Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (7): 780-789.DOI: 10.17521/cjpe.2021.0072
Special Issue: 全球变化与生态系统; 生态化学计量; 微生物生态学
• Research Articles • Previous Articles Next Articles
YANG Jian-Qiang1, DIAO Hua-Jie2,3,4, HU Shu-Ya4, WANG Chang-Hui2,3,4,*()
Received:
2021-03-04
Accepted:
2021-04-22
Online:
2021-07-20
Published:
2021-10-22
Contact:
WANG Chang-Hui
Supported by:
YANG Jian-Qiang, DIAO Hua-Jie, HU Shu-Ya, WANG Chang-Hui. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China[J]. Chin J Plant Ecol, 2021, 45(7): 780-789.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0072
处理 Treatment | 氨氧化古菌 AOA | 氨氧化细菌 AOB | 细菌 Bacteria | 真菌 Fungal | 微生物生物量碳 MBC | 微生物生物量氮 MBN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
氮水平 N levels | 0.38 | 0.907 | 6.72 | <0.000 1 | 0.65 | 0.710 | 0.92 | 0.498 | 1.62 | 0.159 | 1.02 | 0.434 |
采样月份 Sampling month | 9.72 | <0.000 1 | 1.21 | 0.309 | 58.66 | <0.000 1 | 24.05 | <0.000 1 | 6.21 | <0.000 1 | 8.54 | <0.000 1 |
月份×氮水平 Month × N levels | 0.83 | 0.712 | 2.44 | <0.000 1 | 0.62 | 0.930 | 1.09 | 0.357 | 0.78 | 0.776 | 0.58 | 0.951 |
Table 1 Effects of nitrogen (N) levels, month and their interactions on soil microorganism (AOA, AOB, bacteria, fungi abundance and MBC, MBN content) in saline-alkaline grassland
处理 Treatment | 氨氧化古菌 AOA | 氨氧化细菌 AOB | 细菌 Bacteria | 真菌 Fungal | 微生物生物量碳 MBC | 微生物生物量氮 MBN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
氮水平 N levels | 0.38 | 0.907 | 6.72 | <0.000 1 | 0.65 | 0.710 | 0.92 | 0.498 | 1.62 | 0.159 | 1.02 | 0.434 |
采样月份 Sampling month | 9.72 | <0.000 1 | 1.21 | 0.309 | 58.66 | <0.000 1 | 24.05 | <0.000 1 | 6.21 | <0.000 1 | 8.54 | <0.000 1 |
月份×氮水平 Month × N levels | 0.83 | 0.712 | 2.44 | <0.000 1 | 0.62 | 0.930 | 1.09 | 0.357 | 0.78 | 0.776 | 0.58 | 0.951 |
Fig. 1 Seasonal and inter-annual mean values (mean ± SE) of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) abundance in saline-alkaline grassland. *, ** and *** represent the differences are significant with p < 0.05, p < 0.01 and p < 0.000 1, respectively; different lowercase letters in the bar chart indicate significant differences among treatments (p < 0.05). CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
Fig. 2 Seasonal and inter-annual mean values (mean ± SE) of soil bacterial and fungal in saline-alkaline grassland. *, ** and *** represent the differences among treatments are significant with p < 0.05, p < 0.01 and p < 0.000 1, respectively; different lowercase letters in the bar chart indicate significant differences among treatments (p < 0.05). CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
Fig. 3 Seasonal and inter-annual mean values (mean ± SE) of soil microbial biomass carbon (MBC) and nitrogen (MBN) content in saline-alkaline grassland. *, ** and *** represent the differences among treatments are significant with p < 0.05, p < 0.01 and p < 0.000 1, respectively; different lowercase letters in the bar chart indicate significant differences among treatments (p < 0.05). CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
因子 Factor | AOA | AOB | Bacteria | Fungi | MBC | MBN | ST | SM | pH | Ca2+ | K+ | Mg2+ | Na+ | STC | CO32- | HCO3- | Cl- | STA | NH4+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AOB | 0.23 | ||||||||||||||||||
细菌 Bacteria | -0.49** | -0.03 | |||||||||||||||||
真菌 Fungi | 0.47** | 0.09 | -0.06 | ||||||||||||||||
MBC | -0.19 | -0.01 | 0.33* | 0.11 | |||||||||||||||
MBN | 0.09 | 0.14 | 0.19 | 0.23 | 0.44** | ||||||||||||||
ST | -0.26 | -0.61** | -0.06 | -0.19 | -0.21 | -0.47** | |||||||||||||
SM | -0.26 | -00.19 | 0.03 | -0.17 | 0.24 | 0.37** | 0.00 | ||||||||||||
pH | -0.36* | -0.63** | 0.10 | -0.10 | 0.14 | -0.07 | 0.53** | 0.42** | |||||||||||
Ca2+ | 0.42** | 0.58** | -0.28 | 0.21 | -0.29* | -0.05 | -0.37** | -0.34* | -0.61** | ||||||||||
K+ | 0.04 | -0.03 | 0.01 | 0.02 | -0.02 | -0.08 | 0.22 | -0.17 | 0.10 | -0.02 | |||||||||
Mg2+ | 0.42** | -0.32* | -0.36* | 0.06 | 0.01 | -0.01 | 0.29* | 0.23 | 0.34* | -0.36* | 0.17 | ||||||||
Na+ | -0.47** | -0.46** | 0.07 | -0.29* | 0.15 | 0.05 | 0.25 | 0.62** | 0.77** | -0.51** | -0.09 | 0.17 | |||||||
STC | 0.52** | -0.11 | -0.50** | 0.09 | -0.13 | -0.03 | 0.17 | 0.21 | 0.24 | 0.09 | 0.27 | 0.85** | 0.19 | ||||||
CO32- | -0.45** | -0.27 | 0.28 | -0.21 | 0.08 | -0.11 | 0.23 | 0.21 | 0.39** | -0.26 | -0.20 | -0.24 | 0.34* | -0.31* | |||||
HCO3- | 0.25 | 0.05 | -0.27 | -0.13 | -0.10 | 0.02 | 0.08 | 0.16 | 0.14 | 0.11 | 0.39** | 0.39** | 0.22 | 0.59** | -0.47** | ||||
Cl- | 0.06 | -0.06 | 0.03 | -0.26 | -0.07 | 0.01 | 0.01 | 0.03 | 0.03 | 0.14 | 0.12 | 0.09 | 0.06 | 0.22 | -0.03 | 0.21 | |||
STA | 0.19 | 0.00 | -0.24 | -0.19 | -0.10 | 0.00 | 0.13 | 0.21 | 0.22 | 0.08 | 0.39** | 0.38** | 0.29* | 0.59** | -0.33* | 0.98** | 0.30* | ||
NH4+ | 0.26 | 0.05 | -0.12 | 0.32* | -0.20 | -0.17 | -0.19 | -0.21 | -0.15 | 0.33* | -0.09 | -0.19 | -0.29* | -0.10 | -0.33* | 0.08 | -0.19 | 0.01 | |
NO3- | -0.09 | -0.11 | 0.17 | 0.05 | 0.37** | -0.02 | -0.18 | -0.04 | -0.03 | -0.02 | -0.03 | -0.11 | 0.08 | -0.09 | -0.16 | 0.03 | -0.03 | 0.00 | 0.22 |
Table 2 Pearson correlation between soil microorganisms and soil microenvironment, soil cations and anions concentration
因子 Factor | AOA | AOB | Bacteria | Fungi | MBC | MBN | ST | SM | pH | Ca2+ | K+ | Mg2+ | Na+ | STC | CO32- | HCO3- | Cl- | STA | NH4+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AOB | 0.23 | ||||||||||||||||||
细菌 Bacteria | -0.49** | -0.03 | |||||||||||||||||
真菌 Fungi | 0.47** | 0.09 | -0.06 | ||||||||||||||||
MBC | -0.19 | -0.01 | 0.33* | 0.11 | |||||||||||||||
MBN | 0.09 | 0.14 | 0.19 | 0.23 | 0.44** | ||||||||||||||
ST | -0.26 | -0.61** | -0.06 | -0.19 | -0.21 | -0.47** | |||||||||||||
SM | -0.26 | -00.19 | 0.03 | -0.17 | 0.24 | 0.37** | 0.00 | ||||||||||||
pH | -0.36* | -0.63** | 0.10 | -0.10 | 0.14 | -0.07 | 0.53** | 0.42** | |||||||||||
Ca2+ | 0.42** | 0.58** | -0.28 | 0.21 | -0.29* | -0.05 | -0.37** | -0.34* | -0.61** | ||||||||||
K+ | 0.04 | -0.03 | 0.01 | 0.02 | -0.02 | -0.08 | 0.22 | -0.17 | 0.10 | -0.02 | |||||||||
Mg2+ | 0.42** | -0.32* | -0.36* | 0.06 | 0.01 | -0.01 | 0.29* | 0.23 | 0.34* | -0.36* | 0.17 | ||||||||
Na+ | -0.47** | -0.46** | 0.07 | -0.29* | 0.15 | 0.05 | 0.25 | 0.62** | 0.77** | -0.51** | -0.09 | 0.17 | |||||||
STC | 0.52** | -0.11 | -0.50** | 0.09 | -0.13 | -0.03 | 0.17 | 0.21 | 0.24 | 0.09 | 0.27 | 0.85** | 0.19 | ||||||
CO32- | -0.45** | -0.27 | 0.28 | -0.21 | 0.08 | -0.11 | 0.23 | 0.21 | 0.39** | -0.26 | -0.20 | -0.24 | 0.34* | -0.31* | |||||
HCO3- | 0.25 | 0.05 | -0.27 | -0.13 | -0.10 | 0.02 | 0.08 | 0.16 | 0.14 | 0.11 | 0.39** | 0.39** | 0.22 | 0.59** | -0.47** | ||||
Cl- | 0.06 | -0.06 | 0.03 | -0.26 | -0.07 | 0.01 | 0.01 | 0.03 | 0.03 | 0.14 | 0.12 | 0.09 | 0.06 | 0.22 | -0.03 | 0.21 | |||
STA | 0.19 | 0.00 | -0.24 | -0.19 | -0.10 | 0.00 | 0.13 | 0.21 | 0.22 | 0.08 | 0.39** | 0.38** | 0.29* | 0.59** | -0.33* | 0.98** | 0.30* | ||
NH4+ | 0.26 | 0.05 | -0.12 | 0.32* | -0.20 | -0.17 | -0.19 | -0.21 | -0.15 | 0.33* | -0.09 | -0.19 | -0.29* | -0.10 | -0.33* | 0.08 | -0.19 | 0.01 | |
NO3- | -0.09 | -0.11 | 0.17 | 0.05 | 0.37** | -0.02 | -0.18 | -0.04 | -0.03 | -0.02 | -0.03 | -0.11 | 0.08 | -0.09 | -0.16 | 0.03 | -0.03 | 0.00 | 0.22 |
Fig. 4 Effects of nitrogen (N) addition at different levels on soil pH value (mean ± SE), cations, and anions concentration. CK, control; N1, nitrogen addition level 1 g·m-2·a-1; N2, nitrogen addition level 2 g·m-2·a-1; N4, nitrogen addition level 4 g·m-2·a-1; N8, nitrogen addition level 8 g·m-2·a-1; N16, nitrogen addition level 16 g·m-2·a-1; N24, nitrogen addition level 24 g·m-2·a-1; N32, nitrogen addition level 32 g·m-2·a-1.
Fig. 5 Redundancy analysis (RDA) of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), bacteria, fungi abundance and microbial biomass carbon (MBC), and nitrogen (MBN) content with related factors. SM, soil moisture; ST, soil temperature; STA, soil total anions content; STC, soil total cations content.
[1] |
Bowman WD, Cleveland CC, Halada Ĺ, Hreško J, Baron JS (2008). Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1, 767-770.
DOI URL |
[2] |
Cai JP, Luo WT, Liu HY, Feng X, Zhang YY, Wang RZ, Xu ZW, Zhang YG, Jiang Y (2017). Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland. Atmospheric Environment, 170, 312-318.
DOI URL |
[3] |
Cheng Y, Wang J, Mary B, Zhang JB, Cai ZC, Chang SX (2013). Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biology & Biochemistry, 57, 848-857.
DOI URL |
[4] |
Fierer N, Jackson RB (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103, 626-631.
PMID |
[5] |
Gruber N, Galloway JN (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296.
DOI URL |
[6] |
Hao TX, Zhang YY, Zhang JB, Müller C, Li KH, Zhang KP, Chu HY, Stevens C, Liu XJ (2020). Chronic nitrogen addition differentially affects gross nitrogen transformations in alpine and temperate grassland soils. Soil Biology & Biochemistry, 149. DOI: 10.1016/j.soilbio.2020.107962.
DOI |
[7] |
He JZ, Hu HW, Zhang LM (2012). Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology & Biochemistry, 55, 146-154.
DOI URL |
[8] | He JZ, Zhang LM (2009). Advances in ammonia-oxidizing microorganisms and global nitrogen cycle. Acta Ecologica Sinica, 29, 406-415. |
[ 贺纪正, 张丽梅 (2009). 氨氧化微生物生态学与氮循环研究进展. 生态学报, 29, 406-415.] | |
[9] | Huyghe C (2010). New utilizations for the grassland areas and the forage plants: What matters. Fourrages, 203, 213-219. |
[10] |
Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, Baker AR, Tsigaridis K, Mihalopoulos N (2016). Past, present and future atmospheric nitrogen deposition. Journal of the Atmospheric Sciences, 73, 2039-2047.
DOI URL |
[11] |
Kuypers MMM, Marchant HK, Kartal B (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16, 263-276.
DOI PMID |
[12] |
Laura RD (1976). Effects of alkali salts on carbon and nitrogen mineralization of organic matter in soil. Plant and Soil, 44, 587-596.
DOI URL |
[13] |
Li JG, Pu LJ, Han MF, Zhu M, Zhang RS, Xiang YZ (2014). Soil salinization research in China: advances and prospects. Journal of Geographical Sciences, 24, 943-960.
DOI URL |
[14] |
Li Y, Xu XH, Sun W, Shen Y, Ren TT, Huang JH, Wang CH (2019). Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 43, 174-184.
DOI URL |
[ 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧 (2019). 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43, 174-184.]
DOI |
|
[15] | Liu HM, Zhang HF, Qin J, Wang H, Zhang YJ, Yang DL (2019). Effects of simulated nitrogen deposition on soil nitrogen-transforming microorganisms in Stipa baicalensis steppe. Journal of Agro-environment Science, 38, 2386-2394. |
[ 刘红梅, 张海芳, 秦洁, 王慧, 张艳军, 杨殿林 (2019). 模拟氮沉降对贝加尔针茅草原土壤氮转化微生物的影响. 农业环境科学学报, 38, 2386-2394.] | |
[16] |
Lu M, Yang YH, Luo YQ, Fang CM, Zhou XH, Chen JK, Yang X, Li B (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189, 1040-1050.
DOI URL |
[17] |
Lucas RW, Klaminder J, Futter MN, Bishop KH, Egnell G, Laudon H, Högberg P (2011). A meta-analysis of the effects of nitrogen additions on base cations: implications for plants, soils, and streams. Forest Ecology and Management, 262, 95-104.
DOI URL |
[18] |
Luo RY, Kuzyakov Y, Liu DY, Fang JL, Luo JF, Lindsey S, He JS, Ding WX (2020). Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls. Soil Biology & Biochemistry, 144. DOI: 10.1016/j.soilbio.2020.107764.
DOI |
[19] | Martinez-Beltran J, Licona-Manzur C (2005). Overview of salinity problems in the world and FAO strategies to address the problem//Proceedings of the International Salinity Forum. Riverside, California, USA. 311-313. |
[20] |
Nicol GW, Leininger S, Schleper C, Prosser JI (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 10, 2966-2978.
DOI URL |
[21] |
Norman JS, Barrett JE (2014). Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil. Soil Biology & Biochemistry, 69, 141-146.
DOI URL |
[22] |
Rath KM, Fierer N, Murphy DV, Rousk J (2019). Linking bacterial community composition to soil salinity along environmental gradients. The ISME Journal, 13, 836-846.
DOI URL |
[23] |
Rath KM, Rousk J (2015). Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biology & Biochemistry, 81, 108-123.
DOI URL |
[24] |
Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 4, 1340-1351.
DOI URL |
[25] |
Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019.
DOI URL |
[26] |
Wang C, Butterbach-Bahl K, He N, Wang Q, Xing X, Han X (2015). Nitrogen addition and mowing affect microbial nitrogen transformations in a C4 grassland in Northern China. European Journal of Soil Science, 66, 485-495.
DOI URL |
[27] |
Wei L, Su JS, Jing GH, Zhao J, Liu J, Cheng JM, Jin JW (2018). Nitrogen addition decreased soil respiration and its components in a long-term fenced grassland on the Loess Plateau. Journal of Arid Environments, 152, 37-44.
DOI URL |
[28] |
Xu XH, Diao HJ, Tan CY, Hao J, Shen Y, Dong KH, Wang CH (2021). Response of soil net nitrogen mineralization to different levels of nitrogen addition in a saline-alkaline grassland of northern China. Chinese Journal of Plant Ecology, 45, 85-95.
DOI URL |
[ 徐小惠, 刁华杰, 覃楚仪, 郝杰, 申颜, 董宽虎, 王常慧 (2021). 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应. 植物生态学报, 45, 85-95.] | |
[29] |
Yang C, Wang XZ, Miao FH, Li ZY, Tang W, Sun J (2020). Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Applied Soil Ecology, 155, 103671. DOI: 10.1016/j.apsoil.2020.103671.
DOI URL |
[30] |
Yang JS, Zhan C, Li YZ, Zhou D, Yu Y, Yu JB (2018). Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China. Science of the Total Environment, 642, 946-953.
DOI URL |
[31] |
Ying JY, Li XX, Wang NN, Lan ZC, He JZ, Bai YF (2017). Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biology & Biochemistry, 107, 10-18.
DOI URL |
[32] |
Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007). Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology, 35, 319-328.
DOI URL |
[33] | Zhang L, Huang JH, Bai YF, Han XG (2009). Effect of nitrogen addition on net nitrogen mineralization in Leymus chinensis grassland, Inner Mongolia, China. Chinese Journal of Plant Ecology, 33, 563-569. |
[ 张璐, 黄建辉, 白永飞, 韩兴国 (2009). 氮素添加对内蒙古羊草草原净氮矿化的影响. 植物生态学报, 33, 563-569.]
DOI |
|
[34] |
Zhao S, Liu JJ, Banerjee S, Zhou N, Zhao ZY, Zhang K, Tian CY (2018). Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Scientific Reports, 8, 4550. DOI: 10.1038/s41598-018-22788-7.
DOI URL |
[35] |
Zhou XH, Weng ES, Luo YQ (2008). Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecological Applications, 18, 453-466.
DOI URL |
[36] |
Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ (2017). Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology & Biochemistry, 115, 433-441.
DOI URL |
[1] | Ke-Yu CHEN Sen Xing Yu Tang Sun JiaHui Shijie Ren Bao-Ming JI. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[2] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[3] | Die Hu Xinqi Jiang DAI Zhicong Daiyi Chen Yu Zhang Shan-Shan Qi. Arbuscular mycorrhizal fungi enhance the herbicide tolerance of an invasive weed Sphagneticola trilobata [J]. Chin J Plant Ecol, 2024, 48(5): 651-659. |
[4] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[5] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[6] | YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai [J]. Chin J Plant Ecol, 2024, 48(3): 377-389. |
[7] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[8] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[9] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[10] | CHEN Bao-Dong, FU Wei, WU Song-Lin, ZHU Yong-Guan. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling [J]. Chin J Plant Ecol, 2024, 48(1): 1-20. |
[11] | REN Yue, GAO Guang-Lei, DING Guo-Dong, ZHANG Ying, ZHAO Pei-Shan, LIU Ye. Species composition and driving factors of the ectomycorrhizal fungal community associated with Pinus sylvestris var. mongolica at different growth periods [J]. Chin J Plant Ecol, 2023, 47(9): 1298-1309. |
[12] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[13] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[14] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[15] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn