Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (3): 434-446.DOI: 10.17521/cjpe.2021.0486
Special Issue: 微生物生态学
• Research Articles • Previous Articles
LI Xue1,3,4, DONG Jie3, HAN Guang-Xuan1,2, ZHANG Qi-Qi1, XIE Bao-Hua1,2, LI Pei-Guang1,2, ZHAO Ming-Liang1,2, CHEN Ke-Long4, SONG Wei-Min1,2,*()
Received:
2021-12-20
Accepted:
2022-05-20
Online:
2023-03-20
Published:
2022-05-21
Contact:
SONG Wei-Min
Supported by:
LI Xue, DONG Jie, HAN Guang-Xuan, ZHANG Qi-Qi, XIE Bao-Hua, LI Pei-Guang, ZHAO Ming-Liang, CHEN Ke-Long, SONG Wei-Min. Response of soil CO2 and CH4 emissions to changes in moisture and salinity at a typical coastal salt marsh of Yellow River Delta[J]. Chin J Plant Ecol, 2023, 47(3): 434-446.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0486
TC (g·kg-1) | TN (g·kg-1) | NH4+ -N (mg·kg-1) | NO3- -N (mg·kg-1) | pH | Soil salinity (%) |
---|---|---|---|---|---|
12.76 ± 0.07 | 0.21 ± 0.01 | 6.56 ± 0.06 | 1.49 ± 0.03 | 7.64 ± 0.04 | 0.90 ± 0.04 |
Table 1 Soil physiochemical properties at 0-10 cm depth in the research site at coastal salt marsh of Yellow River Delta (mean ± SE)
TC (g·kg-1) | TN (g·kg-1) | NH4+ -N (mg·kg-1) | NO3- -N (mg·kg-1) | pH | Soil salinity (%) |
---|---|---|---|---|---|
12.76 ± 0.07 | 0.21 ± 0.01 | 6.56 ± 0.06 | 1.49 ± 0.03 | 7.64 ± 0.04 | 0.90 ± 0.04 |
因子 Factor | TC | TN | DOC | MBC | Cumulative CO2 | Cumulative CH4 | GWP | CH4:CO2 | |
---|---|---|---|---|---|---|---|---|---|
土壤水分 Soil moisture | p | <0.01 | 0.65 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.09 |
F | 33.78 | 0.56 | 21.08 | 8.33 | 72.17 | 6.38 | 14.21 | 2.42 | |
土壤盐分 Soil salinity | p | 0.22 | <0.01 | 0.15 | 0.02 | <0.01 | <0.01 | <0.01 | 0.01 |
F | 1.59 | 9.06 | 2.22 | 6.07 | 47.68 | 14.73 | 22.99 | 7.71 | |
土壤水分×盐分 Soil moisture × salinity | p | 0.79 | 0.92 | 0.06 | 0.04 | 0.29 | 0.96 | 0.95 | 0.88 |
F | 0.35 | 0.17 | 2.81 | 3.33 | 1.33 | 0.10 | 0.12 | 0.23 |
Table 2 Results of two-way ANOVA on the effects of soil moisture and salinity on soil physical and chemical characteristics as well as soil carbon mineralization rate
因子 Factor | TC | TN | DOC | MBC | Cumulative CO2 | Cumulative CH4 | GWP | CH4:CO2 | |
---|---|---|---|---|---|---|---|---|---|
土壤水分 Soil moisture | p | <0.01 | 0.65 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.09 |
F | 33.78 | 0.56 | 21.08 | 8.33 | 72.17 | 6.38 | 14.21 | 2.42 | |
土壤盐分 Soil salinity | p | 0.22 | <0.01 | 0.15 | 0.02 | <0.01 | <0.01 | <0.01 | 0.01 |
F | 1.59 | 9.06 | 2.22 | 6.07 | 47.68 | 14.73 | 22.99 | 7.71 | |
土壤水分×盐分 Soil moisture × salinity | p | 0.79 | 0.92 | 0.06 | 0.04 | 0.29 | 0.96 | 0.95 | 0.88 |
F | 0.35 | 0.17 | 2.81 | 3.33 | 1.33 | 0.10 | 0.12 | 0.23 |
Fig. 1 Effects of soil moisture and salinity on mean values of soil total carbon (TC) content (A), soil total nitrogen (TN) content (B), soil dissolved organic carbon (DOC) content (C) and soil microbial biomass carbon (MBC) content (D) (mean ± SE). Different uppercase letters indicate significant difference between soil moisture treatments under low salinity level (S1) (p < 0.05), different lowercase letters indicate significant difference between soil moisture treatments under high salinity level (S2) (p < 0.05), and * indicates the significant difference between salinity treatments under the same moisture condition (p < 0.05). W1, 25% soil saturated moisture content; W2, 50% soil saturated moisture content; W3, 75% soil saturated moisture content; W4, 100% soil saturated moisture content.
因子 Factor | 物种数量 Observed species | PD whole tree指数 PD whole tree index | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Chao1指数 Chao1 index | |
---|---|---|---|---|---|
土壤水分 Soil moisture | p | <0.01 | <0.01 | <0.01 | <0.01 |
F | 31.96 | 29.35 | 40.49 | 6.46 | |
土壤盐分 Soil salinity | p | <0.01 | <0.01 | <0.01 | 0.30 |
F | 29.51 | 22.25 | 39.07 | 1.11 | |
土壤水分 ×盐分 Soil moisture × salinity | p | <0.01 | <0.01 | 0.01 | 0.82 |
F | 9.02 | 6.93 | 5.25 | 0.31 |
Table 3 Results of two-way ANOVA on the effects of soil moisture and salinity on soil bacterial alpha diversity index
因子 Factor | 物种数量 Observed species | PD whole tree指数 PD whole tree index | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Chao1指数 Chao1 index | |
---|---|---|---|---|---|
土壤水分 Soil moisture | p | <0.01 | <0.01 | <0.01 | <0.01 |
F | 31.96 | 29.35 | 40.49 | 6.46 | |
土壤盐分 Soil salinity | p | <0.01 | <0.01 | <0.01 | 0.30 |
F | 29.51 | 22.25 | 39.07 | 1.11 | |
土壤水分 ×盐分 Soil moisture × salinity | p | <0.01 | <0.01 | 0.01 | 0.82 |
F | 9.02 | 6.93 | 5.25 | 0.31 |
盐分处理 Salinity treatment | 水分处理 Moisture treatment | 物种数量 Observed species | PD whole tree指数 PD whole tree index | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Chao1指数 Chao1 index |
---|---|---|---|---|---|
S1 | W1 | 2 603.26 ± 41.57Ba | 213.04 ± 10.30Ba | 6.59 ± 0.41Ba | 3 845.65 ± 165.76Ba |
W2 | 3 068.08 ± 36.67Aa | 252.76 ± 3.12Aa | 8.29 ± 0.12Ba | 4 383.72 ± 70.05Aa | |
W3 | 3 227.84 ± 34.21Aa | 265.12 ± 3.10Aa | 8.81 ± 0.05Aa | 4 577.47 ± 47.85Aa | |
W4 | 3 241.94 ± 56.62Aa | 268.94 ± 5.06Aa | 8.44 ± 0.13Aa | 4 558.03 ± 63.28Aa | |
S2 | W1 | 2 629.74 ± 18.92Ba | 223.32 ± 2.96Ba | 6.46 ± 0.08Ca | 3 881.19 ± 89.97Ba |
W2 | 2 541.14 ± 64.56Bb | 219.07 ± 4.55Bb | 6.95 ± 0.19Bb | 3 836.97 ± 84.56ABb | |
W3 | 2 903.29 ± 39.22Ab | 241.88 ± 2.68Ab | 7.72 ± 0.10Ab | 4 290.19 ± 56.94Ab | |
W4 | 3 002.14 ± 29.46Ab | 251.94 ± 2.18Ab | 8.00 ± 0.02Ab | 4 395.78 ± 60.89Aa |
Table 4 Soil bacterial alpha diversity index under different moisture and salinity treatments (mean ± SE)
盐分处理 Salinity treatment | 水分处理 Moisture treatment | 物种数量 Observed species | PD whole tree指数 PD whole tree index | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Chao1指数 Chao1 index |
---|---|---|---|---|---|
S1 | W1 | 2 603.26 ± 41.57Ba | 213.04 ± 10.30Ba | 6.59 ± 0.41Ba | 3 845.65 ± 165.76Ba |
W2 | 3 068.08 ± 36.67Aa | 252.76 ± 3.12Aa | 8.29 ± 0.12Ba | 4 383.72 ± 70.05Aa | |
W3 | 3 227.84 ± 34.21Aa | 265.12 ± 3.10Aa | 8.81 ± 0.05Aa | 4 577.47 ± 47.85Aa | |
W4 | 3 241.94 ± 56.62Aa | 268.94 ± 5.06Aa | 8.44 ± 0.13Aa | 4 558.03 ± 63.28Aa | |
S2 | W1 | 2 629.74 ± 18.92Ba | 223.32 ± 2.96Ba | 6.46 ± 0.08Ca | 3 881.19 ± 89.97Ba |
W2 | 2 541.14 ± 64.56Bb | 219.07 ± 4.55Bb | 6.95 ± 0.19Bb | 3 836.97 ± 84.56ABb | |
W3 | 2 903.29 ± 39.22Ab | 241.88 ± 2.68Ab | 7.72 ± 0.10Ab | 4 290.19 ± 56.94Ab | |
W4 | 3 002.14 ± 29.46Ab | 251.94 ± 2.18Ab | 8.00 ± 0.02Ab | 4 395.78 ± 60.89Aa |
Fig. 2 Heat map of soil bacterial community sample distance (A) and non-metric multidimensional scaling (NMDS) analysis (B). In A, uppercase letters and numbers represent soil sample numbers; in B, uppercase letters and numbers represent the experimental treatment number. S1, 9 g·kg-1 soil salinity; S2, 18 g·kg-1 soil salinity; W1, 25% soil saturation moisture content; W2, 50% soil saturation moisture content; W3, 75% soil saturation moisture content; W4, 100% soil saturation moisture content.
Fig. 3 Dynamic changes of soil CO2 emission rate (A), soil CH4 emission rate (B), soil cumulative CO2 emission rate (C) and soil cumulative CH4 emission rate (D) under different soil moisture and salinity treatments (mean ± SE). S1, 9 g·kg-1 soil salinity; S2, 18 g·kg-1 soil salinity; W1, 25% soil saturation moisture content; W2, 50% soil saturation moisture content; W3, 75% soil saturation moisture content; W4, 100% soil saturation moisture content.
Fig. 4 Effects of soil moisture and salinity on values of soil cumulative CO2 emission (A) and soil cumulative CH4 emission (B), global warming potential (GWP) (C) and CH4:CO2 (D) (mean ± SE). Different uppercase letters indicate significant difference between soil moisture treatments under low salinity level (S1) (p < 0.05), different lowercase letters indicate significant difference between soil moisture treatments under high salinity level (S2) (p < 0.05), and * indicates significant difference between salinity treatments under the same moisture condition (p < 0.05). S1, 9 g·kg-1 soil salinity; S2, 18 g·kg-1 soil salinity; W1, 25% soil saturation moisture content; W2, 50% soil saturation moisture content; W3, 75% soil saturation moisture content; W4, 100% soil saturation moisture content. eq, equivalent.
Fig. 5 Pearson?s correlation between soil carbon mineralization rate and physical and chemical properties as well as microbial characteristics. *, p < 0.05; **, p < 0.01; ***, p < 0.001. CH4, soil CH4 emission; CH4:CO2, soil CH4 to CO2 ratio; Chao1, Chao1 index; CO2, soil CO2 emission; DOC, soil dissolved organic carbon content; GWP, global warming potential; MBC, soil microbial biomass carbon content; MBN, soil microbial biomass nitrogen content; PD whole tree, PD whole tree index; Shannon, Shannon-Wiener diversity index; TC, soil total carbon content; TN, soil total nitrogen content.
[1] |
Bai JH, Zhang GL, Zhao QQ, Lu QQ, Jia J, Cui BS, Liu XH (2016). Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Scientific Reports, 6, 34835. DOI: 10.1038/srep34835.
DOI |
[2] |
Baldwin DS, Rees GN, Mitchell AM, Watson G, Williams J (2006). The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands, 26, 455-464.
DOI URL |
[3] |
Brockett BFT, Prescott CE, Grayston SJ (2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology & Biochemistry, 44, 9-20.
DOI URL |
[4] |
Chi ZF, Hou LN, Li H, Li JL, Wu HT, Yan BX (2021). Elucidating the archaeal community and functional potential in two typical coastal wetlands with different stress patterns. Journal of Cleaner Production, 285, 124894. DOI: 10.1016/j.jclepro.2020.124894.
DOI |
[5] |
Christiansen JR, Levy-Booth D, Prescott CE, Grayston SJ (2016). Microbial and environmental controls of methane fluxes along a soil moisture gradient in a Pacific coastal temperate rainforest. Ecosystems, 19, 1255-1270.
DOI URL |
[6] |
Das S, Richards BK, Hanley KL, Krounbi L, Walter MF, Walter MT, Steenhuis TS, Lehmann J (2019). Lower mineralizability of soil carbon with higher legacy soil moisture. Soil Biology & Biochemistry, 130, 94-104.
DOI URL |
[7] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
DOI |
[8] |
Dinter T, Geihser S, Gube M, Daniel R, Kuzyakov Y (2019). Impact of sea level change on coastal soil organic matter, priming effects and prokaryotic community assembly. FEMS Microbiology Ecology, 95, fiz129. DOI: 10.1093/femsec/fiz129.
DOI |
[9] |
Empadinhas N, da Costa MS (2008). Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. International Microbiology, 11, 151-161.
PMID |
[10] | Fang JY, Zhu JL, Wang SP, Yue C, Shen HH (2011). Global warming, carbon emissions and uncertainty. Scientia Sinica (Terrae), 41, 1385-1395. |
[方精云, 朱江玲, 王少鹏, 岳超, 沈海花 (2011). 全球变暖、碳排放及不确定性. 中国科学: 地球科学, 41, 1385-1395.] | |
[11] |
Fontaine S, Mariotti A, Abbadie L (2003). The priming effect of organic matter: a question of microbial competition? Soil Biology & Biochemistry, 35, 837-843.
DOI URL |
[12] | Han GX, Sun BY, Chu XJ, Xing QH, Song WM, Xia JY (2018). Precipitation events reduce soil respiration in a coastal wetland based on four-year continuous field measurements. Agricultural and Forest Meteorology, 256- 257, 292-303. |
[13] | He Q, Cui BS, Zhao XS, Fu HL, Liao XL (2009). Relationships between salt marsh vegetation distribution/diversity and soil chemical factors in the Yellow River Estuary, China. Acta Ecologica Sinica, 29, 676-687. |
[贺强, 崔保山, 赵欣胜, 付华龄, 廖晓琳 (2009). 黄河河口盐沼植被分布、多样性与土壤化学因子的相关关系. 生态学报, 29, 676-687.] | |
[14] |
Hoover DJ, Odigie KO, Swarzenski PW, Barnard P (2017). Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA. Journal of Hydrology: Regional Studies, 11, 234-249.
DOI URL |
[15] |
Ilstedt U, Nordgren A, Malmer A (2000). Optimum soil water for soil respiration before and after amendment with glucose in humid tropical acrisols and a boreal mor layer. Soil Biology & Biochemistry, 32, 1591-1599.
DOI URL |
[16] | IPCC Intergovernmental Panel on Climate Change (2013). Climate Change 2013: the Physical Science Basis. Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[17] |
Joergensen RG (1996). The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biology & Biochemistry, 28, 25-31.
DOI URL |
[18] |
Jones CP, Grossl PR, Amacher MC, Boettinger JL, Jacobson AR, Lawley JR (2017). Selenium and salt mobilization in wetland and arid upland soils of Pariette Draw, Utah (USA). Geoderma, 305, 363-373.
DOI URL |
[19] |
Kramer MG, Chadwick OA (2018). Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nature Climate Change, 8, 1104-1108.
DOI |
[20] |
Le Mer J, Roger P (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37, 25-50.
DOI URL |
[21] | Lewis DB, Brown JA, Jimenez KL (2014). Effects of flooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes. Estuarine, Coastal and Shelf Science, 139, 11-19. |
[22] |
Li J, Cui L, Delgado-Baquerizo M, Wang J, Zhu Y, Wang R, Li W, Lei Y, Zhai X, Zhao X, Singh BK (2022). Fungi drive soil multifunctionality in the coastal salt marsh ecosystem. Science of the Total Environment, 818, 151673. DOI: 10.1016/j.scitotenv.2021.151673.
DOI |
[23] | Li XG, Han GX, Zhu LQ, Sun BY, Jiang M, Song WM, Lu F (2019). Effects of changes in precipitation on soil respiration in coastal wetlands of the Yellow River Delta. Acta Ecologica Sinica, 39, 4806-4820. |
[李新鸽, 韩广轩, 朱连奇, 孙宝玉, 姜铭, 宋维民, 路峰 (2019). 降雨量改变对黄河三角洲滨海湿地土壤呼吸的影响. 生态学报, 39, 4806-4820.] | |
[24] |
Mavi MS, Marschner P, Chittleborough DJ, Cox JW, Sanderman J (2012). Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biology & Biochemistry, 45, 8-13.
DOI URL |
[25] |
McDaniel MD, Grandy AS, Tiemann LK, Weintraub MN (2014). Crop rotation complexity regulates the decomposition of high and low quality residues. Soil Biology & Biochemistry, 78, 243-254.
DOI URL |
[26] |
McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 552-560.
DOI URL |
[27] |
Poffenbarger HJ, Needelman BA, Megonigal JP (2011). Salinity influence on methane emissions from tidal marshes. Wetlands, 31, 831-842.
DOI URL |
[28] |
Rath KM, Maheshwari A, Bengtson P, Rousk J (2016). Comparative toxicities of salts on microbial processes in soil. Applied and Environmental Microbiology, 82, 2012-2020.
DOI PMID |
[29] |
Rath KM, Rousk J (2015). Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biology & Biochemistry, 81, 108-123.
DOI URL |
[30] |
Schjønning P, Thomsen IK, Moldrup P, Christensen BT (2003). Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Science Society of America Journal, 67, 156-165.
DOI URL |
[31] |
Setia R, Marschner P, Baldock J, Chittleborough D, Smith P, Smith J (2011). Salinity effects on carbon mineralization in soils of varying texture. Soil Biology & Biochemistry, 43, 1908-1916.
DOI URL |
[32] |
Tollefson J (2022). Scientists raise alarm over “dangerously fast” growth in atmospheric methane. Nature. DOI: 10.1038/d41586-022-00312-2.
DOI |
[33] |
Ury EA, Wright JP, Ardón M, Bernhardt ES (2022). Saltwater intrusion in context: soil factors regulate impacts of salinity on soil carbon cycling. Biogeochemistry, 157, 215-226.
DOI |
[34] |
Vizza C, West WE, Jones SE, Hart JA, Lamberti GA (2017). Regulators of coastal wetland methane production and responses to simulated global change. Biogeosciences, 14, 431-446.
DOI URL |
[35] |
Wagner D (2017). Effect of varying soil water potentials on methanogenesis in aerated marshland soils. Scientific Reports, 7, 14706. DOI: 10.1038/s41598-017-14980-y.
DOI |
[36] | Wang J, Yuan JJ, Liu DY, Xiang J, Ding WX, Jiang XJ (2016). Research progresses on methanogenesis pathway and methanogens in coastal wetlands. Chinese Journal of Applied Ecology, 27, 993-1001. |
[王洁, 袁俊吉, 刘德燕, 项剑, 丁维新, 蒋先军 (2016). 滨海湿地甲烷产生途径和产甲烷菌研究进展. 应用生态学报, 27, 993-1001.]
DOI |
|
[37] | Wang ZY, Xin YZ, Li FM, Gao DM (2009). Microbial community characteristics in a degraded wetland of the Yellow River Delta. Periodical of Ocean University of China, 39, 1005-1012. |
[王震宇, 辛远征, 李锋民, 高冬梅 (2009). 黄河三角洲退化湿地微生物特性的研究. 中国海洋大学学报(自然科学版), 39, 1005-1012.] | |
[38] |
Wong VNL, Greene RSB, Dalal RC, Murphy BW (2010). Soil carbon dynamics in saline and sodic soils: a review. Soil Use and Management, 26, 2-11.
DOI URL |
[39] |
Xi XF, Wang L, Hu JJ, Tang YS, Hu Y, Fu XH, Sun Y, Tsang YF, Zhang YN, Chen JH (2014). Salinity influence on soil microbial respiration rate of wetland in the Yangtze River estuary through changing microbial community. Journal of Environmental Sciences, 26, 2562-2570.
DOI URL |
[40] | Yu JB, Wang YL, Dong HF, Wang XH, Li YZ, Zhou D, Gao YJ (2013). Estimation of soil organic carbon storage in coastal wetlands of modern Yellow River Delta based on landscape pattern. Wetland Science, 11, 1-6. |
[于君宝, 王永丽, 董洪芳, 王雪宏, 栗云召, 周迪, 高永军 (2013). 基于景观格局的现代黄河三角洲滨海湿地土壤有机碳储量估算. 湿地科学, 11, 1-6.] | |
[41] |
Zhang LH, Song LP, Wang BC, Shao HB, Zhang LW, Qin XC (2018). Co-effects of salinity and moisture on CO2and N2O emissions of laboratory-incubated salt-affected soils from different vegetation types. Geoderma, 332, 109-120.
DOI URL |
[42] | Zhang ZC, Yang P, Tong C (2015). Effects of seawater and NaCl solution pulses on methane production potential from laboratory-incubated tidal freshwater and brackish marsh soil. Acta Ecologica Sinica, 35, 8075-8084. |
[张子川, 杨平, 仝川 (2015). 盐分对河口淡水、微咸水沼泽湿地土壤甲烷产生潜力的影响. 生态学报, 35, 8075-8084.] | |
[43] |
Zhao QQ, Bai JH, Zhang GL, Jia J, Wang W, Wang X (2018). Effects of water and salinity regulation measures on soil carbon sequestration in coastal wetlands of the Yellow River Delta. Geoderma, 319, 219-229.
DOI URL |
[1] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[2] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[3] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[4] | HAN Guang-Xuan, WANG Fa-Ming, MA Jun, XIAO Lei-Lei, CHU Xiao-Jing, ZHAO Ming-Liang. Blue carbon sink function, formation mechanism and sequestration potential of coastal salt marshes [J]. Chin J Plant Ecol, 2022, 46(4): 373-382. |
[5] | HAN Guang-Xuan, LI Juan-Yong, QU Wen-Di. Effects of nitrogen input on carbon cycle and carbon budget in a coastal salt marsh [J]. Chin J Plant Ecol, 2021, 45(4): 321-333. |
[6] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[7] | DONG Zheng-Wu, ZHAO Ying, LEI Jia-Qiang, XI Yin-Qiao. Distribution pattern and influencing factors of soil salinity at Tamarix cones in the Taklimakan Desert [J]. Chin J Plant Ecol, 2018, 42(8): 873-884. |
[8] | WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plant Ecol, 2018, 42(3): 382-396. |
[9] | CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19. |
[10] | Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland [J]. Chin J Plant Ecol, 2017, 41(9): 938-952. |
[11] | Qing-Xian KONG, Jiang-Bao XIA, Zi-Guo ZHAO, Fan-Zhu QU. Effects of groundwater salinity on the characteristics of leaf photosynthesis and stem sap flow in Tamarix chinensis [J]. Chin J Plan Ecolo, 2016, 40(12): 1298-1309. |
[12] | Bao-Yu SUN, Guang-Xuan HAN, Liang CHEN, Xiao-Jing CHU, Qing-Hui XING, Li-Xin WU, Shu-Yu ZHU. Effects of elevated temperature on soil respiration in a coastal wetland during the non- growing season in the Yellow River Delta, China [J]. Chin J Plant Ecol, 2016, 40(11): 1111-1123. |
[13] | XU Ming-Shan,HUANG Hai-Xia,SHI Qing-Ru,YANG Xiao-Dong,ZHOU Liu-Li,ZHAO Yan-Tao,ZHANG Qing-Qing,YAN En-Rong. Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province [J]. Chin J Plan Ecolo, 2015, 39(9): 857-866. |
[14] | DING Wen-Hui,JIANG Jun-Yan,LI Xiu-Zhen,HUANG Xing,LI Xi-Zhi,ZHOU Yun-Xuan,TANG Chen-Dong. Spatial distribution of species and influencing factors across salt marsh in southern Chongming Dongtan [J]. Chin J Plan Ecolo, 2015, 39(7): 704-716. |
[15] | CHEN Qing,WANG Yi-Dong,GUO Chang-Cheng,WANG Zhong-Liang. Foliar stable carbon isotope ratios of Phragmites australis and the relevant environmental factors in marsh wetlands in Tianjin [J]. Chin J Plan Ecolo, 2015, 39(11): 1044-1052. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn