Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (7): 1032-1042.DOI: 10.17521/cjpe.2022.0130
Special Issue: 土壤呼吸
• Research Articles • Previous Articles
SHEN Jian1,2, HE Zong-Ming1,2,*(), DONG Qiang1, GAO Shi-Lei1,2, LIN Yu3
Received:
2022-04-11
Accepted:
2022-12-03
Online:
2023-07-20
Published:
2023-07-21
Contact:
*HE Zong-Ming(Supported by:
SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation[J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0130
样点 Site | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 土壤pH Soil pH | 土壤密度 Soil density (g·cm-3) | 郁闭度 Canopy density | 存活率 Survival rate (%) |
---|---|---|---|---|---|---|
火烧迹地 Burned plot | 9.77 ± 0.40 | 11.13 ± 0.44 | 5.22 ± 0.14 | 1.29 ± 0.02 | 0.85 | 78.44 |
对照样地 Control plot | 10.40 ± 0.42 | 12.87 ± 0.53 | 5.06 ± 0.04 | 1.24 ± 0.08 | 0.91 | 82.45 |
Table 1 Basic information of test plots in coastal sandy Casuarina equisetifolia plantation (mean ± SD)
样点 Site | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 土壤pH Soil pH | 土壤密度 Soil density (g·cm-3) | 郁闭度 Canopy density | 存活率 Survival rate (%) |
---|---|---|---|---|---|---|
火烧迹地 Burned plot | 9.77 ± 0.40 | 11.13 ± 0.44 | 5.22 ± 0.14 | 1.29 ± 0.02 | 0.85 | 78.44 |
对照样地 Control plot | 10.40 ± 0.42 | 12.87 ± 0.53 | 5.06 ± 0.04 | 1.24 ± 0.08 | 0.91 | 82.45 |
Fig. 1 Monthly change of soil total respiration rate (RS) and heterotrophic respiration rate (RH) in the burned and control plots in coastal sandy Casuarina equisetifolia plantation (mean ± SD).
Fig. 2 Monthly change of soil temperature at 10 cm depth in the burned and control plots in coastal sandy Casuarina equisetifolia plantation (mean ± SD).
Fig. 3 Monthly change of soil volumetric water content at 10 cm depth in the burned and control plots in coastal sandy Casuarina equisetifolia plantation (mean ± SD).
样点 Site | 休眠季 Dormant season | 生长季 Growing season | 全年 Whole year | |||
---|---|---|---|---|---|---|
RS | RH | RS | RH | RS | RH | |
火烧迹地 Burned polt | 1.91 ± 0.37Ab | 1.55 ± 0.28Ab | 2.69 ± 0.61Ba | 2.41 ± 0.56Ba | 2.37 ± 0.65Ba | 2.05 ± 0.63Ba |
对照样地 Control plot | 1.88 ± 0.32Ac | 1.53 ± 0.36Ac | 3.56 ± 0.87Aa | 3.22 ± 0.84Aa | 2.86 ± 1.08Ab | 2.51 ± 1.08Ab |
Table 2 Total soil respiration rate (RS) and heterotrophic respiration rate (RH) of the burned and control plots in different seasons in coastal sandy Casuarina equisetifolia plantation (mean ± SD)
样点 Site | 休眠季 Dormant season | 生长季 Growing season | 全年 Whole year | |||
---|---|---|---|---|---|---|
RS | RH | RS | RH | RS | RH | |
火烧迹地 Burned polt | 1.91 ± 0.37Ab | 1.55 ± 0.28Ab | 2.69 ± 0.61Ba | 2.41 ± 0.56Ba | 2.37 ± 0.65Ba | 2.05 ± 0.63Ba |
对照样地 Control plot | 1.88 ± 0.32Ac | 1.53 ± 0.36Ac | 3.56 ± 0.87Aa | 3.22 ± 0.84Aa | 2.86 ± 1.08Ab | 2.51 ± 1.08Ab |
项目 Item | 是否断根 Trenched or not | 样点 Site | 休眠季 Dormant season | 生长季 Growing season | 全年 Whole year |
---|---|---|---|---|---|
土壤温度 Soil temperature (℃) | 未断根 Untrenched | 火烧迹地 Burned plot | 15.84 ± 3.74Ac | 23.77 ± 3.08Aa | 20.47 ± 5.17Ab |
对照样地 Control plot | 15.13 ± 3.40Ac | 23.64 ±3.12Aa | 20.10 ± 5.30Ab | ||
断根 Trenched | 火烧迹地 Burned plot | 16.05 ± 3.73Ac | 24.01 ± 3.16Aa | 20.63 ± 5.20Ab | |
对照样地 Control plot | 15.35 ± 3.48Ac | 23.70 ± 3.15Aa | 20.22 ± 5.27Ab | ||
土壤含水量 Soil water content (%) | 未断根 Untrenched | 火烧迹地 Burned plot | 4.58 ± 1.34Aa | 4.00 ± 1.76Aa | 4.25 ± 1.63Aa |
对照样地 Control plot | 3.45 ± 1.23Ba | 3.82 ± 1.75Ba | 3.67 ± 1.56Ba | ||
断根 Trenched | 火烧迹地 Burned plot | 5.11 ± 1.47Aa | 4.47 ± 1.77Aa | 4.57 ± 1.76Aa | |
对照样地 Control plot | 4.42 ± 1.64Aa | 5.34 ± 2.68Aa | 4.96 ± 2.35Aa |
Table 3 Statistics of soil temperature and soil water content between the trenched and untrenched plots in the burned and control plots in coastal sandy Casuarina equisetifolia plantation (mean ± SD)
项目 Item | 是否断根 Trenched or not | 样点 Site | 休眠季 Dormant season | 生长季 Growing season | 全年 Whole year |
---|---|---|---|---|---|
土壤温度 Soil temperature (℃) | 未断根 Untrenched | 火烧迹地 Burned plot | 15.84 ± 3.74Ac | 23.77 ± 3.08Aa | 20.47 ± 5.17Ab |
对照样地 Control plot | 15.13 ± 3.40Ac | 23.64 ±3.12Aa | 20.10 ± 5.30Ab | ||
断根 Trenched | 火烧迹地 Burned plot | 16.05 ± 3.73Ac | 24.01 ± 3.16Aa | 20.63 ± 5.20Ab | |
对照样地 Control plot | 15.35 ± 3.48Ac | 23.70 ± 3.15Aa | 20.22 ± 5.27Ab | ||
土壤含水量 Soil water content (%) | 未断根 Untrenched | 火烧迹地 Burned plot | 4.58 ± 1.34Aa | 4.00 ± 1.76Aa | 4.25 ± 1.63Aa |
对照样地 Control plot | 3.45 ± 1.23Ba | 3.82 ± 1.75Ba | 3.67 ± 1.56Ba | ||
断根 Trenched | 火烧迹地 Burned plot | 5.11 ± 1.47Aa | 4.47 ± 1.77Aa | 4.57 ± 1.76Aa | |
对照样地 Control plot | 4.42 ± 1.64Aa | 5.34 ± 2.68Aa | 4.96 ± 2.35Aa |
Fig. 4 Relationship between soil total respiration rate (RS) and heterotrophic respiration rate (RH) and soil temperature in the burned and control plots in coastal sandy Casuarina equisetifolia plantation.
Fig. 5 Relationship between soil respiration and soil water content in the burned and control plots in coastal sandy Casuarina equisetifolia plantation.
样点 Site | 土壤可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 土壤可溶性有机氮 Dissolved organic nitrogen (mg·kg-1) | 土壤微生物生物量碳 Microbial biomass carbon (mg·kg-1) | 土壤微生物生物量氮 Microbial biomass nitrogen (mg·kg-1) | 铵态氮 NH+ 4-N (mg·kg-1) | 硝态氮 NO- 3-N (mg·kg-1) | 矿物质氮 Mineral nitrogen (mg·kg-1) |
---|---|---|---|---|---|---|---|
火烧迹地 Burned plot | 22.43 ± 1.98b | 1.17 ± 0.17b | 45.18 ± 0.81b | 5.55 ± 0.69a | 1.85 ± 0.44a | 0.83 ± 0.21a | 2.68 ± 0.37a |
对照样地 Control plot | 36.55 ± 1.26a | 1.99 ± 0.30a | 59.81 ± 4.82a | 7.44 ± 0.71a | 2.26 ± 0.52a | 1.66 ± 0.08a | 3.92 ± 0.55a |
Table 4 Component content of soil carbon and nitrogen in the burned area and control plot in coastal sandy Casuarina equisetifolia plantation (mean ± SD)
样点 Site | 土壤可溶性有机碳 Dissolved organic carbon (mg·kg-1) | 土壤可溶性有机氮 Dissolved organic nitrogen (mg·kg-1) | 土壤微生物生物量碳 Microbial biomass carbon (mg·kg-1) | 土壤微生物生物量氮 Microbial biomass nitrogen (mg·kg-1) | 铵态氮 NH+ 4-N (mg·kg-1) | 硝态氮 NO- 3-N (mg·kg-1) | 矿物质氮 Mineral nitrogen (mg·kg-1) |
---|---|---|---|---|---|---|---|
火烧迹地 Burned plot | 22.43 ± 1.98b | 1.17 ± 0.17b | 45.18 ± 0.81b | 5.55 ± 0.69a | 1.85 ± 0.44a | 0.83 ± 0.21a | 2.68 ± 0.37a |
对照样地 Control plot | 36.55 ± 1.26a | 1.99 ± 0.30a | 59.81 ± 4.82a | 7.44 ± 0.71a | 2.26 ± 0.52a | 1.66 ± 0.08a | 3.92 ± 0.55a |
土壤呼吸速率 RS | DOC含量 DOC content | DON含量 DON content | MBC含量 MBC content | MBN含量 MBN content | 铵态氮含量 NH+ 4-N content | 硝态氮含量 NO- 3-N content | 矿物质氮含量 Mineral nitrogen content | 土壤pH Soil pH | |
---|---|---|---|---|---|---|---|---|---|
土壤呼吸速率 RS | 1.000 | ||||||||
DOC含量 DOC content | 0.840** | 1.000 | |||||||
DON含量 DON content | 0.724* | 0.852** | 1.000 | ||||||
MBC含量 MBC content | 0.727* | 0.827* | 0.937** | 1.000 | |||||
MBN含量MBN content | 0.797* | 0.667 | 0.440 | 0.308 | 1.000 | ||||
铵态氮含量 NH+ 4-N content | 0.249 | 0.513 | 0.565 | 0.342 | 0.376 | 1.000 | |||
硝态氮含量 NO- 3-N content | 0.7.00 | 0.846** | 0.729* | 0.720* | 0.540 | 0.165 | 1.000 | ||
矿物质氮含量 Mineral nitrogen content | 0.535 | 0.816* | 0.802* | 0.619 | 0.561 | 0.881** | 0.612 | 1.000 | |
土壤pH Soil pH | -0.395 | -0.552 | -0.475 | -0.624 | -0.065 | -0.416 | -0.144 | -0.402 | 1.000 |
Table 5 Correlation coefficients between soil respiration rate (RS) and soil properties in coastal sandy Casuarina equisetifolia plantation
土壤呼吸速率 RS | DOC含量 DOC content | DON含量 DON content | MBC含量 MBC content | MBN含量 MBN content | 铵态氮含量 NH+ 4-N content | 硝态氮含量 NO- 3-N content | 矿物质氮含量 Mineral nitrogen content | 土壤pH Soil pH | |
---|---|---|---|---|---|---|---|---|---|
土壤呼吸速率 RS | 1.000 | ||||||||
DOC含量 DOC content | 0.840** | 1.000 | |||||||
DON含量 DON content | 0.724* | 0.852** | 1.000 | ||||||
MBC含量 MBC content | 0.727* | 0.827* | 0.937** | 1.000 | |||||
MBN含量MBN content | 0.797* | 0.667 | 0.440 | 0.308 | 1.000 | ||||
铵态氮含量 NH+ 4-N content | 0.249 | 0.513 | 0.565 | 0.342 | 0.376 | 1.000 | |||
硝态氮含量 NO- 3-N content | 0.7.00 | 0.846** | 0.729* | 0.720* | 0.540 | 0.165 | 1.000 | ||
矿物质氮含量 Mineral nitrogen content | 0.535 | 0.816* | 0.802* | 0.619 | 0.561 | 0.881** | 0.612 | 1.000 | |
土壤pH Soil pH | -0.395 | -0.552 | -0.475 | -0.624 | -0.065 | -0.416 | -0.144 | -0.402 | 1.000 |
[1] |
Allison SD, Czimczik CI, Treseder KK (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14, 1156-1168.
DOI URL |
[2] |
Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572.
DOI URL |
[3] |
Burton AJ, Pregitzer KS, Zogg GP, Zak DR (1998). Drought reduces root respiration in sugar maple forests. Ecological Applications, 8, 771-778.
DOI URL |
[4] | Chen BY, Liu SR, Ge JP, Wang H, Chang JG, Sun TT, Ma JM, Shi GJ (2007). The relationship between soil respiration and the temperature at different soil depths in subalpine coniferous forest of western Sichuan Province. Chinese Journal of Applied Ecology, 18, 1219-1224. |
[陈宝玉, 刘世荣, 葛剑平, 王辉, 常建国, 孙甜甜, 马姜明, 施恭暕 (2007). 川西亚高山针叶林土壤呼吸速率与不同土层温度的关系. 应用生态学报, 18, 1219-1224.] | |
[5] |
Chen J, Luo YQ, Xia JY, Wilcox KR, Cao JJ, Zhou XH, Jiang LF, Niu SL, Estera KY, Huang RJ, Wu F, Hu TF, Liang JY, Shi Z, Guo JF, Wang RW (2017). Warming effects on ecosystem carbon fluxes are modulated by plant functional types. Ecosystems, 20, 515-526.
DOI |
[6] |
Chen J, Shi WY, Cao JJ (2015). Effects of grazing on ecosystem CO2 exchange in a meadow grassland on the Tibetan Plateau during the growing season. Environmental Management, 55, 347-359.
DOI PMID |
[7] |
Chen WJ, Gong L, Liu YT (2018). Effects of seasonal snow cover on decomposition and carbon, nitrogen and phosphorus release of Picea schrenkiana leaf litter in Mt. Tianshan, Northwest China. Chinese Journal of Plant Ecology, 42, 487-497.
DOI URL |
[陈文静, 贡璐, 刘雨桐 (2018). 季节性雪被对天山雪岭云杉凋落叶分解和碳氮磷释放的影响. 植物生态学报, 42, 487-497.]
DOI |
|
[8] |
Davidson EA, Janssens IA, Luo YQ (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154-164.
DOI URL |
[9] | Duan BX, Man XL, Song H, Liu JL (2018). Soil respiration and its component characteristics under different types of Larix gmelinii forests in the north of Daxing’an Mountains of northeastern China. Journal of Beijing Forestry University, 40(2), 40-50. |
[段北星, 满秀玲, 宋浩, 刘家霖 (2018). 大兴安岭北部不同类型兴安落叶松林土壤呼吸及其组分特征. 北京林业大学学报, 40(2), 40-50.] | |
[10] |
Francos M, Pereira P, Mataix-Solera J, Arcenegui V, Alcañiz M, Úbeda X (2018). How clear-cutting affects fire severity and soil properties in a Mediterranean ecosystem. Journal of Environmental Management, 206, 625-632.
DOI PMID |
[11] | Gao ML, Man XL, Duan BX (2021). Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China. Journal of Beijing Forestry University, 43(3), 55-65. |
[高明磊, 满秀玲, 段北星 (2021). 林下植被和凋落物对我国寒温带天然林土壤CO2通量的短期影响. 北京林业大学学报, 43(3), 55-65.] | |
[12] | Geng YQ, Zhou RW, Li T, Ren YM, Wang XH (2007). Influences of forest fire on soil properties in Xishan area of Beijing. Science of Soil and Water Conservation, (5), 66-70. |
[耿玉清, 周荣伍, 李涛, 任云卯, 王晓辉 (2007). 北京西山地区林火对土壤性质的影响. 中国水土保持科学, (5), 66-70.] | |
[13] |
Hu HQ, Hu TX, Sun L (2016). Spatial heterogeneity of soil respiration in a Larix gmelinii forest and the response to prescribed fire in the Greater Xing’an Mountains, China. Journal of Forestry Research, 27, 1153-1162.
DOI URL |
[14] | Hu HQ, Wu W, Yue CL, Chen WT, Zhang R, Li Y, Sun L (2015). Effect of fire disturbances on short-term soil respiration and its components of Larix gmelinii and Betula platyphylla forests in Xiaoxing’an Mountains. Bulletin of Botanical Research, 35, 279-288. |
[胡海清, 吴畏, 岳彩玲, 陈婉婷, 张冉, 李莹, 孙龙 (2015). 火干扰后短期白桦林和落叶松林土壤呼吸及其组分的影响. 植物研究, 35, 279-288.]
DOI |
|
[15] | Hu HQ, Zhang FS, Wei SJ, Sun L, Wang MY (2013). Research progress on effects of forest fire disturbance on soil respiration and measuring methods. Forest Engineering, 29(1), 1-8. |
[胡海清, 张富山, 魏书精, 孙龙, 王明玉 (2013). 火干扰对土壤呼吸的影响及测定方法研究进展. 森林工程, 29(1), 1-8.] | |
[16] | Hu TX, Hu HQ, Sun L (2018). Effects of fire disturbances on soil respiration in Dahurian Larch (Larix gmelinii) forests. Acta Ecologica Sinica, 38, 2915-2924. |
[胡同欣, 胡海清, 孙龙 (2018). 中度火干扰对兴安落叶松林土壤呼吸的影响. 生态学报, 38, 2915-2924.] | |
[17] |
Hu TX, Sun L, Hu HQ, Weise DR, Guo FT (2017). Soil respiration of the dahurian larch (Larix gmelinii) forest and the response to fire disturbance in Da Xing’an Mountains, China. Scientific Reports, 7, 2967. DOI: 10.1038/s41598-017-03325-4.
DOI |
[18] | Hu ZD, Liu SR, Hu J, Liu XL, Yu H, Li DF, He F (2018). Soil respiration characteristics and impacting factors in burned area of Quercus aquifolioides in western Sichuan, China. Scientia Silvae Sinicae, 54(2), 18-29. |
[胡宗达, 刘世荣, 胡璟, 刘兴良, 余昊, 李登峰, 何飞 (2018). 川西亚高山川滇高山栎林火烧迹地土壤呼吸特征及其影响因素. 林业科学, 54(2), 18-29.] | |
[19] |
Katherinep ON, Danield R, Erics K (2006). Succession-driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry, 80, 1-20.
DOI URL |
[20] |
Kelly R, Genet H, McGuire AD, Hu FS (2016). Palaeodata- informed modelling of large carbon losses from recent burning of boreal forests. Nature Climate Change, 6, 79-82.
DOI |
[21] |
Kim Y (2015). Effect of thaw depth on fluxes of CO2 and CH4 in manipulated Arctic coastal tundra of Barrow, Alaska. Science of the Total Environment, 505, 385-389.
DOI URL |
[22] | Kimmins JP (1987). Forest Ecology. Macmillan Publishing Company, New York. 112-136. |
[23] |
Köster E, Köster K, Berninger F, Prokushkin A, Aaltonen H, Zhou X, Pumpanen J (2018). Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. Journal of Environmental Management, 228, 405-415.
DOI PMID |
[24] |
Langer M, Westermann S, Heikenfeld M, Dorn W, Boike J (2013). Satellite-based modeling of permafrost temperatures in a tundra lowland landscape. Remote Sensing of Environment, 135, 12-24.
DOI URL |
[25] | Li P, Zhou M, Zhao PW, Wei JS, Wang QH, Chen X, Qin KZ (2013). Soil respiration and its relationships with hydrothermic factors in the burned areas of Daxingan Mountain. Chinese Journal of Ecology, 32, 3305-3311. |
[李攀, 周梅, 赵鹏武, 魏江生, 王庆海, 陈翔, 秦可珍 (2013). 大兴安岭火烧迹地土壤呼吸及其与水热因子的关系. 生态学杂志, 32, 3305-3311.] | |
[26] |
Liang N, Hirano T, Zheng ZM, Tang J, Fujinuma Y (2010). Soil CO2 efflux of a larch forest in northern Japan. Biogeosciences, 7, 3447-3457.
DOI URL |
[27] |
Liu WY, Fox J, Xu ZF (2003). Litterfall and nutrient dynamics in a montane moist evergreen broad-leaved forest in Ailao Mountains, SW China. Plant Ecology, 164, 157-170.
DOI URL |
[28] | Lu B, Wang SH, Mao ZJ, Sun T, Jia GM, Jin SB, Sun PF, Cheng CX (2010). Soil respiration characteristics of four primary Korean pine communities in growing season at Xiaoxing’an Mountain, China. Acta Ecologica Sinica, 30, 4065-4074. |
[陆彬, 王淑华, 毛子军, 孙涛, 贾桂梅, 靳世波, 孙鹏飞, 程春香 (2010). 小兴安岭4种原始红松林群落类型生长季土壤呼吸特征. 生态学报, 30, 4065-4074.] | |
[29] |
Ma ZL, Zhao WQ, Liu M, Zhu P, Liu Q (2018). Research progress on the responses of soil respiration components to climatic warming. Chinese Journal of Applied Ecology, 29, 3477-3486.
DOI |
[马志良, 赵文强, 刘美, 朱攀, 刘庆 (2018). 土壤呼吸组分对气候变暖的响应研究进展. 应用生态学报, 29, 3477-3486.]
DOI |
|
[30] |
Michelsen A, Andersson M, Jensen M, Kjøller A, Gashew M (2004). Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems. Soil Biology & Biochemistry, 36, 1707-1717.
DOI URL |
[31] |
Muñoz-Rojas M, Lewandrowski W, Erickson TE, Dixon KW, Merritt DJ (2016). Soil respiration dynamics in fire affected semi-arid ecosystems: effects of vegetation type and environmental factors. Science of the Total Environment, 572, 1385-1394.
DOI URL |
[32] |
Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias- Fauria M, Forbes BC (2015). Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change, 5, 887-891.
DOI |
[33] |
Ngao J, Epron D, Delpierre N, Bréda N, Granier A, Longdoz B (2012). Spatial variability of soil CO2 efflux linked to soil parameters and ecosystem characteristics in a temperate beech forest. Agricultural and Forest Meteorology, 154-155, 136-146.
DOI URL |
[34] |
O’Neill KP, Richter DD, Kasischke ES (2006). Succession- driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry, 80, 1-20.
DOI URL |
[35] |
Plaza-Álvarez P, Lucas-Borja M, Sagra J, Moya D, Fontúrbel T, de las Heras J, (2017). Soil respiration changes after prescribed fires in Spanish black pine (Pinus nigra Arn. ssp. salzmannii) monospecific and mixed forest stands. Forests, 8, 248. DOI: 10.3390/f8070248.
DOI URL |
[36] |
Smith DR, Kaduk JD, Balzter H, Wooster MJ, Mottram GN, Hartley G, Lynham TJ, Studens J, Curry J, Stocks BJ (2010). Soil surface CO2 flux increases with successional time in a fire scar chronosequence of Canadian boreal jack pine forest. Biogeosciences, 7, 1375-1381.
DOI URL |
[37] |
Sun L, Hu TX, Kim JH, Guo FT, Song H, Lv XS, Hu HQ (2014). The effect of fire disturbance on short-term soil respiration in typical forest of Greater Xing’an Range, China. Journal of Forestry Research, 25, 613-620.
DOI URL |
[38] | Sun L, Li Y, Zhao BQ, Li F, Hu TX (2019). Effects of moderate fire disturbance on soil respiration components and soil microbial biomass in secondary forest of Maoer mountains, China. Journal of Northeast Forestry University, 47(7), 90-98. |
[孙龙, 李远, 赵彬清, 李飞, 胡同欣 (2019). 中度火干扰对帽儿山次生林土壤呼吸组分及土壤微生物生物量的影响. 东北林业大学学报, 47(7), 90-98.] | |
[39] | Sun L, Sun AB, Hu TX (2021). Research progress on effects of fire disturbance on soil respiration components in forest ecosystems. Acta Ecologica Sinica, 41, 7073-7083. |
[孙龙, 孙奥博, 胡同欣 (2021). 火干扰对森林生态系统土壤呼吸组分的影响研究进展. 生态学报, 41, 7073-7083.] | |
[40] |
Waldrop MP, Harden JW (2008). Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Global Change Biology, 14, 2591-2602.
DOI URL |
[41] |
Wang CK, Han Y, Chen JQ, Wang XC, Zhang QZ, Bond-Lamberty B, (2013). Seasonality of soil CO2 efflux in a temperate forest: biophysical effects of snowpack and spring freeze-thaw cycles. Agricultural and Forest Meteorology, 177, 83-92.
DOI URL |
[42] | Wang ZX, Zhou M, Zhao PW, Wang D, Shi L, Zhao W, Liu XC (2021). Relationship between soil respiration and its components, soil temperature and moisture factors in the early stage of fire interference recovery. Journal of Northeast Forestry University, 49(8), 78-83. |
[王梓璇, 周梅, 赵鹏武, 王鼎, 石亮, 赵威, 刘喜才 (2021). 火干扰恢复初期土壤呼吸及其组分与土壤温湿度关系. 东北林业大学学报, 49(8), 78-83.] | |
[43] |
Wu JJ, Yang ZJ, Liu XF, Xiong DC, Lin WS, Chen CQ, Wang XH (2014). Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations. Chinese Journal of Plant Ecology, 38, 45-53.
DOI URL |
[吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红 (2014). 米槠和杉木人工林土壤呼吸及其组分分析. 植物生态学报, 38, 45-53.]
DOI |
|
[44] |
Yang Z, Gamadaerji, Tan XR, You CH, Wang YB, Yang JJ, Han XG, Chen SP (2020). Effects of nitrogen addition amount and frequency on soil respiration and its components in a temperate semiarid grassland. Chinese Journal of Plant Ecology, 44, 1059-1072.
DOI URL |
[杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹 (2020). 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响. 植物生态学报, 44, 1059-1072.] | |
[45] |
Yin HJ, Zhang ZL, Liu Q (2018). Root exudates and their ecological consequences in forest ecosystems: problems and perspective. Chinese Journal of Plant Ecology, 42, 1055-1070.
DOI URL |
[尹华军, 张子良, 刘庆 (2018). 森林根系分泌物生态学研究: 问题与展望. 植物生态学报, 42, 1055-1070.]
DOI |
|
[46] | Zhao BQ, Wang YQ, Wang B, Wang YJ, Zhang HL (2014). Role of environmental factors on forest soil respiration characteristics in Jinyun Mountain of Chongqing, southwestern China. Journal of Beijing Forestry University, 36(3), 83-89. |
[赵冰清, 王云琦, 王彬, 王玉杰, 张会兰 (2014). 环境因子对重庆缙云山林地土壤呼吸动态特征的作用. 北京林业大学学报, 36(3), 83-89.] | |
[47] | Zheng W, Li C, Yuan XC, Zheng Y, Chen YM, Lin WS, Yang YS (2017). The impact of clear-cutting and slash burning on soil CO2 flux at different soil depths in a subtropical forest. Acta Ecologica Sinica, 37, 1221-1231. |
[郑蔚, 李超, 元晓春, 郑永, 陈岳民, 林伟盛, 杨玉盛 (2017). 皆伐火烧对亚热带森林不同深度土壤CO2通量的影响. 生态学报, 37, 1221-1231.] | |
[48] | Zhu F, Wang GJ, Tian DL, Yan WD, Xiang WH, Liang XC (2010). Seasonal variation of root respiration and the controlling factors in Pinus massoniana plantation. Scientia Silvae Sinicae, 46(7), 36-41. |
[朱凡, 王光军, 田大伦, 闫文德, 项文化, 梁小翠 (2010). 马尾松人工林根呼吸的季节变化及影响因子. 林业科学, 46(7), 36-41.] | |
[49] | Zuo M, Chen QB, Li JQ, Yang GL, Hu J, Sun K (2021). Effects of alteration in forest litter input on CO2release in Pinus yunnanensis forestland in central Yunnan Plateau. Acta Ecologica Sinica, 41, 4552-4561. |
[左嫚, 陈奇伯, 黎建强, 杨关吕, 胡景, 孙轲 (2021). 枯落物输入变化对云南松林地CO2释放的影响. 生态学报, 41, 4552-4561.] |
[1] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[2] | LI Xue, DONG Jie, HAN Guang-Xuan, ZHANG Qi-Qi, XIE Bao-Hua, LI Pei-Guang, ZHAO Ming-Liang, CHEN Ke-Long, SONG Wei-Min. Response of soil CO2 and CH4 emissions to changes in moisture and salinity at a typical coastal salt marsh of Yellow River Delta [J]. Chin J Plant Ecol, 2023, 47(3): 434-446. |
[3] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[4] | ZHENG Jia-Jia, HUANG Song-Yu, JIA Xin, TIAN Yun, MU Yu, LIU Peng, ZHA Tian-Shan. Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China [J]. Chin J Plant Ecol, 2020, 44(6): 687-698. |
[5] | YANG Ze, null null, TAN Xing-Ru, YOU Cui-Hai, WANG Yan-Bing, YANG Jun-Jie, HAN Xing-Guo, CHEN Shi-Ping. Effects of nitrogen addition amount and frequency on soil respiration and its components in a temperate semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(10): 1059-1072. |
[6] | HU Shu-Ya,DIAO Hua-Jie,WANG Hui-Ling,BO Yuan-Chao,SHEN Yan,SUN Wei,DONG Kuan-Hu,HUANG Jian-Hui,WANG Chang-Hui. Response of soil respiration to addition of different forms of nitrogen and mowing in a saline-alkali grassland in the northern agro-pastoral ecotone [J]. Chin J Plant Ecol, 2020, 44(1): 70-79. |
[7] | WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92. |
[8] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[9] | LI Wei-Jing, CHEN Shi-Ping, ZHANG Bing-Wei, TAN Xing-Ru, WANG Shan-Shan, YOU Cui-Hai. Partitioning of soil respiration components and evaluating the mycorrhizal contribution to soil respiration in a semiarid grassland [J]. Chin J Plan Ecolo, 2018, 42(8): 850-862. |
[10] | WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plant Ecol, 2018, 42(3): 382-396. |
[11] | CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19. |
[12] | Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland [J]. Chin J Plant Ecol, 2017, 41(9): 938-952. |
[13] | Kai-Jun YANG, Wan-Qin YANG, Yu TAN, Ruo-Yang HE, Li-Yan ZHUANG, Zhi-Jie LI, Bo TAN, Zhen-Feng XU. Short-term responses of winter soil respiration to snow removal in a Picea asperata forest of western Sichuan [J]. Chin J Plant Ecol, 2017, 41(9): 964-971. |
[14] | YANG Qing-Xiao, TIAN Da-Shuan, ZENG Hui, NIU Shu-Li. Main factors driving changes in soil respiration under altering precipitation regimes and the controlling processes [J]. Chin J Plant Ecol, 2017, 41(12): 1239-1250. |
[15] | Xiao-Gai GE, Ben-Zhi ZHOU, Wen-Fa XIAO, Xiao-Ming WANG, Yong-Hui CAO, Ming YE. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest [J]. Chin J Plant Ecol, 2017, 41(11): 1177-1189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn