Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (4): 396-404.DOI: 10.3724/SP.J.1258.2014.00036
Special Issue: 土壤呼吸
WANG Ming1,2(), LIU Xing-Tu1, ZHANG Ji-Tao1, LI Xiu-Jun1,**(
), WANG Guo-Dong1,2, LU Xin-Rui1, LI Xiao-Yu1
Received:
2013-10-28
Accepted:
2013-12-02
Online:
2014-10-28
Published:
2014-04-08
Contact:
LI Xiu-Jun
WANG Ming, LIU Xing-Tu, ZHANG Ji-Tao, LI Xiu-Jun, WANG Guo-Dong, LU Xin-Rui, LI Xiao-Yu. Spatio-temporal variations of soil respiration in five typical plant communities in the meadow steppe of the western Songnen Plain, China[J]. Chin J Plant Ecol, 2014, 38(4): 396-404.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00036
样地编号 Plot code | 植物群落 Plant community | 土壤温度 Soil temperature (oC) | 土壤含 水量 Soil water content (%, v/v) | 土壤容重 Soil bulk density (g·m-3) | pH | 电导率 Electrical conductivity (mS·cm-1) | 土壤交换性钠 百分比 Percentage of soil exchangeable sodium (%) | 生物量 Biomass (g·m-2) | 土壤有机碳 含量 Soil organic carbon content (g·kg-1) | 总氮 Total N (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
SG | 碱蓬 Suaeda glauca | 18.7 ± 0.6 | 19.7 ± 1.8 | 1.4 ± 0.005 | 10.2 ± 0.11 | 1.92 ± 0.09 | 85.0 ± 9.0 | 75.5 ± 5.5 | 8.7 ± 1.6 | 0.70 ± 0.03 |
CV | 虎尾草 Chloris virgata | 17.9 ± 0.5 | 22.4 ± 3.2 | 1.4 ± 0.010 | 9.7 ± 0.32 | 0.60 ± 0.07 | 74.1 ± 10.2 | 306.8 ± 17.3 | 11.9 ± 0.5 | 0.70 ± 0.04 |
PD | 碱茅 Puccinellia distans | 18.3 ± 0.7 | 23.9 ± 4.1 | 1.4 ± 0.007 | 9.9 ± 0.02 | 0.70 ± 0.03 | 71.3 ± 10.1 | 190.9 ± 16.7 | 10.2 ± 2.1 | 0.62 ± 0.05 |
LC | 羊草 Leymus chinensis | 17.8 ± 0.5 | 22.4 ± 3.2 | 1.4 ± 0.005 | 9.4 ± 0.31 | 0.53 ± 0.03 | 52.8 ± 9.9 | 419.3 ± 17.5 | 15.2 ± 0.1 | 0.69 ± 0.03 |
PA | 芦苇 Phragmites australis | 16.5 ± 0.4 | 27.7 ± 3.3 | 1.3 ± 0.195 | 8.4 ± 0.18 | 0.27 ± 0.03 | 24.8 ± 10.2 | 548.8 ± 48.8 | 18.9 ± 1.4 | 1.01 ± 0.08 |
Table 1 Summary of plot survey in five plant communities (mean ± SE)
样地编号 Plot code | 植物群落 Plant community | 土壤温度 Soil temperature (oC) | 土壤含 水量 Soil water content (%, v/v) | 土壤容重 Soil bulk density (g·m-3) | pH | 电导率 Electrical conductivity (mS·cm-1) | 土壤交换性钠 百分比 Percentage of soil exchangeable sodium (%) | 生物量 Biomass (g·m-2) | 土壤有机碳 含量 Soil organic carbon content (g·kg-1) | 总氮 Total N (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
SG | 碱蓬 Suaeda glauca | 18.7 ± 0.6 | 19.7 ± 1.8 | 1.4 ± 0.005 | 10.2 ± 0.11 | 1.92 ± 0.09 | 85.0 ± 9.0 | 75.5 ± 5.5 | 8.7 ± 1.6 | 0.70 ± 0.03 |
CV | 虎尾草 Chloris virgata | 17.9 ± 0.5 | 22.4 ± 3.2 | 1.4 ± 0.010 | 9.7 ± 0.32 | 0.60 ± 0.07 | 74.1 ± 10.2 | 306.8 ± 17.3 | 11.9 ± 0.5 | 0.70 ± 0.04 |
PD | 碱茅 Puccinellia distans | 18.3 ± 0.7 | 23.9 ± 4.1 | 1.4 ± 0.007 | 9.9 ± 0.02 | 0.70 ± 0.03 | 71.3 ± 10.1 | 190.9 ± 16.7 | 10.2 ± 2.1 | 0.62 ± 0.05 |
LC | 羊草 Leymus chinensis | 17.8 ± 0.5 | 22.4 ± 3.2 | 1.4 ± 0.005 | 9.4 ± 0.31 | 0.53 ± 0.03 | 52.8 ± 9.9 | 419.3 ± 17.5 | 15.2 ± 0.1 | 0.69 ± 0.03 |
PA | 芦苇 Phragmites australis | 16.5 ± 0.4 | 27.7 ± 3.3 | 1.3 ± 0.195 | 8.4 ± 0.18 | 0.27 ± 0.03 | 24.8 ± 10.2 | 548.8 ± 48.8 | 18.9 ± 1.4 | 1.01 ± 0.08 |
Fig. 1 Seasonal variations of soil temperature (Ts), soil water content (Ws), and soil respiration rate (Rs) in five plant communities (mean ± SE). CV, Chloris virgata; PA, Phragmites australis; PD, Puccinellia distans; LC, Leymus chinensis; SG, Suaeda glauca.
Fig. 2 Correlations between soil respiration rate (Rs) and soil temperature (Ts) in five plant communities during growing season. CV, Chloris virgata; PA, Phragmites australis; PD, Puccinellia distans; LC, Leymus chinensis; SG, Suaeda glauca. Q10, temperature sensitivity of soil respiration; R10, soil respiration rate at 10 oC.
样地编号 Plot code | Rs = a + bWs + cWs2 | Rs = a + bTs + cWs + dTs2 + eWs2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | R2 | p | a | b | c | d | e | R2 | p | ||
SG | 0.04 | 0.05 | -0.001 | 0.14 | < 0.05 | 0.72 | -0.07 | 0.003 | 0.003 | -0.000 7 | 0.72 | < 0.01 | |
CV | -1.06 | 0.26 | -0.005 | 0.21 | < 0.01 | 1.62 | -0.36 | 0.070 | 0.015 | -0.001 0 | 0.81 | < 0.01 | |
PD | -0.03 | 0.13 | -0.002 | 0.15 | < 0.05 | -0.13 | 0.01 | -0.004 | 0.003 | 0.000 5 | 0.66 | < 0.01 | |
LC | 0.35 | 0.19 | -0.004 | 0.09 | > 0.05 | -1.37 | 0.10 | 0.075 | 0.002 | -0.001 0 | 0.67 | < 0.01 | |
PA | 0.39 | 0.18 | -0.003 | 0.07 | > 0.05 | -0.76 | 0.09 | 0.055 | 0.004 | 0.000 7 | 0.54 | < 0.01 |
Table 2 Relationships of soil respiration rate with soil temperature and soil water content in five plant communities during growing season
样地编号 Plot code | Rs = a + bWs + cWs2 | Rs = a + bTs + cWs + dTs2 + eWs2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | R2 | p | a | b | c | d | e | R2 | p | ||
SG | 0.04 | 0.05 | -0.001 | 0.14 | < 0.05 | 0.72 | -0.07 | 0.003 | 0.003 | -0.000 7 | 0.72 | < 0.01 | |
CV | -1.06 | 0.26 | -0.005 | 0.21 | < 0.01 | 1.62 | -0.36 | 0.070 | 0.015 | -0.001 0 | 0.81 | < 0.01 | |
PD | -0.03 | 0.13 | -0.002 | 0.15 | < 0.05 | -0.13 | 0.01 | -0.004 | 0.003 | 0.000 5 | 0.66 | < 0.01 | |
LC | 0.35 | 0.19 | -0.004 | 0.09 | > 0.05 | -1.37 | 0.10 | 0.075 | 0.002 | -0.001 0 | 0.67 | < 0.01 | |
PA | 0.39 | 0.18 | -0.003 | 0.07 | > 0.05 | -0.76 | 0.09 | 0.055 | 0.004 | 0.000 7 | 0.54 | < 0.01 |
Fig. 3 Cumulative soil CO2-C efflux during growing season in five plant communities (mean ± SE). Different lowercase letters indicate significant differences (p < 0.05). CV, Chloris virgata; PA, Phragmites australis; PD, Puccinellia distans; LC, Leymus chinensis; SG, Suaeda glauca.
土壤因子 Soil factor | 方程 Equation y = ax + b | |||
---|---|---|---|---|
a | b | R2 | p | |
10 cm深处土壤温度 Soil temperature at 10 cm depth | -187 | 3 630 | 0.81 | p < 0.05 |
0-10 cm深处土壤含水量 Soil water content at 0-10 cm depth | 5 351 | -937 | 0.80 | p < 0.05 |
pH | -226 | 2 473 | 0.80 | p < 0.05 |
电导率 Electric conductivity | -0.003 | 1.9 | 0.81 | p < 0.05 |
土壤交换性钠百分比 Percentage of soil exchangeable sodium | -7 | 732 | 0.87 | p < 0.05 |
地上生物量 Aboveground biomass | 0.9 | 42 | 0.93 | p < 0.01 |
土壤有机碳 Soil organic carbon | 39 | -195 | 0.89 | p < 0.01 |
土壤总氮 Soil total N | 627 | -153 | 0.37 | p > 0.05 |
土壤容重 Soil bulk density | -3 641 | 5 371 | 0.48 | p > 0.05 |
Table 3 Relationships of cumulative CO2-C efflux with mean soil temperature, mean soil water content, soil properties, and aboveground biomass, respectively
土壤因子 Soil factor | 方程 Equation y = ax + b | |||
---|---|---|---|---|
a | b | R2 | p | |
10 cm深处土壤温度 Soil temperature at 10 cm depth | -187 | 3 630 | 0.81 | p < 0.05 |
0-10 cm深处土壤含水量 Soil water content at 0-10 cm depth | 5 351 | -937 | 0.80 | p < 0.05 |
pH | -226 | 2 473 | 0.80 | p < 0.05 |
电导率 Electric conductivity | -0.003 | 1.9 | 0.81 | p < 0.05 |
土壤交换性钠百分比 Percentage of soil exchangeable sodium | -7 | 732 | 0.87 | p < 0.05 |
地上生物量 Aboveground biomass | 0.9 | 42 | 0.93 | p < 0.01 |
土壤有机碳 Soil organic carbon | 39 | -195 | 0.89 | p < 0.01 |
土壤总氮 Soil total N | 627 | -153 | 0.37 | p > 0.05 |
土壤容重 Soil bulk density | -3 641 | 5 371 | 0.48 | p > 0.05 |
[1] |
Bouwmann A, Germon J (1998). Special issue: soils and climate change: introduction. Biology and Fertility of Soils, 27, 219.
DOI URL |
[2] | Chen QS, Li LH, Han XG, Yan ZD (2003). Effects of water content on soil respiration and the mechanisms. Acta Ecologica Sinica, 23, 972-978. (in Chinese with English abstract) |
[ 陈全胜, 李凌浩, 韩兴国, 阎志丹 (2003). 水分对土壤呼吸的影响及机理. 生态学报, 23, 972-978.] | |
[3] | Chen QS, Wang QB, Han XG, Wan SQ, Li LH (2010). Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Global Biogeochemical Cycles, 24, doi: 10.1029/2009GB003538. |
[4] | Conant RT, Klopatek JM, Malin RC, Klopatek CC (1998). Carbon pools and fluxes along an environmental gradient in northern Arizona. Biogeochemistry, 43, 43-61. |
[5] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
[6] | Deng W, Qiu SW, Liang ZW (2006). Background of Regional Eco-environment in Da’an Sodic Land Experiment Station of China. Science Press, Beijing. 1-10. (in Chinese) |
[ 邓伟, 裘善文, 梁正伟 (2006). 中国大安碱地生态试验站区域生态环境背景. 科学出版社, 北京. 1-10.] | |
[7] | Eswaran H, van Den Berg E, Reich P (1993). Organic carbon in soils of the world. Soil Science Society of America Journal, 57, 192-194. |
[8] |
Fitter AH (1986). Spatial and temporal patterns of root activity in a species-rich alluvial grassland. Oecologia, 69, 594-599.
DOI URL PMID |
[9] | Fu Y, Zheng Z, Yu G, Hu Z, Sun X, Shi P, Wang Y, Zhao X (2009). Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences, 6, 2879-2893. |
[10] | Gu S, Tang YH, Du MY, Kato T, Li YN, Cui XY, Zhao XA (2003). Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai- Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 108, 4670. |
[11] | Han GX, Zhou GS (2009). Review of spatial and temporal variations of soil respiration and driving mechanisms. Chinese Journal of Plant Ecology, 33, 197-205. (in Chinese with English abstract) |
[ 韩广轩, 周广胜 (2009). 土壤呼吸作用时空动态变化及其影响机制研究与展望. 植物生态学报, 33, 197-205.] | |
[12] | Herrick JE, Wander MM (1998). Relationships between soil organic carbon and soil quality in cropped and rangeland soils: the importance of distribution, composition, and soil biological activity. In: Lal R, Kimble JM, Follett RF, Stewart BA eds. Advances in Soil Science: Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, USA. 405-425. |
[13] | Jenkison DS, Adams DE, Wild A (1991). Model estimates of CO2 emissions from soil in response to global warming. Nature, 351, 304-306. |
[14] | Jia B, Zhou G, Wang Y, Wang F, Wang X (2006). Effects of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia. Journal of Arid Environments, 67, 60-76. |
[15] | Kucera CL, Kirkham DR (1971). Soil respiration studies in tallgrass prairie in Missouri. Ecology, 52, 912-915. |
[16] | Liu XT (2001). Management on Degraded Land and Agriculture Development in the Songnen Plain. Science Press, Beijing. (in Chinese) |
[ 刘兴土 (2001). 松嫩平原退化土地整治与农业发展. 科学出版社, 北京.] | |
[17] | Lin XW, Zhang ZH, Wang SP, Hu YG, Xu GP, Luo CY, Chang XF, Duan JC, Lin QY, Xu B, Wang YF, Zhao XQ, Xie ZB (2011). Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan Plateau. Agricultural and Forest Meteorology, 151, 792-802. |
[18] | Lu RK (1999). Methods of Soil Agricultural Chemistry Analysis . Chinese Agriculture Science and Technology Press, Beijing. (in Chinese) |
[ 鲁如坤 (1999). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[19] | Luo L, Shen GZ, Xie ZQ, Zhou LG (2011). Components of soil respiration and its temperature sensitivity in four types of forests along an elevational gradient in Shennongjia, China. Chinese Journal of Plant Ecology, 35, 722-730. (in Chinese with English abstract) |
[ 罗璐, 申国珍, 谢宗强, 周利光 (2011). 神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性. 植物生态学报, 35, 722-730.] | |
[20] | Ma J, Tang HP (2011). Variations of soil respiration rate and its temperature sensitivity among different land use types in the agro-pastoral ecotone of Inner Mongolia. Chinese Journal of Plant Ecology, 35, 167-175. (in Chinese with English abstract) |
[ 马骏, 唐海萍 (2011). 内蒙古农牧交错区不同土地利用方式下土壤呼吸速率及其温度敏感性变化. 植物生态学报, 35, 167-175.] | |
[21] | Maestre FT, Cortina J (2003). Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology, 23, 199-209. |
[22] | Mavi MS, Marschner P, Chittleborough DJ, Cox JW, Sanderman J (2012). Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biology and Biochemistry, 45, 8-13. |
[23] | Pidwirny M (2006). Plant Succession. Fundamentals of Physical Geography, 2nd edn. Date Viewed. http://www. physicalgeography.net/fundamentals/9i.html |
[24] | Qu GH, Guo JX (2003). The relationship between different plant communities and soil characteristics in Songnen grassland. Acta Prataculturae Sinica, 12, 18-22. (in Chinese with English abstract) |
[ 曲国辉, 郭继勋 (2003). 松嫩平原不同演替阶段植物群落和土壤特性的关系. 草业学报, 12, 18-22.] | |
[25] | Raich JW, Potter CS (1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36. |
[26] | Raich JW, Tufekcioglu A (2000). Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90. |
[27] | Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng Y, Grünzweig JM, Irvine J, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oeche W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Ye Q, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D (2003). Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17, doi: 10.1029/2003GB002035. |
[28] | Rietz D, Haynes R (2003). Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry, 35, 845-854. |
[29] |
Schimel DS, House J, Hibbard K, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172.
DOI URL PMID |
[30] |
Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20.
DOI URL |
[31] |
Tang JW, Baldocchi DD (2005). Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry, 73, 183-207.
DOI URL |
[32] | Verburg PS, Arnone JA, Obrist D, Schorran DE, Evans RD, Leroux-Swarthout D, Johnson DW, Luo YQ, Coleman JS (2004). Net ecosystem carbon exchange in two experimental grassland ecosystems. Global Change Biology, 10, 498-508. |
[33] | Wan SQ, Luo YQ (2003). Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Global Biogeochemical Cycles, 17, doi: 10.1029/2002GB001971. |
[34] | Wan SQ, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424. |
[35] | Wang FY, Zhou GS, Jia BR, Wang YH (2003). Effects of heat and water factors on soil respiration of restoring Leymus chinensis Steppe in degraded land. Acta Phytoecologica Sinica, 27, 644-649. (in Chinese with English abstract) |
[ 王风玉, 周广胜, 贾丙瑞, 王玉辉 (2003). 水热因子对退化草原羊草恢复演替群落土壤呼吸的影响. 植物生态学报, 27, 644-649. ] | |
[36] | Wang W, Fang JY (2009). Soil respiration and human effects on global grasslands. Global and Planetary Change, 67, 20-28. |
[37] | Wang W, Guo J (2006). The contribution of root respiration to soil CO2 efflux in Puccinellia tenuiflora dominanted community in a semiarid meadow steppe. Chinese Science Bulletin, 51, 697-703. |
[38] | Wang YR, Zhao LQ, Shao YH (2005). Comparative analysis of the drought-resistances for turfgrass and main weeds in the temperate semi-arid region. Chinese Journal of Ecology, 24, 1-5. (in Chinese with English abstract) |
[ 王艳荣, 赵利清, 邵元虎 (2005). 温带半干旱地区草坪草与主要杂草抗旱性的比较研究. 生态学杂志, 24, 1-5.] | |
[39] | Wang YS, Hu YQ, Ji BM, Liu GR, Xue M (2003). An investigation on the relationship between emission/uptake of greenhouse gases and environmental factors in semiarid grassland. Advances in Atmospheric Sciences, 20(1), 119-127. |
[40] | White RP, Murray S, Rohweder M (2000). Pilot Analysis of Global Ecosystem: Grassland Ecosystems. World Resource Institute, Washington, DC. |
[41] | Zhang W, Feng YJ (2008). Distribution of soil microorganism and their relations with soil factors of saline-alkaline grasslands in Songnen Plain. Grassland and Turf, 3(3), 7-11. (in Chinese with English abstract) |
[ 张巍, 冯玉杰 (2008). 松嫩平原盐碱化草原土壤微生物的分布及其与土壤因子间的关系. 草原与草坪, 3(3), 7-11.] |
[1] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[2] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[3] | LI Xue, DONG Jie, HAN Guang-Xuan, ZHANG Qi-Qi, XIE Bao-Hua, LI Pei-Guang, ZHAO Ming-Liang, CHEN Ke-Long, SONG Wei-Min. Response of soil CO2 and CH4 emissions to changes in moisture and salinity at a typical coastal salt marsh of Yellow River Delta [J]. Chin J Plant Ecol, 2023, 47(3): 434-446. |
[4] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[5] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[6] | ZHENG Jia-Jia, HUANG Song-Yu, JIA Xin, TIAN Yun, MU Yu, LIU Peng, ZHA Tian-Shan. Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China [J]. Chin J Plant Ecol, 2020, 44(6): 687-698. |
[7] | YANG Ze, null null, TAN Xing-Ru, YOU Cui-Hai, WANG Yan-Bing, YANG Jun-Jie, HAN Xing-Guo, CHEN Shi-Ping. Effects of nitrogen addition amount and frequency on soil respiration and its components in a temperate semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(10): 1059-1072. |
[8] | HU Shu-Ya,DIAO Hua-Jie,WANG Hui-Ling,BO Yuan-Chao,SHEN Yan,SUN Wei,DONG Kuan-Hu,HUANG Jian-Hui,WANG Chang-Hui. Response of soil respiration to addition of different forms of nitrogen and mowing in a saline-alkali grassland in the northern agro-pastoral ecotone [J]. Chin J Plant Ecol, 2020, 44(1): 70-79. |
[9] | WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92. |
[10] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[11] | LI Yang, XU Xiao-Hui, SUN Wei, SHEN Yan, REN Ting-Ting, HUANG Jian-Hui, WANG Chang-Hui. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(2): 174-184. |
[12] | WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plant Ecol, 2018, 42(3): 382-396. |
[13] | HU Yi, ZHU Xin-Ping, JIA Hong-Tao, HAN Dong-Liang, HU Bao-An, LI Dian-Peng. Effects of fencing on ecosystem carbon exchange at meadow steppe in the northern slope of the Tianshan Mountains [J]. Chin J Plant Ecol, 2018, 42(3): 372-381. |
[14] | CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19. |
[15] | Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland [J]. Chin J Plant Ecol, 2017, 41(9): 938-952. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn