Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (3): 377-389.DOI: 10.17521/cjpe.2023.0172 cstr: 32100.14.cjpe.2023.0172
• Research Articles • Previous Articles Next Articles
YANG An-Na1, LI Zeng-Yan1, MOU Ling1, YANG Bai-Yu1, SAI Bi-Le1, ZHANG Li1, ZHANG Zeng-Ke1, WANG Wan-Sheng2, DU Yun-Cai2, YOU Wen-Hui1, YAN En-Rong1,*()
Received:
2023-06-14
Accepted:
2023-10-09
Online:
2024-03-20
Published:
2024-04-24
Contact:
YAN En-Rong
Supported by:
YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai[J]. Chin J Plant Ecol, 2024, 48(3): 377-389.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0172
植被类型 Vegetation type | 总氮含量 Total nitrogen content (g·kg-1) | 总磷含量 Total phosphorus content (g·kg-1) | 有机碳含量 Organic matter content (g·kg-1) | 速效氮含量 Available nitrogen content (mg·kg-1) | 速效磷含量 Available phosphorus content (mg·kg-1) | 速效钾含量 Available kalium content (mg·kg-1) |
---|---|---|---|---|---|---|
落叶灌丛 Deciduous shrubland | 0.61 ± 0.10ab | 0.11 ± 0.01b | 5.99 ± 1.37ab | 453.70 ± 154.30ab | 4.03 ± 1.00ab | 232.17 ± 29.60a |
落叶阔叶林 Deciduous broadleaf forest | 0.49 ± 0.09b | 0.09 ± 0.01b | 4.94 ± 1.09b | 323.80 ± 69.20b | 4.12 ± 1.50a | 234.00 ± 75.30a |
常绿阔叶林 Evergreen broadleaf forest | 0.66 ± 0.14a | 0.17 ± 0.04a | 7.86 ± 1.97a | 480.31 ± 132.08a | 14.10 ± 5.80a | 199.41 ± 45.20a |
Table 2 Soil chemical properties across vegetation types in Dajinshan Island, Shanghai (mean ± SD)
植被类型 Vegetation type | 总氮含量 Total nitrogen content (g·kg-1) | 总磷含量 Total phosphorus content (g·kg-1) | 有机碳含量 Organic matter content (g·kg-1) | 速效氮含量 Available nitrogen content (mg·kg-1) | 速效磷含量 Available phosphorus content (mg·kg-1) | 速效钾含量 Available kalium content (mg·kg-1) |
---|---|---|---|---|---|---|
落叶灌丛 Deciduous shrubland | 0.61 ± 0.10ab | 0.11 ± 0.01b | 5.99 ± 1.37ab | 453.70 ± 154.30ab | 4.03 ± 1.00ab | 232.17 ± 29.60a |
落叶阔叶林 Deciduous broadleaf forest | 0.49 ± 0.09b | 0.09 ± 0.01b | 4.94 ± 1.09b | 323.80 ± 69.20b | 4.12 ± 1.50a | 234.00 ± 75.30a |
常绿阔叶林 Evergreen broadleaf forest | 0.66 ± 0.14a | 0.17 ± 0.04a | 7.86 ± 1.97a | 480.31 ± 132.08a | 14.10 ± 5.80a | 199.41 ± 45.20a |
Fig. 1 Differences in operational taxonomic units (OTU) richness (A), Chao1 (B), Shannon-Wiener (C) and Simpson (D) indices of soil bacterial community across three vegetation types in Dajinshan Island, Shanghai. DF, deciduous broadleaf forest; DS, deciduous shrubland; EF, evergreen broadleaf forest. Different lowercase letters among boxplots indicate significant differences (p < 0.05).
Fig. 2 Difference in soil bacterial community structure among three vegetation types in Dajinshan Island, Shanghai. AK, available kalium content; AN, available nitrogen content; AP, available phosphorus content; TC, organic matter content; TN, total nitrogen content; TP, total phosphorus content. DF, deciduous broadleaf forest; DS, deciduous shrubland; EF, evergreen broadleaf forest. NMDS, non-metric multidimensional scaling.
Fig. 3 Correlation networks of soil bacteria across three vegetation types in Dajinshan Island, Shanghai. The connection between any two points indicates that the correlation between operational taxonomic units (OTUs) is significant (p < 0.05). Red represents positive correlation, while blue represents negative correlation. DF, deciduous broadleaf forest; DS, deciduous shrubland; EF, evergreen broadleaf forest. d, network diameter; D, density; l, path length; n, number of nodes.
植被类型 Vegetation type | OTU编号 OTU code | 门 Phylum | 纲 Class | 目 Order | 节点度 Nodes degree |
---|---|---|---|---|---|
落叶灌丛 Deciduous shrubland | OTU137 | 拟杆菌门 Bacteroidetes | 腐螺旋菌纲 Saprospirae | 腐螺旋菌目 Saprospirales | 19 |
OTU34 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 19 | |
OTU52 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 19 | |
落叶阔叶林 Deciduous broadleaf forest | OTU98 | 变形菌门 Proteobacteria | γ变形菌纲 Gamma proteobacteria | 黄单胞菌 Xanthomonadales | 54 |
常绿阔叶林 Evergreen broadleaf forest | OTU104 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 6 |
OTU47 | WPS-2 | - | - | 6 |
Table 3 Core nodes in correlation networks of soil bacterial across three vegetation types in Dajinshan Island, Shanghai
植被类型 Vegetation type | OTU编号 OTU code | 门 Phylum | 纲 Class | 目 Order | 节点度 Nodes degree |
---|---|---|---|---|---|
落叶灌丛 Deciduous shrubland | OTU137 | 拟杆菌门 Bacteroidetes | 腐螺旋菌纲 Saprospirae | 腐螺旋菌目 Saprospirales | 19 |
OTU34 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 19 | |
OTU52 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 19 | |
落叶阔叶林 Deciduous broadleaf forest | OTU98 | 变形菌门 Proteobacteria | γ变形菌纲 Gamma proteobacteria | 黄单胞菌 Xanthomonadales | 54 |
常绿阔叶林 Evergreen broadleaf forest | OTU104 | 酸杆菌门 Acidobacteria | DA052 | Ellin6513 | 6 |
OTU47 | WPS-2 | - | - | 6 |
Fig. 4 Relative abundance distribution of dominant soil bacterial phyla across three vegetation types in Dajinshan Island, Shanghai. DF, deciduous broadleaf forest; DS, deciduous shrubland; EF, evergreen broadleaf forest.
门 Phylum | 落叶灌丛-落叶阔叶林 Deciduous shrubland - deciduous broadleaf forest | 落叶阔叶林-常绿阔叶林 Deciduous broadleaf forest - evergreen broadleaf forest | 落叶灌丛-常绿阔叶林 Deciduous shrubland - evergreen broadleaf forest | |||
---|---|---|---|---|---|---|
t | p | t | p | t | p | |
变形菌门 Proteobacteria | -0.65 | 0.79 | 0.63 | 0.81 | -0.09 | 0.99 |
酸杆菌门 Acidobacteria | -0.50 | 0.87 | -0.81 | 0.70 | -1.15 | 0.49 |
放线菌门 Actinobacteria | 2.71 | 0.03 | -1.01 | 0.58 | 1.73 | 0.21 |
WPS-2 | -0.89 | 0.65 | -5.04 | 0.00 | -5.06 | 0.00 |
绿弯菌门 Chloroflexi | -0.76 | 0.73 | -1.29 | 0.41 | -1.80 | 0.19 |
浮霉菌门 Planctomycetes | 2.31 | 0.07 | -0.03 | 0.99 | -2.17 | 0.10 |
厚壁菌门 Firmicutes | -1.84 | 0.18 | 1.03 | 0.56 | -0.89 | 0.65 |
AD3 | -1.35 | 0.38 | -0.30 | 0.95 | -1.53 | 0.29 |
疣微菌门 Verrucomicrobia | 3.45 | 0.01 | 0.69 | 0.77 | 3.85 | 0.00 |
Table 4 Results of significance test for the difference in relative abundance of dominant soil bacterial phylum among three vegetation types in Dajinshan Island, Shanghai
门 Phylum | 落叶灌丛-落叶阔叶林 Deciduous shrubland - deciduous broadleaf forest | 落叶阔叶林-常绿阔叶林 Deciduous broadleaf forest - evergreen broadleaf forest | 落叶灌丛-常绿阔叶林 Deciduous shrubland - evergreen broadleaf forest | |||
---|---|---|---|---|---|---|
t | p | t | p | t | p | |
变形菌门 Proteobacteria | -0.65 | 0.79 | 0.63 | 0.81 | -0.09 | 0.99 |
酸杆菌门 Acidobacteria | -0.50 | 0.87 | -0.81 | 0.70 | -1.15 | 0.49 |
放线菌门 Actinobacteria | 2.71 | 0.03 | -1.01 | 0.58 | 1.73 | 0.21 |
WPS-2 | -0.89 | 0.65 | -5.04 | 0.00 | -5.06 | 0.00 |
绿弯菌门 Chloroflexi | -0.76 | 0.73 | -1.29 | 0.41 | -1.80 | 0.19 |
浮霉菌门 Planctomycetes | 2.31 | 0.07 | -0.03 | 0.99 | -2.17 | 0.10 |
厚壁菌门 Firmicutes | -1.84 | 0.18 | 1.03 | 0.56 | -0.89 | 0.65 |
AD3 | -1.35 | 0.38 | -0.30 | 0.95 | -1.53 | 0.29 |
疣微菌门 Verrucomicrobia | 3.45 | 0.01 | 0.69 | 0.77 | 3.85 | 0.00 |
Fig. 5 The most markable abundant taxa (biomarkers) of soil bacterial among three vegetation types on Dajinshan Island, Shanghai. The circle from inside to outside represents the taxonomy level from phylum to order, and each small circle at a given classification level represents a subordinate class within that category. The species with none of significant difference are colored by yellow, the species with significant difference are accompanied by the group color, and the species that cannot show in circle (represented by letters) and are corresponding to the markers display on the right side of the figure. DF, deciduous broadleaf forest; DS, deciduous shrubland; EF, evergreen broadleaf forest.
目的类别 Oder level | 总氮含量 Total nitrogen content | 总磷含量 Total phosphorus content | 有机碳含量 Organic carbon content | 速效氮含量 Available nitrogen content | 速效磷含量 Available phosphorus content | 速效钾含量 Available kalium content |
---|---|---|---|---|---|---|
肠杆菌目 Enterobacteriales | -0.17 | -0.13 | -0.09 | -0.23 | -0.14 | 0.12 |
酸杆菌目 Acidobacteriales | -0.27 | -0.01 | -0.10 | -0.26 | 0.15 | -0.22 |
伯克氏菌目 Burkholderiales | -0.04 | -0.13 | -0.09 | -0.25 | -0.14 | 0.13 |
黄单胞菌目 Xanthomonadales | 0.24 | 0.45* | 0.33 | 0.24 | 0.39 | -0.27 |
嗜热芽菌目 Thermogemmatisporales | -0.04 | 0.30 | 0.08 | -0.00 | 0.37 | -0.25 |
红螺菌目 Rhodospirillales | 0.15 | 0.48* | 0.26 | 0.27 | 0.60 | -0.39 |
根瘤菌目 Rhizobiales | 0.19 | 0.28 | 0.18 | 0.42* | 0.24 | -0.40 |
土壤红杆菌目 Solirubrobacterales | 0.33 | 0.36 | 0.31 | 0.38 | 0.18 | -0.33 |
Gaiellales | 0.20 | -0.03 | 0.07 | 0.31 | -0.17 | -0.13 |
Table 5 Pearson correlation coefficients between relative abundance of main biomarker groups of soil bacterial and soil nutrients contents in Dajinshan Island, Shanghai
目的类别 Oder level | 总氮含量 Total nitrogen content | 总磷含量 Total phosphorus content | 有机碳含量 Organic carbon content | 速效氮含量 Available nitrogen content | 速效磷含量 Available phosphorus content | 速效钾含量 Available kalium content |
---|---|---|---|---|---|---|
肠杆菌目 Enterobacteriales | -0.17 | -0.13 | -0.09 | -0.23 | -0.14 | 0.12 |
酸杆菌目 Acidobacteriales | -0.27 | -0.01 | -0.10 | -0.26 | 0.15 | -0.22 |
伯克氏菌目 Burkholderiales | -0.04 | -0.13 | -0.09 | -0.25 | -0.14 | 0.13 |
黄单胞菌目 Xanthomonadales | 0.24 | 0.45* | 0.33 | 0.24 | 0.39 | -0.27 |
嗜热芽菌目 Thermogemmatisporales | -0.04 | 0.30 | 0.08 | -0.00 | 0.37 | -0.25 |
红螺菌目 Rhodospirillales | 0.15 | 0.48* | 0.26 | 0.27 | 0.60 | -0.39 |
根瘤菌目 Rhizobiales | 0.19 | 0.28 | 0.18 | 0.42* | 0.24 | -0.40 |
土壤红杆菌目 Solirubrobacterales | 0.33 | 0.36 | 0.31 | 0.38 | 0.18 | -0.33 |
Gaiellales | 0.20 | -0.03 | 0.07 | 0.31 | -0.17 | -0.13 |
[1] | Alexander E, Friederike H, Stefan B (2012). Coherent dynamics and association networks among lake bacterioplankton taxa. The ISME Journal, 6, 330-342. |
[2] | Banning NC, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Murphy DV (2011). Soil microbial community successional patterns during forest ecosystem restoration. Applied and Environmental Microbiology, 77, 6158-6164. |
[3] |
Cline LC, Zak DR (2015). Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession. Ecology, 96, 3374-3385.
PMID |
[4] | Enrique GR, Prieto I, Villar R (2018). The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests. Plant and Soil, 435, 353-366. |
[5] | Ethel BS, Lucas MC, Chuck SF, Cristina EAM (2019). Distribution, function and regulation of type 6 secretion systems of Xanthomonadales. Frontiers in Microbiology, 10, 1635. DOI: 10.3389/fmicb.2019.01635 |
[6] | Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y, Chu H (2019). Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 7, 143. DOI: 10.1186/s40168-019-0757-8. |
[7] |
Fierer N, Bradford MA, Jackson RB (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
DOI PMID |
[8] | Fruchterman TMJ, Reingold EM (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21, 1129-1164. |
[9] | Garrido-Oter R, Nakano RT, Dombrowski N, Ma K, The AgBiome Team, Mchardy AC, Schulze-Lefert P (2018). Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host & Microbe, 24, 155-167. |
[10] | Gobat JM, Aragno M, Matthey W (2004). The Living Soil: Fundamentals of Soil Science and Soil Biology. Science Publishers, Enfield, USA. |
[11] | He GX, Peng TS, Guo Y, Wen SZ, Ji L, Luo Z (2022). Forest succession improves the complexity of soil microbial interaction and ecological stochasticity of community assembly: evidence from Phoebe bournei-dominated forests in subtropical regions. Frontiers in Microbiology, 13, 1021258. DOI: 10.3389/FMICB.2022.1021258. |
[12] | Hu J, Yang H, Long X, Liu Z, Rengel Z (2016). Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area. Scientific Reports, 6, 21938. DOI: 10.1038/srep21938. |
[13] | Jia S, Wang X, Yuan Z, Lin F, Ye J, Lin G, Hao Z, Bagchi R (2020). Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature Communications, 11, 286. DOI: 10.1038/s41467-019-14140-y. |
[14] |
Jin YL, Li BC, Geng L, Bu Y (2017). Soil fauna community in different natural vegetation types of Dajinshan Island, Shanghai. Biodiversity Science, 25, 304-311.
DOI |
[靳亚丽, 李必成, 耿龙, 卜云 (2017). 上海大金山岛不同植被类型下土壤动物群落多样性. 生物多样性, 25, 304-311.]
DOI |
|
[15] |
Li P, Shi RJ, Zhao F, Yu JH, Cui XY, Hu JG, Zhang Y (2019). Soil bacterial community structure and predicted functions in the larch forest during succession at the Greater Khingan Mountains of Northeast China. Chinese Journal of Applied Ecology, 30, 95-107.
DOI |
[李萍, 史荣久, 赵峰, 于景华, 崔晓阳, 胡金贵, 张颖 (2019). 大兴安岭落叶松林不同演替阶段土壤细菌群落结构与功能潜势. 应用生态学报, 30, 95-107.]
DOI |
|
[16] | Lu RK (2000). The Method of Soil Agricultural Chemical Analysis. China Agriculture Science & Technology Press, Beijing. |
[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[17] | Luo DH, Li X, Luo BJ, Xu MS, Tuo B, Yan ER, You WH (2020). Soil meso- and micro-fauna characteristics in evergreen broad-leaved forest and deciduous broad-leaved forest in Dajinshan Island, China. Journal of Ecology and Rural Environment, 36, 349-357. |
[罗鼎晖, 李翔, 骆蓓菁, 许洺山, 妥彬, 阎恩荣, 由文辉 (2020). 大金山岛常绿阔叶林和落叶阔叶林中小型土壤动物群落特征. 生态与农村环境学报, 36, 349-357.] | |
[18] |
Marisa RM, King MG (2016). Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. International Journal of Systematic and Evolutionary Microbiology, 66, 5328-5335.
DOI PMID |
[19] |
Pankratov TA, Ivanova AO, Dedysh SN, Liesack W (2011). Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environmental Microbiology, 13, 1800-1814.
DOI PMID |
[20] | Poupin MJ, Greve M, Carmona V, Pinedo I (2016). A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN. Frontiers in Plant Science, 7, 492. DOI: 10.3389/fpls.2016.00492. |
[21] | Prescott C, Grayston SJ (2013). Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecology and Management, 309, 19-27. |
[22] | Qu ZL, Liu B, Ma Y, Xu J, Sun H (2020). The response of the soil bacterial community and function to forest succession caused by forest disease. Functional Ecology, 34, 2548-2559. |
[23] | Ruben GO, Thomas NR, Nina D, Ma KW, Mchardy AC, Paul SL (2018). Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host and Microbe, 24, 155-167. |
[24] | Scheibe A, Steffens C, Seven J, Jacob A, Hertel D, Leuschner C, Gleixner G (2015). Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biology & Biochemistry, 81, 219-227. |
[25] |
Schmidt SK, Nemergut DR, Darcy JL, Lynch R (2014). Do bacterial and fungal communities assemble differently during primary succession? Molecular Ecology, 23, 254-258.
DOI PMID |
[26] |
Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011). Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 92, 296-303.
PMID |
[27] |
Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, Goss EM, Jones JB (2020). Xanthomonas diversity, virulence and plant-pathogen interactions. Nature Reviews Microbiology, 18, 415-427.
DOI PMID |
[28] | Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, et al. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied Environmental Microbiology, 75, 2046-2056. |
[29] | Weidner S, Koller R, Latz E, Kowalchuk G, Bonkowski M, Scheu S, Jousset A (2015). Bacterial diversity amplifies nutrient-based plant-soil feedbacks. Functional Ecology, 29, 1341-1349. |
[30] | Xu MS, Zhu XT, Wang WS, Du YC, Wang YY, Liang QM, Zheng LT, Yan ER (2022). Vegetation classification and mapping of Dajinshan Island: a grid inventory-based approach. Guihaia, 42, 1273-1283. |
[许洺山, 朱晓彤, 王万胜, 杜运才, 汪彦颖, 梁启明, 郑丽婷, 阎恩荣 (2022). 上海大金山岛植被分类与制图——基于网格化清查方法. 广西植物, 42, 1273-1283.] | |
[31] | Yan ER, Wang XH, Chen XY (2007). Impacts of evergreen broad-leaved forest, degradation on soil nutrients and carbon pools in Tiantong, Zhejiang Province. Acta Ecologica Sinica, 27, 1646-1655. |
[阎恩荣‚ 王希华‚ 陈小勇 (2007). 浙江天童地区常绿阔叶林退化对土壤养分库和碳库的影响. 生态学报‚ 27, 1646-1655.] | |
[32] | Yan ER, Wang XH, Zhou W (2008a). N:P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology (Chinese Version), 32, 13-22. |
[阎恩荣‚ 王希华‚ 周武 (2008a). 天童常绿阔叶林演替系列植物群落的N:P化学计量特征. 植物生态学报‚ 32, 13-22.] | |
[33] | Yan ER, Wang XH, Zhou W (2008b). Characteristics of litterfall in relation to soil nutrients in mature and degraded evergreen broad-leaved forests of Tiantong, East China. Journal of Plant Ecology (Chinese Version), 32, 1-12. |
[阎恩荣, 王希华, 周武 (2008b). 天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系. 植物生态学报‚ 32, 1-12.] | |
[34] | Yan ER‚ Wang XH‚ Guo M‚ Zhong Q‚ Zhou W, Li YF (2009). Temporal patterns of net soil N mineralization and nitrification through secondary succession in the subtropical forests of eastern China. Plant and Soil, 320, 181-194. |
[35] | Yan ER‚ Wang XH‚ Huang JJ (2006). Shifts in plant nutrient use strategies under secondary forest succession. Plant and Soil‚ 289, 187-197. |
[36] | Yang AN, Lu YF, Zhang JH, Wu JS, Xu JL, Tong ZK (2019). Changes in soil nutrients and Acidobacteria community structure in Cunninghamia lanceolata plantations. Scientia Silvae Sinicae, 55(1), 119-127. |
[杨安娜, 陆云峰, 张俊红, 吴家森, 徐金良, 童再康 (2019). 杉木人工林土壤养分及酸杆菌群落结构变化. 林业科学, 55(1), 119-127.] | |
[37] | Yang YC, Da LJ, Qin XK (2002). Study on the flora of Dajinshan Island in Shanghai, China. Journal of Wuhan Botanical Research, 20, 433-437. |
[杨永川, 达良俊, 秦祥堃 (2002). 上海大金山岛种子植物区系的研究. 武汉植物学研究, 20, 433-437.] | |
[38] | Yarwood SA, Högberg MN (2017). Soil bacteria and archaea change rapidly in the first century of Fennoscandian boreal forest development. Soil Biology & Biochemistry, 114, 160-167. |
[39] | Yuan M, Guo X, Wu L, Zhang Y, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, Tiedje JM, Zhou J (2021). Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343-348. |
[40] | Zheng Y, Saitou A, Wang C, Toyoda A, Minakuchi Y, Sekiguchi Y, Ueda K, Takano H, Sakai Y, Abe K, Yokota A, Yabe S (2019). Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Frontiers in Microbiology, 10, 893. DOI: 10.3389/fmicb.2019.00893. |
[41] | Zhong ZK, Zhang XY, Wang X, Fu SY, Wu SJ, Lu XQ, Ren CJ, Han XH, Yang GH (2020). Soil bacteria and fungi respond differently to plant diversity and plant family composition during the secondary succession of abandoned farmland on the Loess Plateau, China. Plant and Soil, 448, 183-200. |
[42] | Zhu CL, Han YJ, Xie JZ, Sun HJ, Li ZC (2008). Investigation and analysis on characteristics of forest communities in Dajinshan Island, Shanghai. China Forestry Science and Technology, 22(6), 57-59. |
[朱春玲, 韩玉洁, 谢锦忠, 孙海菁, 李正才 (2008). 上海大金山岛森林群落调查与特征分析. 林业科技开发, 22(6), 57-59.] |
[1] | Long CHEN Ke GUO Xiao-Hua GOU Xiu-Hai ZHAO Hongruo Ma. Community components and characteristics of Juniperus przewalskii forests [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Jia-xin RAN yuhui zhang Yun WANG Zhi-Jie YANG Mao Chao. Effects of warming and nitrogen and phosphorus addition on dissolved organic carbon biodegradability of litter in subtropical forests. [J]. Chin J Plant Ecol, 2024, 48(9): 0-0. |
[3] | Su-Hui LIAO Jia ShuangQin 谭 羽 Da-Xing Gu. The hydraulic regulation strategies of karst forest species exhibit variation across different successional stages in the mid-subtropical zone [J]. Chin J Plant Ecol, 2024, 48(9): 0-0. |
[4] | WANG Yan, ZHANG Quan-Zhi, WANG Chuan-Kuan, GUO Wan-Gui, LIN Jia-Wei. Effects of restoration approaches on forest soil carbon, nitrogen and phosphorus stoichiometry in eastern Northeast China [J]. Chin J Plant Ecol, 2024, 48(7): 943-954. |
[5] | ZHENG Li-Li, YU Lin-Lan, DAI Ping, XUE Yue-Gui, LONG Ping. Nutrient characteristics and adaptability of plant leaves in Tiankeng Complex of Dashiwei, Guangxi, China [J]. Chin J Plant Ecol, 2024, 48(7): 872-887. |
[6] | ZHOU Jian, WANG Han. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(6): 675-689. |
[7] | YU Qing-Shui, NI Xiao-Feng, JI Cheng-Jun, ZHU Jiang-Ling, TANG Zhi-Yao, FANG Jing-Yun. Effects of 10-year nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in tropical rainforests in Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(6): 690-700. |
[8] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[9] | ZHANG Yu-Jian, LIU Yan-Hong. Tree physiology and major influencing factors under forest fires [J]. Chin J Plant Ecol, 2024, 48(3): 269-286. |
[10] | NIU Yi-Di, CAI Ti-Jiu. Changes in species diversity and influencing factors in secondary forest succession in northern Da Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 349-363. |
[11] | XUE Zhi-Fang, LIU Tong, WANG Li-Sheng, SONG Ji-Hu, CHEN Hong-Yang, XU Ling, YUAN Ye. Community structure and characteristics of plain valley forests in main tributaries of Ertix River Basin, China [J]. Chin J Plant Ecol, 2024, 48(3): 390-402. |
[12] | DENG Wen-Jie, WU Hua-Zheng, LI Tian-Xiang, ZHOU Li-Na, HU Ren-Yong, JIN Xin-Jie, ZHANG Yong-Pu, ZHANG Yong-Hua, LIU Jin-Liang. Main vegetation types and characteristics in Dongtou National Marine Park, Zhejiang, China [J]. Chin J Plant Ecol, 2024, 48(2): 254-268. |
[13] | XIAO Lan, DONG Biao, ZHANG Lin-Ting, DENG Chuan-Yuan, LI Xia, JIANG De-Gang, LIN Yong-Ming. Characteristics of main plant communities on uninhabited islands in Bohai Sea, China [J]. Chin J Plant Ecol, 2024, 48(1): 127-134. |
[14] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[15] | HAN Cong, MU Yan-Mei, ZHA Tian-Shan, QIN Shu-Gao, LIU Peng, TIAN Yun, JIA Xin. A dataset of ecosystem fluxes in a shrubland ecosystem of Mau Us Sandy Land in Yanchi, Ningxia, China (2012-2016) [J]. Chin J Plant Ecol, 2023, 47(9): 1322-1332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn