Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (1): 6-19.DOI: 10.17521/cjpe.2017.0266
Special Issue: 青藏高原植物生态学:生态系统生态学; 生态系统碳水能量通量
• Research Articles • Previous Articles Next Articles
CHAI Xi1,3,LI Ying-Nian2,DUAN Cheng1,3,ZHANG Tao4,ZONG Ning1,SHI Pei-Li1,3,*(),HE Yong-Tao1,3,ZHANG Xian-Zhou1,3
Online:
2018-01-20
Published:
2018-03-08
Contact:
SHI Pei-Li, ORCID: 0000-0002-1120-0003
Supported by:
CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2018, 42(1): 6-19.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0266
Fig. 1 Energy balance during 2004-2008 at the alpine shrub-meadow (A) and steppe-meadow (B). Data are the daily sums of latent (LE) and sensible (H) heat flux and net radiation (Rn) minus soil heat storage (G), respectively. Black lines are linear fitting lines.
Fig. 2 Comparison of annual (Ann) and growing season (GS) accumulative values of CO2 fluxes (including net ecosystem productivity (NEP ), gross primary productivity (GPP) and ecosystem respiration (Re)) and environmental factors (including mean air temperature (Ta) and total precipitation (PPT )) as well as annual carbon use efficiency (CUE), Re/GPP, normalized difference vegetation index (NDVI) and coefficients of variation (CV) of these factors in the alpine shrub-meadow and steppe-meadow.
Fig. 3 Seasonal dynamic of monthly average photosynthetically active radiation (A, PAR, μmol·m-2·s-1), monthly average air temperature (B, Ta, ℃), monthly average soil temperature at a depth of 5 cm (C, Ts, ℃), monthly average vapor press deficit (D, VPD, kPa), monthly average soil water content at a depth of 5 cm (E, SWC, m3·m-3), and monthly total precipitation (E, PPT, mm), 16-day mean normalized difference vegetation index (F, NDVI) in the alpine shrub-meadow and steppe-meadow form 2004 to 2008. The black squares and histograms represent the shrub-meadow and the grey circles and histograms denote the steppe-meadow.
Fig. 4 Seasonal patterns of daily (g C·m-2·d-1) values of net ecosystem productivity (NEP, A), gross primary productivity (GPP, B) and ecosystem respiration (Re, C) for the alpine shrub-meadow and the steppe-meadow from 2004 to 2008. The black solid circles represent shrub-meadow and the grey hollow circles denote steppe-meadow.
Fig. 5 Path diagrams illustrating the effects of 16-day mean biotic and abiotic factors (air temperature, Ta, ℃; soil temperature at the depth of 5 cm, Ts, ℃; soil water content at the depth of 5 cm, SWC, m3·m-3; precipitation, PPT, mm; photosynthetically active radiation, PAR, μmol·m-2·s-1; normalized difference vegetation index, NDVI) on 16-day mean CO2 fluxes (net ecosystem productivity, NEP, g C·m-2·d-1, gross primary productivity, GPP, g C·m-2·d-1 and ecosystem respiration, Re, g C·m-2·d-1) during the growing season (A-D) and non-growing season (E, F) from 2004-2008 in the alpine shrub-meadow (A, C, E) and steppe-meadow (B, D, F). The grey solid arrows represent significantly negative correlation and the black solid arrows denote significantly positive correlation (p ≤ 0.05). The dashed arrows represent non-significantly correlation (p > 0.05). Data on the arrows are the standardized SEM coefficients. The thickness of the arrows reflects the magnitude of the standardized SEM coefficient.
Fig. 6 The correlative relationships of annual accumulative net ecosystem productivity (NEP, g C·m-2·a-1) with annual carbon use efficiency (CUE, A) and normalized difference vegetation index (NDVI, B) from 2004 to 2008. Hollow triangles represent the alpine shrub- meadow in Haibei (△) and hollow circles denote the alpine steppe-meadow in Damxung (〇). Adj.R2, adjusted coefficient of determination.
[1] |
Adams JM, Faure H, Fauredenard L, Mcglade JM, Woodward FI ( 1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 348, 711-714.
DOI URL |
[2] |
Adrianv R, Michaell G ( 2009). Why is marsh productivity so high? New insights from eddy covariance and biomass measurements in a Typha marsh. Agricultural and Forest Meteorology, 149, 159-168.
DOI URL |
[3] |
Cai JB, Liu J, Xu D, Shi BC ( 2008). Sensitivity analysis of winter wheat shortage diagnostic index based on the principle of path analysis. Journal of Hydraulic Engineering, 39(1), 83-90.
DOI URL |
[ 蔡甲冰, 刘钰, 许迪, 史宝成 ( 2008). 基于通径分析原理的冬小麦缺水诊断指标敏感性分析. 水利学报, 39(1), 83-90.
DOI URL |
|
[4] | Cao XS ( 2011). A SEM-based study on urban community resident’s travel behavior in Guangzhou. Acta Geographica Sinica, 66, 167-177. |
[ 曹小曙 ( 2011). 基于结构方程模型的广州城市社区居民出行行为. 地理学报, 66, 167-177.] | |
[5] |
Chai X, Shi PL, Zong N, Niu B, He YT, Zhang XZ ( 2017). Biophysical regulation of carbon flux in different rainfall regime in a northern Tibetan alpine meadow. Journal of Resources and Ecology, 8, 30-41.
DOI URL |
[6] |
Deyn GBD, Cornelissen JHC, Bardgett RD ( 2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, 516-531.
DOI URL PMID |
[7] |
Du Q, Liu H ( 2013). Seven years of carbon dioxide exchange over a degraded grassland and a cropland with maize ecosystems in a semiarid area of China. Agriculture, Ecosystems and Environment, 173, 1-12.
DOI URL |
[8] |
Flanagan LB ( 2002). Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8, 599-615.
DOI URL |
[9] | Fu YL, Yu GR, Sun XM, Li YN, Wen XF, Zhang LM, Li ZQ, Zhao L, Hao YB ( 2006). Depression of net ecosystem CO2 exchange in semi-arid Leymus chinensis steppe and alpine shrub. Agricultural and Forest Meteorology, 137, 234-244. |
[10] | Gao YX ( 1980). Principles and basis of soil classification in Tibet. Tibet Journal of Agriculture Science, 1, 18-30. |
[ 高以信 ( 1980). 西藏土壤分类的原则和依据. 西藏农业科技, 1, 18-30.] | |
[11] |
Ge ZM, Kellom?ki S, Zhou X, Wang KY, Peltola H ( 2011). Evaluation of carbon exchange in a boreal coniferous stand over a 10-year period: An integrated analysis based on ecosystem model simulations and eddy covariance measurements. Agricultural and Forest Meteorology, 151, 191-203.
DOI URL |
[12] |
Gilmanov TG, Soussana JF, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z Bernhofer C, Campbell CL, Cernusca A ( 2007). Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems and Environment, 121, 93-120.
DOI URL |
[13] |
Gitta L, Markus R, Dario P, Andrewd R, Almut A, Alan B, Paul S, Georg W ( 2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16, 187-208.
DOI URL |
[14] |
Gu S ( 2003). Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 108(D21), 4670. DOI: 10.1029/2003JD003584.
DOI URL |
[15] |
Guo Q, Li S, Hu Z, Zhao W, Wang M ( 2015). Response of gross primary productivity to water availability at different temporal scales in a typical steppe in Inner Mongolia temperate steppe. Journal of Desert Research, 35, 616-623.
DOI URL |
[16] |
Hoff JHV ( 1898). über die zunehmende bedeutung der anorganischen chemie. Vortrag, gehalten auf der 70. Versammlung der gesellschaft deutscher naturforscher und rzte zu düsseldorf. Zeitschrift Für Anorganische Chemie, 18, 1-13.
DOI URL |
[17] |
Jensen R, Herbst M, Friborg T ( 2017). Direct and indirect controls of the interannual variability in atmospheric CO2 exchange of three contrasting ecosystems in Denmark. Agricultural and Forest Meteorology, 233, 12-31.
DOI URL |
[18] |
Jia X, Zha TS, Wu B, Zhang YQ, Gong JN, Qin SG, Chen GP, Qian D, Kellom?ki S, Peltola H ( 2014). Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences, 11, 4679-4693.
DOI URL |
[19] |
Jongen M, Unger S, Santos PJ ( 2014). Effects of precipitation variability on carbon and water fluxes in the understorey of a nitrogen-limited montado ecosystem. Oecologia, 176, 1199-1212.
DOI URL PMID |
[20] |
Kato T ( 2004). Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 109.
DOI URL |
[21] |
Kato T, Hirota M, Tang YH, Cui XY, Li YN, Zhao XQ, Oikawa T ( 2005). Strong temperature dependence and no moss photosynthesis in winter CO2 flux for a Kobresia meadow on the Qinghai-Tibetan Plateau. Soil Biology & Biochemistry, 37, 1966-1969.
DOI URL |
[22] |
Kato T, Tang Y, Gu S, Cui XY, Hirota M, Du MY, Li YN, Zhao XQ, Oikawa T ( 2004). Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology, 124, 121-134.
DOI URL |
[23] |
Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK ( 2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
DOI URL PMID |
[24] |
Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P, Wohlfahrt G ( 2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16, 187-208.
DOI URL |
[25] |
Li D ( 2005). A primary study on CO2 emission from Alpine Potentilla fruticosa scrub meadow ecosystem. Acta Agrestia Sinica, 13(2), 4-9.
DOI URL |
[ 李东 ( 2005). 海北高寒灌丛草甸生态系统CO2释放的初步研究. 草业科学, 13(2), 4-9.]
DOI URL |
|
[26] |
Li HQ, Zhang FW, Li YN, Wang JB, Zhang LM, Zhao L, Cao GM, Zhao XQ, Du MY ( 2016). Seasonal and inter-annual variations in CO2 fluxes over 10 years in an alpine shrubland on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology, 228, 95-103.
DOI URL |
[27] | Li YN ( 2006). Seasonal variation of net ecosystem CO2 exchange and its environmental controlling mechanisms of Potentilla fruticosa meadows in the Qinghai-Xizang Plateau. Science in China Series. D Earth Sciences, 36(A01), 163-173. |
[ 李英年 ( 2006). 青藏高原金露梅灌丛草甸净生态系统CO2交换量的季节变异及其环境控制机制. 中国科学D辑地球科学, 36(A01), 163-173.] | |
[28] | Liu R, Li Y, Wang QX, Xu H, Zheng XJ ( 2011). Seasonal and annual variations of carbon dioxide fluxes in desert ecosystem. Journal of Desert Research, 31(1), 108-114. |
[ 刘冉, 李彦, 王勤学, 许皓, 郑新军 ( 2011). 盐生荒漠生态系统二氧化碳通量的年内、年际变异特征. 中国沙漠, 31(1), 108-114.] | |
[29] |
Liu R, Pan LP, Jenerette GD, Wang QX, Cieraad E, Li Y ( 2012). High efficiency in water use and carbon gain in a wet year for a desert halophyte community. Agricultural and Forest Meteorology, 162, 127-135.
DOI URL |
[30] |
Lu WZ, Xiao JG, Liu F, Zhang Y, Liu F, Lin GH ( 2017). Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: A meta-analysis of eddy covariance data. Global Change Biology, 23, 1180-1198.
DOI URL PMID |
[31] | Lu YZ ( 1982). The draft of the soil classification in the Xizang. Chinese Journal of Soil Science, ( 5), 1-4. |
[ 卢耀曾 ( 1982). 《西藏土壤分类》草案. 土壤通报, ( 5), 1-4.] | |
[32] |
Ma WL, Shi PL, Li WH, He YT, Zhang XZ ( 2010). Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Science China Life Science, 53, 1142-1151.
DOI URL |
[33] |
Meyers TP ( 2001). A comparison of summertime water and CO2 fluxes over rangeland for well-watered and drought conditions. Agricultural and Forest Meteorology, 106, 205-214.
DOI URL |
[34] |
Nagler PL, Cleverly J, Glenn E, Lampkin D, Huete A, Wan ZG, Shen ZC, Chai SY ( 2005). Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sensing of Environment, 94, 17-30.
DOI URL |
[35] |
Peichl M, Leahy P, Kiely G ( 2010). Six-year stable annual uptake of carbon dioxide in intensively managed humid temperate grassland. Ecosystems, 14, 112-126.
DOI URL |
[36] |
Piao SL, Tan K, Nan HJ, Ciais P, Fang JY, Wang T, Vuichard N, Zhu B ( 2012). Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai- Xizang grasslands over the past five decades. Global and Planetary Change, 98- 99, 73-80.
DOI URL |
[37] |
Polley HW, Emmerich W, Bradford JA, Sims PL, Johnson DA, Saliendra NZ, Svejcar T, Angell R, Frank AB, Phillips RL ( 2010). Physiological and environmental regulation of interannual variability in CO2 exchange on rangelands in the western United States. Global Change Biology, 16, 990-1002.
DOI URL |
[38] |
Polley HW, Mielnick PC, Dugas WA, Johnson HB, Sanabria J ( 2006). Increasing CO2 from subambient to elevated concentrations increases grassland respiration per unit of net carbon fixation. Global Change Biology, 12, 1390-1399.
DOI URL |
[39] |
Ruimy A, Jarvis PG, Baldocchi DD, Saugier B ( 1995). CO2 fluxes over plant canopies and solar radiation: A review. Advances in Ecological Research, 26, 1-68.
DOI URL |
[40] |
Ryan EM, Ogle K, Zelikova TJ, LeCain DR, Williams DG, Morgan JA, Pendall E ( 2015). Antecedent moisture and temperature conditions modulate the response of ecosystem respiration to elevated CO2 and warming. Global Change Biology, 21, 2588-2602.
DOI URL PMID |
[41] |
Saito M, Kato T, Tang Y ( 2009). Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology, 15, 221-228.
DOI URL |
[42] | Shi PL, Sun XM, Xu LL, Zhang XZ, He YT, Zhang DQ, Yu GR ( 2006). Net ecosystem CO2 exchange and controlling factors in a steppe— Kobresia meadow on the Tibetan Plateau. Science in China Series D: Earth Sciences, 49, 207-218. |
[43] |
Street L, Shaver G, Williams M, Wijk MTV ( 2007). What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? Journal of Ecology, 95, 139-150.
DOI URL |
[44] | Suyker AE ( 2003). Interannual variability in NEE of a native tallgrass prairie. Global Change Biology, 9, 255-265. |
[45] |
Wan S, Xia J, Liu W, Niu S ( 2009). Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 90, 2700-2710.
DOI URL PMID |
[46] |
Wang YF, Cui XY, Hao YB, Mei XR, Yu GR, Huang XZ, Kang XM, Zhou XQ ( 2011). The fluxes of CO2 from grazed and fenced temperate steppe during two drought years on the Inner Mongolia Plateau, China. Science of The Total Environment, 410- 411, 182-190.
DOI URL PMID |
[47] |
Wang YS , Chu, CJ ( 2011). A brief introduction of structural equation model and its application in ecology. Chinese Journal of Plant Ecology, 35, 337-344.
DOI URL |
[ 王酉石, 储诚进 ( 2011). 结构方程模型及其在生态学中的应用. 植物生态学报, 35, 337-344.]
DOI URL |
|
[48] |
Wolf S, Eugster W, Potvin C, Potvin C, Buchmann N ( 2011). Strong seasonal variations in net ecosystem CO2 exchange of a tropical pasture and afforestation in Panama. Agricultural and Forest Meteorology, 151, 1139-1151.
DOI URL |
[49] | Xie ZL ( 1996). Analysis of the problem in path. System Sciences and Comprehensive Studies in Agriculture, 12(3), 161-167. |
[ 谢仲伦 ( 1996). 相关性通径分析问题剖析. 农业系统科学与综合研究, 12(3), 161-167.] | |
[50] |
Xu L, Baldocchi DD ( 2004). Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 123, 79-96.
DOI URL |
[51] |
Xu X, Shi Z, Li DJ, Zhou XH, Sherry RA, Luo YQ ( 2015). Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Global Change Biology, 21, 3846-3853.
DOI URL PMID |
[52] |
Yang FL, Zhou GS, Hunt JE, Zhang F ( 2011). Biophysical regulation of net ecosystem carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China. Agriculture, Ecosystems and Environment, 142, 318-328.
DOI URL |
[53] | Yashiro Y ( 2010). The role of shrub ( Potentilla fruticosa) on ecosystem CO2 fluxes in an alpine shrub meadow. Journal of Plant Ecology, 3, 89-97. |
[54] |
Yu GR, Zhu XJ, Fu YL, He HL, Wang QF, Wen XF, Li XR, Zhang LM, Zhang L, Su W ( 2013). Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19, 798-810.
DOI URL PMID |
[55] |
Yuan W, Luo Y, Richardson AD, Oren R, Luyssaert S, Janssens IA, Ceulemans R, Zhou XH, Gruenwald T, Aubinet M, Berhofer C, Baldocchi DD, Chen J, Dunn AL, Deforest JL, Dragoni D, Goldstein AH, Moors E, Munger JW, Monson RK, Suyker AE, Star G, Scott RL, Tenhunen J, Verma SB, Vesala T, Wofsy SC ( 2009). Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Global Change Biology, 15, 2905-2920.
DOI URL |
[56] |
Zhao GS, Shi PL, Zong N, He YT, Zhang XZ, He HL, Zhang J ( 2017). Declining precipitation enhances the effect of warming on phenological variation in a semiarid Tibetan meadow steppe. Journal of Resources and Ecology, 8, 50-56.
DOI URL |
[57] |
Zhao L ( 2006). Relations between carbon dioxide fluxes and environmental factors of Kobresia humilis meadows and Potentilla fruticosa meadows. Acta Botanica Boreali- Occidentalia Sinica, 26, 133-142.
DOI URL |
[ 赵亮 ( 2006). 青藏高原矮嵩草草甸和金露梅灌丛草甸CO2通量变化与环境因子的关系. 西北植物学报, 26, 133-142.]
DOI URL |
|
[58] |
Zhao L, Li YN, Gu S, Zhao XQ, Xu SX, Yu GR ( 2005). Carbon dioxide exchange between the atmosphere and an alpine shrubland meadow during the growing season on the Qinghai-Tibetan Plateau. Journal of Integrative Plant Biology, 47, 271-282.
DOI URL |
[59] |
Zhou X, Wan S, Luo Y ( 2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775.
DOI URL |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[3] | HAN Cong, MU Yan-Mei, ZHA Tian-Shan, QIN Shu-Gao, LIU Peng, TIAN Yun, JIA Xin. A dataset of ecosystem fluxes in a shrubland ecosystem of Mau Us Sandy Land in Yanchi, Ningxia, China (2012-2016) [J]. Chin J Plant Ecol, 2023, 47(9): 1322-1332. |
[4] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[5] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[6] | LI Wei-Ying, ZHANG Zheng-Ren, XIN Ya-Xuan, WANG Fei, XIN Pei-Yao, GAO Jie. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya [J]. Chin J Plant Ecol, 2023, 47(6): 833-846. |
[7] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[8] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[9] | LI Xue, DONG Jie, HAN Guang-Xuan, ZHANG Qi-Qi, XIE Bao-Hua, LI Pei-Guang, ZHAO Ming-Liang, CHEN Ke-Long, SONG Wei-Min. Response of soil CO2 and CH4 emissions to changes in moisture and salinity at a typical coastal salt marsh of Yellow River Delta [J]. Chin J Plant Ecol, 2023, 47(3): 434-446. |
[10] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[11] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[12] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[13] | YE Jie-Hong, YU Cheng-Long, ZHUO Shao-Fei, CHEN Xin-Lan, YANG Ke-Ming, WEN Yin, LIU Hui. Correlations of photosynthetic heat tolerance with leaf morphology and temperature niche in Magnoliaceae [J]. Chin J Plant Ecol, 2023, 47(10): 1432-1440. |
[14] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[15] | CHEN Yi-Zhu, LANG Wei-Guang, CHEN Xiao-Qiu. Process-based simulation of autumn phenology of trees and the regional differentiation attribution in northern China [J]. Chin J Plant Ecol, 2022, 46(7): 753-765. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn