, Liu YQ (2019). Differences in sap flow and transpiring water consumption of Cryptomeria japonica with different DBH. Journal of Southwest Forestry University (Natural Science), 39(2), 70-77. |
[郭锦荣, 白天军, 邓文平, 陈琦, 邹芹, 张志坚, 张毅, 刘苑秋 (2019). 不同胸径日本柳杉树干液流及其蒸腾耗水差异. 西南林业大学学报(自然科学), 39(2), 70-77.] | |
[8] | Han H, Zhang XL, Dang HZ, Xu GJ, Zhang X, Wang ST, Chen S, Zhang BX (2020). Inter-annual variation of transpiration intensity of Pinus sylvestris var. mongolica stand on the southern margin of horqin sandy land and its relationship with precipitation and groundwater level. Scientia Silvae Sinicae, 56(11), 31-40. |
[韩辉, 张学利, 党宏忠, 徐贵军, 张晓, 王斯彤, 陈帅, 张柏习 (2020). 科尔沁沙地南缘樟子松林蒸腾强度的年际变化及与降水、地下水位间的关系. 林业科学, 56(11), 31-40.] | |
[9] | Huang YR, Ma YB, Xin ZM, Luo FM, Liu XJ, Li YH, Zhang YN (2021). Flow characteristics of Tamarix chinensis tree trunk fluid in different seasons and the relationships with soil water content and soil temperature. Journal of Northwest Forestry University, 36(5), 1-10. |
[黄雅茹, 马迎宾, 辛智鸣, 罗凤敏, 刘湘杰, 李永华, 张雅楠 (2021). 柽柳不同季节树干液流特征及其与土壤含水量及土壤温度的关系. 西北林学院学报, 36(5), 1-10.] | |
[10] | Jiang WW, Guo YX, Yang SZ, Zhao MS (2011). Dynamics of stem sap flow of Cryptomeria fortunei and its relation to environmental factors in Mount Tianmu National Nature Reserve. Acta Agriculturae Universitatis Jiangxiensis, 33, 899-905. |
[蒋文伟, 郭运雪, 杨淑贞, 赵明水 (2011). 天目山柳杉树干液流动态及其与环境因子的关系. 江西农业大学学报, 33, 899-905.] | |
[11] |
Li W, Yu TF, Li XY Zhao CY (2016). Sap flow characteristics and their response to environmental variables in a desert riparian forest along lower Heihe River Basin, Northwest China. Environmental Monitoring and Assessment, 188, 561. DOI: 10.1007/s10661-016-5570-2.
DOI |
[12] | Lu ZP, Wei YW, Li ZY, Guo XW, Zhou YB (2017). Characteristics of sap flow and its influencing factors of Pinus sylvestris var. mongolica in sandy land of Northwest Liaoning. Chinese Journal of Ecology, 36, 3182-3189. |
[卢志朋, 魏亚伟, 李志远, 郭鑫炜, 周永斌 (2017). 辽西北沙地樟子松树干液流的变化特征及其影响因素. 生态学杂志, 36, 3182-3189.] | |
[13] |
Ma JX, Chen YN, Li WH, Huang X, Zhu CG, Ma XD (2012). Sap flow characteristics of four typical species in desert shelter forest and their responses to environmental factors. Environmental Earth Sciences, 67, 151-160.
DOI URL |
[14] | Mahmood T, Zhou WQ, Ding X, Bakri R, Zulhumar T, Liao K (2021). Sap flow characteristics of Prunus armeniaca L. and its response to environmental factors in Turpan Basin. Chinese Journal of Ecology, 40, 2378-2387. |
[麦合木提·图如普, 周伟权, 丁想, 白克力·肉孜, 祖丽胡码尔·吐尔逊, 廖康 (2021). 吐鲁番盆地杏树树干液流变化特征及其对环境因子的响应. 生态学杂志, 40, 2378-2387.] | |
[15] |
Mei TT, Zhao P, Ni GY, Wang Q, Zeng XP, Zhou CM, Cai XA, Yu MH, Cao QP (2012). Effect of stem diameter at breast height on skewness of sap flow pattern and time lag. Acta Ecologica Sinica, 32, 7018-7026.
DOI URL |
[梅婷婷, 赵平, 倪广艳, 王权, 曾小平, 周翠鸣, 蔡锡安, 余孟好, 曹庆平 (2012). 树木胸径大小对树干液流变化格局的偏度和时滞效应. 生态学报, 32, 7018-7026.] | |
[16] | Niu YQ, Wu ZY, Xu WX, Han Q, Zhao CJ (2021). The response of sap flow in young Acacia mangium to environmental changes during rainy season in Hainan. Journal of Irrigation and Drainage, 40(5), 62-68. |
[牛永强, 吴喆滢, 徐文娴, 韩奇, 赵从举 (2021). 马占相思幼树雨季液流速率对环境因子的响应. 灌溉排水学报, 40(5), 62-68.] | |
[17] |
Oishi AC, Hawthorne DA, Oren R (2016). Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX, 5, 139-143.
DOI URL |
[18] | Qu BL, Guo YP, Yang JW, Lü KL, Ma CM (2020). Characteristics of sap flow in fast-growing poplar and its response to driving factors in the central Hebei plain. Journal of Northeast Forestry University, 48(12), 18-22. |
[屈柏林, 郭延朋, 杨晶雯, 吕康乐, 马长明 (2020). 冀中平原速生杨树干液流特征及驱动因子对其影响. 东北林业大学学报, 48(12), 18-22.] | |
[19] | Su JD, Li GX (2020). Characteristics of sap flow of Sabina przewalskii and its response to meteorological factors in eastern Qilian Mountains. Journal of Anhui Agricultural Sciences, 48(2), 98-102. |
[苏军德, 李国霞 (2020). 祁连山东部祁连圆柏树干液流变化特征及其与气象因子的响应研究. 安徽农业科学, 48(2), 98-102.] | |
[20] |
Sun X, Li J, Cameron D, Moore G (2021). On the use of sap flow measurements to assess the water requirements of three Australian native tree species. Agronomy, 12, 52. DOI: 10.3390/agronomy12010052.
DOI |
[21] | Wang CC, Ye WW, Zhao CJ, Chen LY (2022). Sap flow in the stem of Eucalyptus and changes in meteorological factors are not consistent. Journal of Irrigation and Drainage, 41(1), 25-32. |
[王城城, 叶文伟, 赵从举, 陈丽艳 (2022). 热带桉树树干液流的时滞效应分析. 灌溉排水学报, 41(1), 25-32.] | |
[22] |
Wang H, Ouyang ZY, Zheng H, Wang XK, Ni YM, Ren YF (2009). Time lag characteristics of stem sap flow of common tree species during their growth season in Beijing downtown. Chinese Journal of Applied Ecology, 20, 2111-2117.
PMID |
[王华, 欧阳志云, 郑华, 王效科, 倪永明, 任玉芬 (2009). 北京城区常见树种生长季树干液流的时滞特征. 应用生态学报, 20, 2111-2117.]
PMID |
|
[23] | Wang HM, Sun W, Zu YG, Wang WJ (2011). Complexity and its integrative effects of the time lags of environment factors affecting Larix gmelinii stem sap flow. Chinese Journal of Applied Ecology, 22, 3109-3116. |
[王慧梅, 孙伟, 祖元刚, 王文杰 (2011). 不同环境因子对兴安落叶松树干液流的时滞效应复杂性及其综合影响. 应用生态学报, 22, 3109-3116.] | |
[24] | Wang HT (2003). Review of tree species water consumption. World Forestry Research, 16(2), 23-27. |
[王华田 (2003). 林木耗水性研究述评. 世界林业研究, 16(2), 23-27.] | |
[25] | Wang HT, Ma LY, Sun PS (2002). Sap flow fluctuations of Pinus tabulaeformis and Platycladus orientalis in late autumn. Scientia Silvae Sinicae, 38(5), 31-37. |
[王华田, 马履一, 孙鹏森 (2002). 油松、侧柏深秋边材木质部液流变化规律的研究. 林业科学, 38(5), 31-37.] | |
[26] |
Wang LX, Ma XY, Che YM, Hou LX, Liu X, Zhang W (2015). Extracellular ATP mediates H2S-regulated stomatal movements and guard cell K+ current in a H2O2-dependent manner in Arabidopsis. Science Bulletin, 60, 419-427.
DOI URL |
[27] | Wang S, Rong Y, Yan Y, Huang YQ (2021). Characteristics of sap flow of mango trees and its response to environmental factors in the dry-hot river valley region. Southwest China Journal of Agricultural Sciences, 34, 1286-1295. |
[王升, 容莹, 闫妍, 黄玉清 (2021). 干热河谷地区芒果树干液流特征及其对环境因子的响应. 西南农业学报, 34, 1286-1295.] | |
[28] | Wang WJ, Sun W, Qiu L, Zu YG, Liu W (2012). Relations between stem sap flow density of Larix gmelinii and environmental factors under different temporal scale. Scientia Silvae Sinicae, 48(1), 77-85. |
[王文杰, 孙伟, 邱岭, 祖元刚, 刘伟 (2012). 不同时间尺度下兴安落叶松树干液流密度与环境因子的关系. 林业科学, 48(1), 77-85.] | |
[29] | Wang XJ, Kong FH, Yin HW, Xu HL, Li JS, Pu YX (2018). Characteristics of vegetation shading and transpiration cooling effects during hot summer. Acta Ecologica Sinica, 38, 4234-4244. |
[王晓娟, 孔繁花, 尹海伟, 徐海龙, 李俊生, 蒲英霞 (2018). 高温天气植被蒸腾与遮荫降温效应的变化特征. 生态学报, 38, 4234-4244.] | |
[30] | Wang Y, Wei JS, Liu BB, Zhou M (2021). Effect of environmental factors on characteristics of sap flow of Betula platyphylla in southern Daxingʼan Mountains. Journal of Northeast Forestry University, 49(2), 11-17. |
[王媛, 魏江生, 刘兵兵, 周梅 (2021). 环境因子对大兴安岭南段白桦树干液流变化特征的影响. 东北林业大学学报, 49(2), 11-17.] | |
[31] | Wen J, Chen YM, Tang YK, Wu X, Xie YL, Cui GY (2017). Characteristics and affecting factors of sap flow density of Pinus tabuliformis and Hippophae rhamnoides in growing season in the hilly region of the Loess Plateau, China. Chinese Journal of Applied Ecology, 28, 763-771. |
[温杰, 陈云明, 唐亚坤, 吴旭, 谢育利, 崔高阳 (2017). 黄土丘陵区油松、沙棘生长旺盛期树干液流密度特征及其影响因素. 应用生态学报, 28, 763-771.]
DOI |
|
[32] | Wu PF, Liu YQ, Li DM, Chen ZJ, Ma CM (2021). Driving influence of environmental factors on the sap flow of the artificial poplar forest on sandy land. Chinese Journal of Agrometeorology, 42, 402-411. |
[武鹏飞, 刘云强, 李冬梅, 陈志军, 马长明 (2021). 环境因子对沙地人工杨树林树干液流的驱动影响. 中国农业气象, 42, 402-411.] | |
[33] |
Wu WJ, Tao, Z, Chen GJ, Meng TF, Li Y, Feng H, Si BC, Manevski K, Andersen MN, Siddique KHM (2022). Phenology determines water use strategies of three economic tree species in the semi-arid Loess Plateau of China. Agricultural and Forest Meteorology, 312, 108716. DOI: 10.1016/j.agrformet.2021.108716.
DOI |
[34] | Xu TY, Huang JQ, Zeng XP, Zhang YH, Meng Z, Otieno D, Li YL (2022). Sap flow characteristics of the dominant tree species Pinus massoniana at the pioneer succession stage in the Dinghushan Mountain. Chinese Journal of Applied and Environmental Biology, 28, 1167-1174. |
[许天云, 黄健强, 曾小平, 张宜辉, 孟泽, Otieno D, 李跃林 (2022). 鼎湖山森林演替初期优势种马尾松的树干液流特征. 应用与环境生物学报, 28, 1167-1174.] | |
[35] |
Yang WB, Liu K, Zhou SB (2013). The flora and species diversity of herbaceous seed plants in wetlands along the Xinʼanjiang River from Anhui. Acta Ecologica Sinica, 33, 1433-1442.
DOI URL |
[杨文斌, 刘坤, 周守标 (2013). 安徽新安江干流滩涂湿地草本植物区系及物种多样性. 生态学报, 33, 1433-1442.] | |
[36] | Yao ZW, Chu JM, Wu LL, Yuan Q, Dang HZ, Zhang XY, Gan HH, Jiang SX (2018). Time lag characteristics of the stem sap flow of Haloxylon ammodendron in the Minqin oasis-desert ectone, China. Chinese Journal of Applied Ecology, 29, 2339-2346. |
[姚增旺, 褚建民, 吴利禄, 袁祺, 党宏忠, 张晓艳, 甘红豪, 姜生秀 (2018). 民勤绿洲荒漠过渡带梭梭树干液流的时滞特征. 应用生态学报, 29, 2339-2346.]
DOI |
|
[37] |
Zhang Q, Manzoni S, Katul G, Porporato A, Yang DW (2014). The hysteretic evapotranspiration—Vapor pressure deficit relation. Journal of Geophysical Research: Biogeosciences, 119, 125-140.
DOI URL |
[38] |
Zhang RF, Xu XL, Liu MX, Zhang YH, Xu CH, Yi RZ, Luo W, Soulsby C (2019). Hysteresis in sap flow and its controlling mechanisms for a deciduous broad-leaved tree species in a humid karst region. Science China-Earth Sciences, 62, 1744-1755.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn