Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (7): 780-789.DOI: 10.17521/cjpe.2021.0072
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
YANG Jian-Qiang1, DIAO Hua-Jie2,3,4, HU Shu-Ya4, WANG Chang-Hui2,3,4,*()
Received:
2021-03-04
Accepted:
2021-04-22
Online:
2021-07-20
Published:
2021-10-22
Contact:
WANG Chang-Hui
Supported by:
YANG Jian-Qiang, DIAO Hua-Jie, HU Shu-Ya, WANG Chang-Hui. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China[J]. Chin J Plant Ecol, 2021, 45(7): 780-789.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0072
处理 Treatment | 氨氧化古菌 AOA | 氨氧化细菌 AOB | 细菌 Bacteria | 真菌 Fungal | 微生物生物量碳 MBC | 微生物生物量氮 MBN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
氮水平 N levels | 0.38 | 0.907 | 6.72 | <0.000 1 | 0.65 | 0.710 | 0.92 | 0.498 | 1.62 | 0.159 | 1.02 | 0.434 |
采样月份 Sampling month | 9.72 | <0.000 1 | 1.21 | 0.309 | 58.66 | <0.000 1 | 24.05 | <0.000 1 | 6.21 | <0.000 1 | 8.54 | <0.000 1 |
月份×氮水平 Month × N levels | 0.83 | 0.712 | 2.44 | <0.000 1 | 0.62 | 0.930 | 1.09 | 0.357 | 0.78 | 0.776 | 0.58 | 0.951 |
Table 1 Effects of nitrogen (N) levels, month and their interactions on soil microorganism (AOA, AOB, bacteria, fungi abundance and MBC, MBN content) in saline-alkaline grassland
处理 Treatment | 氨氧化古菌 AOA | 氨氧化细菌 AOB | 细菌 Bacteria | 真菌 Fungal | 微生物生物量碳 MBC | 微生物生物量氮 MBN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
氮水平 N levels | 0.38 | 0.907 | 6.72 | <0.000 1 | 0.65 | 0.710 | 0.92 | 0.498 | 1.62 | 0.159 | 1.02 | 0.434 |
采样月份 Sampling month | 9.72 | <0.000 1 | 1.21 | 0.309 | 58.66 | <0.000 1 | 24.05 | <0.000 1 | 6.21 | <0.000 1 | 8.54 | <0.000 1 |
月份×氮水平 Month × N levels | 0.83 | 0.712 | 2.44 | <0.000 1 | 0.62 | 0.930 | 1.09 | 0.357 | 0.78 | 0.776 | 0.58 | 0.951 |
Fig. 1 Seasonal and inter-annual mean values (mean ± SE) of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) abundance in saline-alkaline grassland. *, ** and *** represent the differences are significant with p < 0.05, p < 0.01 and p < 0.000 1, respectively; different lowercase letters in the bar chart indicate significant differences among treatments (p < 0.05). CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
Fig. 2 Seasonal and inter-annual mean values (mean ± SE) of soil bacterial and fungal in saline-alkaline grassland. *, ** and *** represent the differences among treatments are significant with p < 0.05, p < 0.01 and p < 0.000 1, respectively; different lowercase letters in the bar chart indicate significant differences among treatments (p < 0.05). CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
Fig. 3 Seasonal and inter-annual mean values (mean ± SE) of soil microbial biomass carbon (MBC) and nitrogen (MBN) content in saline-alkaline grassland. *, ** and *** represent the differences among treatments are significant with p < 0.05, p < 0.01 and p < 0.000 1, respectively; different lowercase letters in the bar chart indicate significant differences among treatments (p < 0.05). CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
因子 Factor | AOA | AOB | Bacteria | Fungi | MBC | MBN | ST | SM | pH | Ca2+ | K+ | Mg2+ | Na+ | STC | CO32- | HCO3- | Cl- | STA | NH4+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AOB | 0.23 | ||||||||||||||||||
细菌 Bacteria | -0.49** | -0.03 | |||||||||||||||||
真菌 Fungi | 0.47** | 0.09 | -0.06 | ||||||||||||||||
MBC | -0.19 | -0.01 | 0.33* | 0.11 | |||||||||||||||
MBN | 0.09 | 0.14 | 0.19 | 0.23 | 0.44** | ||||||||||||||
ST | -0.26 | -0.61** | -0.06 | -0.19 | -0.21 | -0.47** | |||||||||||||
SM | -0.26 | -00.19 | 0.03 | -0.17 | 0.24 | 0.37** | 0.00 | ||||||||||||
pH | -0.36* | -0.63** | 0.10 | -0.10 | 0.14 | -0.07 | 0.53** | 0.42** | |||||||||||
Ca2+ | 0.42** | 0.58** | -0.28 | 0.21 | -0.29* | -0.05 | -0.37** | -0.34* | -0.61** | ||||||||||
K+ | 0.04 | -0.03 | 0.01 | 0.02 | -0.02 | -0.08 | 0.22 | -0.17 | 0.10 | -0.02 | |||||||||
Mg2+ | 0.42** | -0.32* | -0.36* | 0.06 | 0.01 | -0.01 | 0.29* | 0.23 | 0.34* | -0.36* | 0.17 | ||||||||
Na+ | -0.47** | -0.46** | 0.07 | -0.29* | 0.15 | 0.05 | 0.25 | 0.62** | 0.77** | -0.51** | -0.09 | 0.17 | |||||||
STC | 0.52** | -0.11 | -0.50** | 0.09 | -0.13 | -0.03 | 0.17 | 0.21 | 0.24 | 0.09 | 0.27 | 0.85** | 0.19 | ||||||
CO32- | -0.45** | -0.27 | 0.28 | -0.21 | 0.08 | -0.11 | 0.23 | 0.21 | 0.39** | -0.26 | -0.20 | -0.24 | 0.34* | -0.31* | |||||
HCO3- | 0.25 | 0.05 | -0.27 | -0.13 | -0.10 | 0.02 | 0.08 | 0.16 | 0.14 | 0.11 | 0.39** | 0.39** | 0.22 | 0.59** | -0.47** | ||||
Cl- | 0.06 | -0.06 | 0.03 | -0.26 | -0.07 | 0.01 | 0.01 | 0.03 | 0.03 | 0.14 | 0.12 | 0.09 | 0.06 | 0.22 | -0.03 | 0.21 | |||
STA | 0.19 | 0.00 | -0.24 | -0.19 | -0.10 | 0.00 | 0.13 | 0.21 | 0.22 | 0.08 | 0.39** | 0.38** | 0.29* | 0.59** | -0.33* | 0.98** | 0.30* | ||
NH4+ | 0.26 | 0.05 | -0.12 | 0.32* | -0.20 | -0.17 | -0.19 | -0.21 | -0.15 | 0.33* | -0.09 | -0.19 | -0.29* | -0.10 | -0.33* | 0.08 | -0.19 | 0.01 | |
NO3- | -0.09 | -0.11 | 0.17 | 0.05 | 0.37** | -0.02 | -0.18 | -0.04 | -0.03 | -0.02 | -0.03 | -0.11 | 0.08 | -0.09 | -0.16 | 0.03 | -0.03 | 0.00 | 0.22 |
Table 2 Pearson correlation between soil microorganisms and soil microenvironment, soil cations and anions concentration
因子 Factor | AOA | AOB | Bacteria | Fungi | MBC | MBN | ST | SM | pH | Ca2+ | K+ | Mg2+ | Na+ | STC | CO32- | HCO3- | Cl- | STA | NH4+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AOB | 0.23 | ||||||||||||||||||
细菌 Bacteria | -0.49** | -0.03 | |||||||||||||||||
真菌 Fungi | 0.47** | 0.09 | -0.06 | ||||||||||||||||
MBC | -0.19 | -0.01 | 0.33* | 0.11 | |||||||||||||||
MBN | 0.09 | 0.14 | 0.19 | 0.23 | 0.44** | ||||||||||||||
ST | -0.26 | -0.61** | -0.06 | -0.19 | -0.21 | -0.47** | |||||||||||||
SM | -0.26 | -00.19 | 0.03 | -0.17 | 0.24 | 0.37** | 0.00 | ||||||||||||
pH | -0.36* | -0.63** | 0.10 | -0.10 | 0.14 | -0.07 | 0.53** | 0.42** | |||||||||||
Ca2+ | 0.42** | 0.58** | -0.28 | 0.21 | -0.29* | -0.05 | -0.37** | -0.34* | -0.61** | ||||||||||
K+ | 0.04 | -0.03 | 0.01 | 0.02 | -0.02 | -0.08 | 0.22 | -0.17 | 0.10 | -0.02 | |||||||||
Mg2+ | 0.42** | -0.32* | -0.36* | 0.06 | 0.01 | -0.01 | 0.29* | 0.23 | 0.34* | -0.36* | 0.17 | ||||||||
Na+ | -0.47** | -0.46** | 0.07 | -0.29* | 0.15 | 0.05 | 0.25 | 0.62** | 0.77** | -0.51** | -0.09 | 0.17 | |||||||
STC | 0.52** | -0.11 | -0.50** | 0.09 | -0.13 | -0.03 | 0.17 | 0.21 | 0.24 | 0.09 | 0.27 | 0.85** | 0.19 | ||||||
CO32- | -0.45** | -0.27 | 0.28 | -0.21 | 0.08 | -0.11 | 0.23 | 0.21 | 0.39** | -0.26 | -0.20 | -0.24 | 0.34* | -0.31* | |||||
HCO3- | 0.25 | 0.05 | -0.27 | -0.13 | -0.10 | 0.02 | 0.08 | 0.16 | 0.14 | 0.11 | 0.39** | 0.39** | 0.22 | 0.59** | -0.47** | ||||
Cl- | 0.06 | -0.06 | 0.03 | -0.26 | -0.07 | 0.01 | 0.01 | 0.03 | 0.03 | 0.14 | 0.12 | 0.09 | 0.06 | 0.22 | -0.03 | 0.21 | |||
STA | 0.19 | 0.00 | -0.24 | -0.19 | -0.10 | 0.00 | 0.13 | 0.21 | 0.22 | 0.08 | 0.39** | 0.38** | 0.29* | 0.59** | -0.33* | 0.98** | 0.30* | ||
NH4+ | 0.26 | 0.05 | -0.12 | 0.32* | -0.20 | -0.17 | -0.19 | -0.21 | -0.15 | 0.33* | -0.09 | -0.19 | -0.29* | -0.10 | -0.33* | 0.08 | -0.19 | 0.01 | |
NO3- | -0.09 | -0.11 | 0.17 | 0.05 | 0.37** | -0.02 | -0.18 | -0.04 | -0.03 | -0.02 | -0.03 | -0.11 | 0.08 | -0.09 | -0.16 | 0.03 | -0.03 | 0.00 | 0.22 |
Fig. 4 Effects of nitrogen (N) addition at different levels on soil pH value (mean ± SE), cations, and anions concentration. CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
Fig. 5 Redundancy analysis (RDA) of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), bacteria, fungi abundance and microbial biomass carbon (MBC), and nitrogen (MBN) content with related factors. SM, soil moisture; ST, soil temperature; STA, soil total anions content; STC, soil total cations content.
[1] |
Bowman WD, Cleveland CC, Halada Ĺ, Hreško J, Baron JS (2008). Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1, 767-770.
DOI URL |
[2] |
Cai JP, Luo WT, Liu HY, Feng X, Zhang YY, Wang RZ, Xu ZW, Zhang YG, Jiang Y (2017). Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland. Atmospheric Environment, 170, 312-318.
DOI URL |
[3] |
Cheng Y, Wang J, Mary B, Zhang JB, Cai ZC, Chang SX (2013). Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biology & Biochemistry, 57, 848-857.
DOI URL |
[4] |
Fierer N, Jackson RB (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103, 626-631.
PMID |
[5] |
Gruber N, Galloway JN (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296.
DOI URL |
[6] |
Hao TX, Zhang YY, Zhang JB, Müller C, Li KH, Zhang KP, Chu HY, Stevens C, Liu XJ (2020). Chronic nitrogen addition differentially affects gross nitrogen transformations in alpine and temperate grassland soils. Soil Biology & Biochemistry, 149. DOI: 10.1016/j.soilbio.2020.107962.
DOI |
[7] |
He JZ, Hu HW, Zhang LM (2012). Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology & Biochemistry, 55, 146-154.
DOI URL |
[8] | He JZ, Zhang LM (2009). Advances in ammonia-oxidizing microorganisms and global nitrogen cycle. Acta Ecologica Sinica, 29, 406-415. |
[ 贺纪正, 张丽梅 (2009). 氨氧化微生物生态学与氮循环研究进展. 生态学报, 29, 406-415.] | |
[9] | Huyghe C (2010). New utilizations for the grassland areas and the forage plants: What matters. Fourrages, 203, 213-219. |
[10] |
Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, Baker AR, Tsigaridis K, Mihalopoulos N (2016). Past, present and future atmospheric nitrogen deposition. Journal of the Atmospheric Sciences, 73, 2039-2047.
DOI URL |
[11] |
Kuypers MMM, Marchant HK, Kartal B (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16, 263-276.
DOI PMID |
[12] |
Laura RD (1976). Effects of alkali salts on carbon and nitrogen mineralization of organic matter in soil. Plant and Soil, 44, 587-596.
DOI URL |
[13] |
Li JG, Pu LJ, Han MF, Zhu M, Zhang RS, Xiang YZ (2014). Soil salinization research in China: advances and prospects. Journal of Geographical Sciences, 24, 943-960.
DOI URL |
[14] |
Li Y, Xu XH, Sun W, Shen Y, Ren TT, Huang JH, Wang CH (2019). Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 43, 174-184.
DOI URL |
[ 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧 (2019). 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43, 174-184.]
DOI |
|
[15] | Liu HM, Zhang HF, Qin J, Wang H, Zhang YJ, Yang DL (2019). Effects of simulated nitrogen deposition on soil nitrogen-transforming microorganisms in Stipa baicalensis steppe. Journal of Agro-environment Science, 38, 2386-2394. |
[ 刘红梅, 张海芳, 秦洁, 王慧, 张艳军, 杨殿林 (2019). 模拟氮沉降对贝加尔针茅草原土壤氮转化微生物的影响. 农业环境科学学报, 38, 2386-2394.] | |
[16] |
Lu M, Yang YH, Luo YQ, Fang CM, Zhou XH, Chen JK, Yang X, Li B (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189, 1040-1050.
DOI URL |
[17] |
Lucas RW, Klaminder J, Futter MN, Bishop KH, Egnell G, Laudon H, Högberg P (2011). A meta-analysis of the effects of nitrogen additions on base cations: implications for plants, soils, and streams. Forest Ecology and Management, 262, 95-104.
DOI URL |
[18] |
Luo RY, Kuzyakov Y, Liu DY, Fang JL, Luo JF, Lindsey S, He JS, Ding WX (2020). Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls. Soil Biology & Biochemistry, 144. DOI: 10.1016/j.soilbio.2020.107764.
DOI |
[19] | Martinez-Beltran J, Licona-Manzur C (2005). Overview of salinity problems in the world and FAO strategies to address the problem//Proceedings of the International Salinity Forum. Riverside, California, USA. 311-313. |
[20] |
Nicol GW, Leininger S, Schleper C, Prosser JI (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 10, 2966-2978.
DOI URL |
[21] |
Norman JS, Barrett JE (2014). Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil. Soil Biology & Biochemistry, 69, 141-146.
DOI URL |
[22] |
Rath KM, Fierer N, Murphy DV, Rousk J (2019). Linking bacterial community composition to soil salinity along environmental gradients. The ISME Journal, 13, 836-846.
DOI URL |
[23] |
Rath KM, Rousk J (2015). Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biology & Biochemistry, 81, 108-123.
DOI URL |
[24] |
Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4, 1340-1351.
DOI URL |
[25] |
Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019.
DOI URL |
[26] |
Wang C, Butterbach-Bahl K, He N, Wang Q, Xing X, Han X (2015). Nitrogen addition and mowing affect microbial nitrogen transformations in a C4 grassland in Northern China. European Journal of Soil Science, 66, 485-495.
DOI URL |
[27] |
Wei L, Su JS, Jing GH, Zhao J, Liu J, Cheng JM, Jin JW (2018). Nitrogen addition decreased soil respiration and its components in a long-term fenced grassland on the Loess Plateau. Journal of Arid Environments, 152, 37-44.
DOI URL |
[28] |
Xu XH, Diao HJ, Tan CY, Hao J, Shen Y, Dong KH, Wang CH (2021). Response of soil net nitrogen mineralization to different levels of nitrogen addition in a saline-alkaline grassland of northern China. Chinese Journal of Plant Ecology, 45, 85-95.
DOI URL |
[ 徐小惠, 刁华杰, 覃楚仪, 郝杰, 申颜, 董宽虎, 王常慧 (2021). 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应. 植物生态学报, 45, 85-95.] | |
[29] |
Yang C, Wang XZ, Miao FH, Li ZY, Tang W, Sun J (2020). Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Applied Soil Ecology, 155, 103671. DOI: 10.1016/j.apsoil.2020.103671.
DOI URL |
[30] |
Yang JS, Zhan C, Li YZ, Zhou D, Yu Y, Yu JB (2018). Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China. Science of the Total Environment, 642, 946-953.
DOI URL |
[31] |
Ying JY, Li XX, Wang NN, Lan ZC, He JZ, Bai YF (2017). Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biology & Biochemistry, 107, 10-18.
DOI URL |
[32] |
Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007). Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology, 35, 319-328.
DOI URL |
[33] | Zhang L, Huang JH, Bai YF, Han XG (2009). Effect of nitrogen addition on net nitrogen mineralization in Leymus chinensis grassland, Inner Mongolia, China. Chinese Journal of Plant Ecology, 33, 563-569. |
[ 张璐, 黄建辉, 白永飞, 韩兴国 (2009). 氮素添加对内蒙古羊草草原净氮矿化的影响. 植物生态学报, 33, 563-569.]
DOI |
|
[34] |
Zhao S, Liu JJ, Banerjee S, Zhou N, Zhao ZY, Zhang K, Tian CY (2018). Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Scientific Reports, 8, 4550. DOI: 10.1038/s41598-018-22788-7.
DOI URL |
[35] |
Zhou XH, Weng ES, Luo YQ (2008). Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecological Applications, 18, 453-466.
DOI URL |
[36] |
Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ (2017). Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology & Biochemistry, 115, 433-441.
DOI URL |
[1] | Lai-Cong LUO Xiao-Qin LAI Jian BAI Ai-Xin LI Hai-Fu FANG Ming TANG dong-nan hu Liang ZHANG. Effects of soil bacteria and fungi on the growth characteristics of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[2] | Jia-Rong YANG Dai Dong Junfang Chen Juan Liu Xian Wu Xiaolin Liu Yu Liu. Insight into the recent studies on diversity of arbuscular mycorrhizal fungi in shaping plant community assembly and maintaining rare species [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[3] | Hui ZHANG Jing WenZENG Tao GONG. The relationships between root hairs and mycorrhizal fungi across typical subtropical tree species [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[4] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[5] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[6] | XIA Ti-Ze, LI Lu-Shuang, YANG Han-Qi. Soil fungal community characteristics at the upper and lower altitudinal range limits of Cephalostachyum pingbianense [J]. Chin J Plant Ecol, 2022, 46(7): 823-833. |
[7] | QIN Jiang-Huan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Testing Janzen-Connell hypothesis based on plant-soil feedbacks in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 624-631. |
[8] | SHAN Ting-Ting, CHEN Tong-Yao, CHEN Xiao-Mei, GUO Shun-Xing, WANG Ai-Rong. Advance on the association between mycorrhizal fungi and Orchidaceae in nitrogen nutrition [J]. Chin J Plant Ecol, 2022, 46(5): 516-528. |
[9] | XIE Wei, HAO Zhi-Peng, ZHANG Xin, CHEN Bao-Dong. Research progress and prospect of signal transfer among plants mediated by arbuscular mycorrhizal networks [J]. Chin J Plant Ecol, 2022, 46(5): 493-515. |
[10] | XIE Yu-Hang, JIA Pu, ZHENG Xiu-Tan, LI Jin-Tian, SHU Wen-Sheng, WANG Yu-Tao. Impacts and action pathways of domestication on diversity and community structure of crop microbiome: a review [J]. Chin J Plant Ecol, 2022, 46(3): 249-266. |
[11] | XIE Huan, ZHANG Qiu-Fang, ZENG Quan-Xin, ZHOU Jia-Cong, MA Ya-Pei, WU Yue, LIU Yuan-Yuan, LIN Hui-Ying, YIN Yun-Feng, CHEN Yue-Min. Effects of nitrogen addition on phosphorus transformation and decomposition fungi in seedling stage of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2022, 46(2): 220-231. |
[12] | WU Yun-Tao, YANG Sen, WANG Xin, HUANG Jun-Sheng, WANG Bin, LIU Wei-Xing, LIU Ling-Li. Responses of soil nitrogen in different soil organic matter fractions to long-term nitrogen addition in a semi-arid grassland [J]. Chin J Plant Ecol, 2021, 45(7): 790-798. |
[13] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
[14] | HU Yuan-Liu, CHEN Guo-Yin, CHEN Jing-Wen, SUN Lian-Wei, LI Jian-Ling, DOU Ning, ZHANG De-Qiang, DENG Qi. Effects of long-term simulated acid rain on soil microbial community structure in a monsoon evergreen broad-leaved forest in southern China [J]. Chin J Plant Ecol, 2021, 45(3): 298-308. |
[15] | WANG Jiao, GUAN Xin, ZHANG Wei-Dong, HUANG Ke, ZHU Mu-Nan, YANG Qing-Peng. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings [J]. Chin J Plant Ecol, 2021, 45(11): 1231-1240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn