Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (2): 174-184.DOI: 10.17521/cjpe.2018.0245
Special Issue: 全球变化与生态系统; 微生物生态学
• Research Articles • Previous Articles
LI Yang1,2,XU Xiao-Hui1,2,SUN Wei3,SHEN Yan1,4,REN Ting-Ting1,2,HUANG Jian-Hui1,2,WANG Chang-Hui1,*()
Received:
2018-10-05
Accepted:
2019-01-31
Online:
2019-02-20
Published:
2019-06-04
Contact:
WANG Chang-Hui
Supported by:
LI Yang, XU Xiao-Hui, SUN Wei, SHEN Yan, REN Ting-Ting, HUANG Jian-Hui, WANG Chang-Hui. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China[J]. Chin J Plant Ecol, 2019, 43(2): 174-184.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0245
Fig. 1 Effects of nitrogen (N) addition forms and levels on soil physicochemical properties in the meadow steppe in Nei Mongol (mean ± SD, n = 3). Comparison was performed with different N forms within the same N level. Different lowercase letters are significantly different (p < 0.05).
pH | 速效磷含量 Available P content | 全磷含量 Total P content | 全氮含量 Total N content | 有机碳含量 Organic carbon content | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 14.87 | <0.001 | 4 | 1.93 | 0.12 | 4 | 1.43 | 0.24 | 4 | 0.28 | 0.89 | 4 | 0.72 | 0.59 |
氮水平 N level (L) | 5 | 32.21 | <0.001 | 5 | 14.82 | <0.001 | 5 | 1.40 | 0.24 | 5 | 3.59 | 0.007 | 5 | 4.23 | 0.002 |
F × L | 20 | 2.84 | 0.001 | 20 | 5.13 | <0.001 | 20 | 0.94 | 0.54 | 20 | 0.80 | 0.71 | 20 | 3.35 | <0.001 |
Table 1 Results (p-values) of two-way ANOVA on the effects of addition nitrogen forms, nitrogen levels and their interactions on soil physicochemical properties in the meadow steppe in Nei Mongol
pH | 速效磷含量 Available P content | 全磷含量 Total P content | 全氮含量 Total N content | 有机碳含量 Organic carbon content | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 14.87 | <0.001 | 4 | 1.93 | 0.12 | 4 | 1.43 | 0.24 | 4 | 0.28 | 0.89 | 4 | 0.72 | 0.59 |
氮水平 N level (L) | 5 | 32.21 | <0.001 | 5 | 14.82 | <0.001 | 5 | 1.40 | 0.24 | 5 | 3.59 | 0.007 | 5 | 4.23 | 0.002 |
F × L | 20 | 2.84 | 0.001 | 20 | 5.13 | <0.001 | 20 | 0.94 | 0.54 | 20 | 0.80 | 0.71 | 20 | 3.35 | <0.001 |
Fig. 2 Effects of nitrogen (N) addition forms and levels on soil microbial carbon (MBC) content (A), microbial nitrogen (MBN) content (B) and their ratio (MBC:MBN)(C)(means ± SD, n = 3). AU, CO(NH2)2; AS, (NH4)2SO4; AN, NH4NO3; AC, NH4HCO3; AR, slow-release urea. Comparison was performed with different N forms within the same N level. Different lowercase letters are significantly different (p < 0.05).
MBC | MBN | MBC:MBN | MR | qCO2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 34.24 | <0.001 | 4 | 0.85 | 0.50 | 4 | 16.09 | <0.001 | 4 | 1.33 | 0.27 | 4 | 4.27 | 0.004 |
氮水平 N level (L) | 5 | 52.82 | <0.001 | 5 | 14.50 | <0.001 | 5 | 34.98 | <0.001 | 5 | 8.68 | <0.001 | 5 | 7.43 | <0.001 |
F × L | 20 | 20.17 | <0.001 | 20 | 3.95 | <0.001 | 20 | 8.24 | <0.001 | 20 | 1.54 | 0.10 | 20 | 3.15 | <0.001 |
Table 2 Results (p-values) of two-way ANOVA on the effects of addition nitrogen forms, nitrogen levels and their interactions on soil microbial activity in the meadow steppe in Nei Mongol
MBC | MBN | MBC:MBN | MR | qCO2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 34.24 | <0.001 | 4 | 0.85 | 0.50 | 4 | 16.09 | <0.001 | 4 | 1.33 | 0.27 | 4 | 4.27 | 0.004 |
氮水平 N level (L) | 5 | 52.82 | <0.001 | 5 | 14.50 | <0.001 | 5 | 34.98 | <0.001 | 5 | 8.68 | <0.001 | 5 | 7.43 | <0.001 |
F × L | 20 | 20.17 | <0.001 | 20 | 3.95 | <0.001 | 20 | 8.24 | <0.001 | 20 | 1.54 | 0.10 | 20 | 3.15 | <0.001 |
Fig. 3 Effects of nitrogen (N) addition forms and levels on soil microbial respiration in the meadow steppe in Nei Mongol during 24 hours incubation (means ± SD, n = 3). AU, CO(NH2)2; AS, (NH4)2SO4; AN, NH4NO3; AC, NH4HCO3; AR, slow-release urea. Comparison was performed with different N forms within the same N level. Different lowercase letters are significantly different (p < 0.05).
氮添加水平 N addition level (g·m-2) | AU | AS | AN | AC | AR |
---|---|---|---|---|---|
0 | 1.58 ± 0.40b | 2.70 ± 0.33ab | 7.43 ± 4.31a | 1.72 ± 0.37b | 3.80 ± 3.48ab |
2 | 1.21 ± 2.11b | 1.79 ± 0.08c | 3.72 ± 1.06ab | 1.28 ± 0.43c | 4.87 ± 0.87a |
5 | 1.69 ± 0.30a | 2.93 ± 2.60a | 2.14 ± 1.01a | 2.65 ± 2.26a | 3.29 ± 1.24a |
10 | 1.26 ± 0.74ab | 0.58 ± 0.15b | 0.62 ± 0.47b | 1.71 ± 0.42ab | 3.53 ± 2.87a |
20 | 2.98 ± 0.51a | 0.26 ± 0.04c | 0.09 ± 0.03c | 0.94 ± 0.87b | 0.18 ± 0.15c |
50 | 0.16 ± 0.14b | 0.06 ± 0.04b | 0.13 ± 0.01b | 1.31 ± 0.57ab | 4.28 ± 3.91a |
Table 4 Effects of nitrogen (N) addition forms and levels on soil microbial metabolic quotient in the meadow steppe in Nei Mongol (mean ± SD, n = 3)
氮添加水平 N addition level (g·m-2) | AU | AS | AN | AC | AR |
---|---|---|---|---|---|
0 | 1.58 ± 0.40b | 2.70 ± 0.33ab | 7.43 ± 4.31a | 1.72 ± 0.37b | 3.80 ± 3.48ab |
2 | 1.21 ± 2.11b | 1.79 ± 0.08c | 3.72 ± 1.06ab | 1.28 ± 0.43c | 4.87 ± 0.87a |
5 | 1.69 ± 0.30a | 2.93 ± 2.60a | 2.14 ± 1.01a | 2.65 ± 2.26a | 3.29 ± 1.24a |
10 | 1.26 ± 0.74ab | 0.58 ± 0.15b | 0.62 ± 0.47b | 1.71 ± 0.42ab | 3.53 ± 2.87a |
20 | 2.98 ± 0.51a | 0.26 ± 0.04c | 0.09 ± 0.03c | 0.94 ± 0.87b | 0.18 ± 0.15c |
50 | 0.16 ± 0.14b | 0.06 ± 0.04b | 0.13 ± 0.01b | 1.31 ± 0.57ab | 4.28 ± 3.91a |
Fig. 4 Effects of nitrogen (N) addition forms and levels on soil nitrate (A), ammonium (B) and total inorganic N (C) pools in the meadow steppe in Nei Mongol (mean ± SD, n = 3). AU, CO(NH2)2; AS, (NH4)2SO4; AN, NH4NO3; AC, NH4HCO3; AR, slow-release urea. Aamm, accumulation of ammonium nitrogen; Anit, accumulation of nitrate nitrogen; Amin, accumulation of nitrogen mineralization. Comparison was performed with different N forms within the same N level. Different lowercase letters are significantly different (p < 0.05).
Aamm | Anit | Amin | Rmin | Rnit | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 4.49 | 0.003 | 4 | 4.08 | 0.005 | 4 | 4.00 | 0.006 | 4 | 4.00 | 0.006 | 4 | 4.08 | 0.005 |
氮水平 N level (L) | 5 | 77.23 | <0.001 | 5 | 16.13 | <0.001 | 5 | 64.80 | <0.001 | 5 | 64.80 | <0.001 | 5 | 16.13 | <0.001 |
F × L | 20 | 7.10 | <0.001 | 20 | 2.46 | 0.004 | 20 | 6.89 | <0.001 | 20 | 6.89 | <0.001 | 20 | 2.46 | 0.004 |
Table 3 Results (p-values) of two-way ANOVA on the effects of addition nitrogen forms, nitrogen levels and their interactions on soil nitrogen mineralization in the meadow steppe in Nei Mongol
Aamm | Anit | Amin | Rmin | Rnit | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | d.f. | F | p | |
氮形态 N form (F) | 4 | 4.49 | 0.003 | 4 | 4.08 | 0.005 | 4 | 4.00 | 0.006 | 4 | 4.00 | 0.006 | 4 | 4.08 | 0.005 |
氮水平 N level (L) | 5 | 77.23 | <0.001 | 5 | 16.13 | <0.001 | 5 | 64.80 | <0.001 | 5 | 64.80 | <0.001 | 5 | 16.13 | <0.001 |
F × L | 20 | 7.10 | <0.001 | 20 | 2.46 | 0.004 | 20 | 6.89 | <0.001 | 20 | 6.89 | <0.001 | 20 | 2.46 | 0.004 |
Fig. 5 Effects of nitrogen (N) addition on soil potential net N mineralization (Rmin)(A) and nitrification (Rnit)(B) rates in the meadow steppe in Nei Mongol (mean ± SD, n = 3). AU, CO(NH2)2; AS, (NH4)2SO4; AN, NH4NO3; AC, NH4HCO3; AR, slow-release urea. Comparison was performed with different N forms within the same N level. Different lowercase letters are significantly different (p < 0.05).
[1] |
Aber JD, Magill AH ( 2004). Chronic nitrogen additions at the Harvard Forest (USA): The first 15 years of a nitrogen saturation experiment. Forest Ecology and Management, 196, 1-5.
DOI URL |
[2] | Arens SJT, Sullivan PF, Welker JM ( 2008). Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high arctic ecosystem. Journal of Geophysical Research, 113, G03S09. DOI: 10.1029/2007JG000508. |
[3] | Bao SD (2000). Analysis of Soil Agrochemical. 3rd edn. China Agriculture Press, Beijing. |
[ 鲍士旦 (2000). 土壤农化分析. 第三版. 中国农业出版社, 北京.] | |
[4] |
Bowden RD, Davidson E, Savage K, Arabia C, Steudler P ( 2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 196, 43-56.
DOI URL |
[5] | Bradley K, Drijber RA, Knops J ( 2006). Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biology & Biochemistry, 38, 1583-1595. |
[6] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA ( 2008). Transformation of the nitrogen cycle recent trends: Questions, and potential solutions. Science, 320, 889-892.
DOI URL |
[7] | He YT, Qi YC, Dong YS, Peng Q, Xiao SS, Liu XC ( 2010). Advances in the influence of external nitrogen input on soil microbiological characteristics of grassland ecosystem. Advances in Earth Science , 25, 877-885. |
[ 何亚婷, 齐玉春, 董云社, 彭琴, 肖胜生, 刘欣超 ( 2010). 外源氮输入对草地土壤微生物特性影响的研究进展. 地球科学进展, 25, 877-885.] | |
[8] |
Huang S, Zhang W, Yu X, Huang Q ( 2010). Effects of long-term fertilization on corn productivity and its sustainability in an ultisol of southern China. Agriculture, Ecosystems and Environment, 138, 44-50.
DOI URL |
[9] |
Li LJ, Zeng DH, Yu ZA, Fan ZP, Mao R ( 2010). Soil microbial properties under N and P additions in a semi-arid, sandy grassland. Biology and Fertility of Soils, 46, 653-658.
DOI URL |
[10] | Liu BR, Wang CH, Zhang LH, Dong KH ( 2015). Effect of nitrogen addition and mowing on soil nitrogen mineralization in abandoned grasslands in Inner Mongolia. Acta Ecologica Sinica, 35, 6335-6343. |
[ 刘碧荣, 王常慧, 张丽华, 董宽虎 ( 2015). 氮素添加和刈割对内蒙古弃耕草地土壤氮矿化的影响. 生态学报, 35, 6335-6343.] | |
[11] |
Liu XR, Ren JQ, Li SG, Zhang QW ( 2015). Effects of simulated nitrogen deposition on soil net nitrogen mineralization in the meadow steppe of Inner Mongolia, China. PLOS ONE, 10, e0134039. DOI: 10.1371/journal.pone.0134039.
DOI URL |
[12] | Lovell RD, Hatch DJ ( 1998). Stimulation of microbial activity following spring application of nitrogen. Soil Biology & Biochemistry, 26, 28-30. |
[13] | Lü CQ, Tian HQ, Huang Y ( 2007). Ecological effects of increased nitrogen deposition in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version), 31, 205-218. |
[ 吕超群, 田汉勤, 黄耀 ( 2007). 陆地生态系统氮沉降增加的生态效应. 植物生态学报, 31, 205-218.] | |
[14] | Luo QP, Gong JR, Xu S, Baoyin T, Wang YH, Zhai ZW, Pan Y, Liu M, Yang LL ( 2016). Effects of N and P additions on net nitrogen mineralization in temperate typical grasslands in Nei Mongol, China. Chinese Journal of Plant Ecology , 40, 480-492. |
[ 罗亲普, 龚吉蕊, 徐沙, 宝音陶格涛, 王忆慧, 翟占伟, 潘琰, 刘敏, 杨丽丽 ( 2016). 氮磷添加对内蒙古温带典型草原净氮矿化的影响. 植物生态学报, 40, 480-492.] | |
[15] |
McCrackin ML, Harms TK, Grimm NB, Hall SJ, Kaye JP ( 2008). Responses of soil microorganisms to resource availability in urban, desert soils. Biogeochemistry, 87, 143-155.
DOI URL |
[16] | Min JK (2010). Prospect of Agroecological Biochemistry and Environmental Health. Modern Education Press, Beijing. |
[ 闵九康 (2010). 农业生态生物化学和环境健康展望. 现代教育出版社, 北京.] | |
[17] | Pei GY, Ma HL, Gao R, Yin YF, Chen SD ( 2013). Effects of simulated nitrogen deposition on available P and K in soils of subtropical forest. Soil and Fertilizer Sciences in China,(4), 16-20, 87. |
[ 裴广廷, 马红亮, 高人, 尹云锋, 陈仕东 ( 2013). 模拟氮沉降对森林土壤速效磷和速效钾的影响. 中国土壤与肥料,(4), 16-20, 87.] | |
[18] |
Sirulnik AG, Allen EB, Meixner T, Fenn ME, Allen MF ( 2007). Changes in N cycling and microbial N with elevated N in exotic annual grasslands of southern California. Applied Soil Ecology, 36, 1-9.
DOI URL |
[19] | Vance E, Brookes PC, Jenkinson DS ( 1987). Microbial biomass measurements in forest soils: Determination of kC values and tests of hypotheses to explain the failure of the chloroform fumigation-incubation method in acid soils. Soil Biology & Biochemistry, 19, 689-696. |
[20] |
Vourlitis GL, Zorba G, Pasquini SC, Mustard R ( 2007). Chronic nitrogen deposition enhances nitrogen mineralization potential of semiarid shrubland soils. Soil Science Society of America Journal, 71, 836-842.
DOI URL |
[21] | Wang CH, Xing XR, Han XG ( 2004). The effects of temperature and moisture on the soil net nitrogen mineralization in an Aneulolepidium chinensis grassland, Inner Mongolia, China. Acta Ecologica Sinica, 24, 2472-2476. |
[ 王常慧, 邢雪荣, 韩兴国 ( 2004). 温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响. 生态学报, 24, 2472-2476.] | |
[22] | Wang W, Chalk PM, Chen D, Smith CJ ( 2001). Nitrogen mineralisation, immobilisation and loss, and their role in determining differences in net nitrogen production during waterlogged and aerobic incubation of soils. Soil Biology & Biochemistry, 33, 1305-1315. |
[23] | Wang WY, Zhou HK, Yang L, Li JP, Wang XC ( 2014). The uptake strategy of soil nitrogen nutrients by different plant species in alpine Kobresia tibetica meadow on the Qinghai-Tibet Plateau. Journal of Natural Resources, 29, 249-255. |
[ 王文颖, 周华坤, 杨莉, 李锦萍, 汪新川 ( 2014). 高寒藏嵩草(Kobresia tibetica)草甸植物对土壤氮素利用的多元化特征. 自然资源学报, 29, 249-255.] | |
[24] | Wardle DA, Ghani A ( 1995). A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biology & Biochemistry, 27, 1601-1610. |
[25] |
Wei CZ, Yu Q, Bai E, Lv XT, Li Q, Xia JY, Kardol P, Liang WJ, Wang ZW, Han XG ( 2013). Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems. Global Change Biology, 19, 3688-3697.
DOI URL |
[26] | Wu DM, Guo JF, Zhang Z, Li SJ, Yang YS ( 2018). Effects of dissolved organic matter addition on soil microbial respiration and quotient values in a secondary Castanopsis carlesii forest. Acta Ecologica Sinica, 38, 1-10. |
[ 吴东梅, 郭剑芬, 张政, 李帅军, 杨玉盛 ( 2018). DOM对米槠次生林不同土层土壤微生物呼吸及其熵值的影响. 生态学报, 38, 1-10.] | |
[27] | Yang H, Hu ZM, Guo Q, Li SG, Li LH, Bai WM ( 2017). Influences of precipitation increase and N addition on soil potential N mineralization in Inner Mongolia grassland. Journal of Natural Resources , 32, 2034-2042. |
[ 杨浩, 胡中民, 郭群, 李胜功, 李凌浩, 白文明 ( 2017). 增雨和氮添加对内蒙古草原土壤氮矿化潜力的影响. 自然资源学报, 32, 2034-2042.] | |
[28] | Yu ZY, Zeng DH, Ai GY, Jiang FQ ( 2007). Effects of nitrogen addition on soil nitrogen availability in sandy grassland. Chinese Journal of Ecology, 26, 1894-1897. |
[ 于占源, 曾德慧, 艾桂艳, 姜凤岐 ( 2007). 添加氮素对沙质草地土壤氮素有效性的影响. 生态学杂志, 26, 1894-1897.] | |
[29] | Zhang CB, Jin ZX, Shi SD ( 2003). Microflora and microbial quotient (qMB, qCO2) values of soils in different forest types on Tiantai Mountain in Zhejiang. Chinese Journal of Ecology, 22(2), 28-31. |
[ 张崇邦, 金则新, 施时迪 ( 2003). 天台山不同林型土壤微生物区系及其商值(qMB, qCO2). 生态学杂志, 22(2), 28-31.] | |
[30] | Zhang L, Huang JH, Bai YF, Han XG ( 2009). Effects of nitrogen addition on net nitrogen mineralization in Leymus chinesis grassland, Inner Mongolia, China. Chinese Journal of Plant Ecology, 33, 563-569. |
[ 张璐, 黄建辉, 白永飞, 韩兴国 ( 2009). 氮素添加对内蒙古羊草草原净氮矿化的影响. 植物生态学报, 33, 563-569.] | |
[31] |
Zhang NL, Wan SQ, Li LH, Bi J, Zhao MM, Ma KP ( 2008 a). Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China. Plant and Soil, 311, 19-28.
DOI URL |
[32] | Zhang QS, Zak JC ( 1998). Effects of water and nitrogen amendment on soil microbial biomass and fine root production in a semi-arid environment in west Texas. Soil Biology & Biochemistry, 30, 39-45. |
[33] |
Zhang Y, Feng J, Isbell F, Lü X, Han X ( 2015). Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Scientific Reports, 5, 12558. DOI: 10.1038/srep12558.
DOI |
[34] |
Zhang Y, Lü X, Isbell F, Stevens C, Han X, He NP, Zhang GM, Yu Q, Huang JH, Han XG ( 2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 20, 3520-3529.
DOI URL |
[35] |
Zhang Y, Zheng LX, Liu XJ, Jickells T, Cape JN, Goulding K, Fangmeier A, Zhang FS ( 2008 b). Evidence for organic N deposition and its anthropogenic sources in China. Atmospheric Environment, 42, 1035-1041.
DOI URL |
[36] | Zhang YD, Sun ZH, Shen YX ( 2005). Effect of fertilization on soil microorganism of deteriorated grassland in dry-hot valley region of Jinsha River. Journal of Soil and Water Conservation , 19(2), 88-91. |
[ 张彦东, 孙志虎, 沈有信 ( 2005). 施肥对金沙江干热河谷退化草地土壤微生物的影响. 水土保持学报, 19(2), 88-91.] | |
[37] | Zhou XB, Zhang YM, Downing A ( 2012). Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, northwestern China. Soil Biology & Biochemistry, 47, 67-77. |
[38] | Zhou Y, Xu XG, Wang F, Ruan HH, Wang JS, Fang YH, Wu YY, Xu ZK ( 2009). Soil microbial biomass, respiration, and metabolic quotient along an altitudinal gradient in Wuyi Mountain of southeastern China. Chinese Journal of Ecology, 28, 265-269. |
[ 周焱, 徐宪根, 王丰, 阮宏华, 汪家社, 方燕鸿, 吴焰玉, 徐自坤 ( 2009). 武夷山不同海拔梯度土壤微生物生物量、微生物呼吸及其商值(gMB, qCO2). 生态学杂志, 28, 265-269.] | |
[39] | Zhu JX, Wang QF, He NP, Wang RM, Dai JZ ( 2013). Soil nitrogen mineralization and associated temperature sensitivity of different Inner Mongolian grasslands. Acta Ecologica Sinica, 33, 6320-6327. |
[ 朱剑兴, 王秋凤, 何念鹏, 王若梦, 代景忠 ( 2013). 内蒙古不同类型草地土壤氮矿化及其温度敏感性. 生态学报, 33, 6320-6327.] | |
[40] | Zong N, Shi PL, Jiang J, Xiong DP, Meng FS, Song MH, Zhang XZ, Shen ZX ( 2013). Interactive effects of short-term nitrogen enrichment and simulated grazing on ecosystem respiration in an alpine meadow on the Tibetan Plateau. Acta Ecologica Sinica, 33, 6191-6201. |
[ 宗宁, 石培礼, 蒋婧, 熊定鹏, 孟丰收, 宋明华, 张宪洲, 沈振西 ( 2013). 短期氮素添加和模拟放牧对青藏高原高寒草甸生态系统呼吸的影响. 生态学报, 33, 6191-6201.] |
[1] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[2] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[3] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[4] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[5] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[6] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[7] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[8] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
[9] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[10] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[11] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[12] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[13] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
[14] | YANG Jian-Qiang, DIAO Hua-Jie, HU Shu-Ya, WANG Chang-Hui. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China [J]. Chin J Plant Ecol, 2021, 45(7): 780-789. |
[15] | WU Yun-Tao, YANG Sen, WANG Xin, HUANG Jun-Sheng, WANG Bin, LIU Wei-Xing, LIU Ling-Li. Responses of soil nitrogen in different soil organic matter fractions to long-term nitrogen addition in a semi-arid grassland [J]. Chin J Plant Ecol, 2021, 45(7): 790-798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn