Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (3): 361-373.DOI: 10.17521/cjpe.2021.0446
Special Issue: 青藏高原植物生态学:生理生态学; 光合作用
• Research Articles • Previous Articles Next Articles
SHI Sheng-Bo1,3,*(), ZHOU Dang-Wei1, LI Tian-Cai1, DE Ke-Jia2, GAO Xiu-Zhen1, MA Jia-Lin1, SUN Tao3, WANG Fang-Lin3
Received:
2021-12-02
Accepted:
2022-05-21
Online:
2023-03-20
Published:
2022-10-11
Contact:
SHI Sheng-Bo
Supported by:
SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau[J]. Chin J Plant Ecol, 2023, 47(3): 361-373.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0446
Fig. 1 Rapid light-response curves of the fraction of open PSII centers (qL) (A), PSII non-photochemical quenching coefficient (qNP) (B), and relative electron transfer rate through PSII (rETR) (C) of Kobresia pygmaea leaves. PPFD, photosynthetical active photon flux density. CK, control; NLT, nocturnal low temperature treatment.
Fig. 2 Relative electron transfer rate through photosystem II (rETR) of Kobresia pygmaea leaves under nocturnal low-temperature (NLT) treatment at steady-state light intensities (mean ± SD, n = 30). Different lowercase and uppercase letters indicate significant differences among different days of the treatment in the control and NLT groups, respectively (α = 0.05). ns, no significant difference between the control (CK) and NLT groups (p > 0.05); *, significant difference between the control and NLT groups (p < 0.05).
Fig. 3 Fraction of open photosystem II (PSII) centers (qL) (A, B) and PSII non-photochemical quenching coefficient (qNP) (C, D) of Kobresia pygmaea leaves under necturnal low-temperature (NLT) treatment at steady-state light intensities (mean ± SD, n = 30). Different lowercase and uppercase letters indicate significant differences among different irradiation times in the control (CK) and NLT groups, respectively (α = 0.05). ns, no significant difference between the control and NLT groups (p > 0.05); *, significant difference between the control and NLT groups (p < 0.05); ** and ***, highly significant difference between the control and NLT groups (p < 0.01 and p < 0.001).
Fig. 4 Fraction of open photosystem II (PSII) centers (qL) (A, B) and PSII non-photochemical quenching coefficient (qNP) (C, D) of Kobresia pygmaea leaves under different days of nocturnal low-temperature (NLT) treatment (mean ± SD, n = 30). Different lowercase and uppercase letters indicate significant differences among different days of the treatment in the control (CK) and NLT groups, respectively (α = 0.05). ns, no significant difference between the control and NLT groups (p > 0.05); *, significant difference between the control group and NLT groups (p < 0.05); **, highly significant difference between the control and NLT groups (p < 0.01).
Fig. 5 Photosystem II (PSII) actual photochemical efficiency (ΦPSII) (A, B), and the quantum yield of non-regulated energy dissipation (ΦNO) (C, D) and regulated energy dissipation (ΦNPQ) (E, F) of Kobresia pygmaea leaves under different days of nocturnal low-temperature (NLT) treatment (mean ± SD, n = 30). Different lowercase and uppercase letters indicate significant differences among different days of the treatment in the control (CK) and NLT groups, respectively (α = 0.05). ns, no significant difference between the control and NLT groups (p > 0.05); *, significant difference between the control and NLT groups (p < 0.05); **, highly significant difference between the control group and NLT groups (p < 0.01).
Fig. 6 Photosystem II (PSII) actual photochemical efficiency (ΦPSII) (A, B), and the quantum yield of non-regulated energy dissipation (ΦNO) (C, D) and regulated energy dissipation (ΦNPQ) (E, F) of Kobresia pygmaea leaves under nocturnal low-temperature (NLT) treatment at steady-state light intensities (mean ± SD, n = 30). Different lowercase and uppercase letters indicate significant differences among irradiation times in the control (CK) and NLT groups, respectively (α = 0.05). ns, no significant difference between the control and NLT groups (p > 0.05); *, significant difference between the control and NLT groups (p < 0.05); ** and ***, highly significant difference between the control and NLT groups (p < 0.01 and p < 0.001).
Fig. 7 Photosystem II (PSII) non-photochemical quenching (NPQ) (A) and its fast and slow components (NPQf and NPQs) (B, C) of Kobresia pygmaea leaves under nocturnal low-temperature (NLT) treatment and their variation with dark relaxation time (mean ± SD, n = 30). Different lowercase and uppercase letters indicate significant differences among different dark relaxation times in the control (CK) and NLT groups, respectively (α = 0.05). ns, no significant difference between the control and NLT groups (p > 0.05); *, significant difference between the control and NLT groups (p < 0.05).
Fig. 8 Photosystem II (PSII) non-photochemical quenching (NPQ) (A) and its fast and slow components (NPQf and NPQs) (B, C) of Kobresia pygmaea leaves under different days of nocturnal low-temperature (NLT) treatment (mean ± SD, n = 30). Different lowercase and uppercase letters indicate significant differences among different days of the treatment in the control (CK) and NLT groups, respectively (α = 0.05). ns, no significant difference between the control and NLT groups (p > 0.05).
[1] |
Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
DOI PMID |
[2] |
Bertamini M, Muthuchelian K, Rubinigg M, Zorer R, Velasco R, Nedunchezhian N (2006). Low-night temperature increased the photoinhibition of photosynthesis in grapevine (Vitis vinifera L. cv. Riesling) leaves. Environmental and Experimental Botany, 57, 25-31.
DOI URL |
[3] |
Bilger W, Björkman O (1990). Role of the xanthophyll cycle photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25, 173-185.
DOI PMID |
[4] |
Dyer MI, Turner CL, Seastedt TR (1991). Mowing and fertilization effect on productivity and spectral reflectance in Bromus inermis plots. Ecological Applications, 1, 443-452.
DOI URL |
[5] | Gao J, Li QF, Xue JQ, Zhang RH (2016). Physiological compensation mechanism of photosystem II in maize leaves induced by drought stress and re-watering condition. Plant Physiology Journal, 52, 1413-1420. |
[高杰, 李青风, 薛吉全, 张仁和 (2016). 干旱复水激发玉米叶片光系统Ⅱ性能的生理补偿机制. 植物生理学报, 52, 1413-1420.] | |
[6] |
Gaudet CL, Keddy PA (1988). A comparative approach to predicting competitive ability from plant traits. Nature, 334, 242-243.
DOI |
[7] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87-92. |
[8] |
Guarini JM, Moritz C (2009). Modelling the dynamics of the electron transport rate measured by PAM fluorimetry during rapid light curve experiments. Photosynthetica, 47, 206-214.
DOI URL |
[9] |
Hendrickson L, Furbank RT, Chow WS (2004). A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 82, 73-81.
DOI PMID |
[10] |
Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79, 209-218.
DOI PMID |
[11] | Larcher W (1980). Physiological Plant Ecology. 2nd ed. Springer-Verlag, New York. 5-60. |
[12] | Li YK, Lin L, Zhang FW, Liang DY, Wang X, Cao GM (2010). Kobresia pygmaea community—Disclimax of alpine meadow zonal vegetation in the pressure of grazing. Journal of Mountain Science, 28, 257-265. |
[李以康, 林丽, 张法伟, 梁东营, 王溪, 曹广民 (2010). 小嵩草群落——高寒草甸地带性植被放牧压力下的偏途顶极群落. 山地学报, 28, 257-265.] | |
[13] |
Lima Neto MC, Lobo AKM, Martins MO, Fontenele AV, Silveira JAG (2014). Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. Journal of Plant Physiology, 171, 23-30.
DOI URL |
[14] | Liu ZG, Sun WC, Fang Y, Li XC, Yang NN, Wu JY, Zeng XC, Wang Y (2015). Effects of low nocturnal temperature on photosynthetic apparatus of winter rapeseed (Brassica campestris L.). Scientia Agricultura Sinica, 48, 672-682. |
[刘自刚, 孙万仓, 方彦, 李学才, 杨宁宁, 武军艳, 曾秀存, 王月 (2015). 夜间低温对白菜型冬油菜光合机构的影响. 中国农业科学, 48, 672-682.]
DOI |
|
[15] |
Masini L, Grenville-Briggs LJ, Andreasson E, Råberg L, Lankinen Å (2019). Tolerance and overcompensation to infection by Phytophthora infestans in the wild perennial climber Solanum dulcamara. Ecology and Evolution, 9, 4557-4567.
DOI |
[16] |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659-668.
DOI PMID |
[17] | Miehe G, Miehe S, Kaiser K, Liu J, Zhao X, Zhou H (2008). Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau. Ambio, 37, 258-265. |
[18] |
Miehe G, Schleuss PM, Seeber E, Babel W, Biermann T, Braendle M, Chen F, Coners H, Foken T, Gerken T, Graf HF, Guggenberger G, Hafner S, Holzapfel M, Ingrisch J, et al. (2019). The Kobresia pygmaea ecosystem of the Tibetan highlands—Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Science of the Total Environment, 648, 754-771.
DOI URL |
[19] |
Murchie EH, Niyogi KK (2011). Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology, 155, 86-92.
DOI PMID |
[20] |
Oxborough K, Baker NR (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components: calculation of qP and Fv′/Fm′ without measuring Fo′. Photosynthesis Research, 54, 135-142.
DOI URL |
[21] |
Peng SM, Du QY, Lin AW, Hu B, Xiao K, Xi YL (2015). Observation and estimation of photosynthetically active radiation in Lhasa (Tibetan Plateau). Advances in Space Research, 55, 1604-1612.
DOI URL |
[22] | Sáez PL, Bravo LA, Latsague MI, Toneatti MJ, Sánchez-Olate M, Ríos DG (2013). Light energy management in micropropagated plants of Castanea sativa, effects of photoinhibition. Plant Science, 201- 202, 12-24. |
[23] | Schreiber U, Bilger W, Neubauer C (1995). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis//Schulze ED, Caldwell MM. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin. 49-70. |
[24] | Shi SB, Li TC, Li M, Liu SZ, Li AD, Ma JP (2015). Interaction effect analysis of soil drought and strong light on PSII non-photochemical quenching in Kobresia pygmaea leaves. Plant Physiology Journal, 51, 1678-1686. |
[师生波, 李天才, 李妙, 刘世增, 李爱德, 马剑平 (2015). 土壤干旱和强光对高山嵩草叶片PSII反应中心非光化学猝灭的交互影响分析. 植物生理学报, 51, 1678-1686.] | |
[25] |
Shi SB, Shang YX, Zhu PJ, Yang L, Zhang B (2011). Effects of solar UV-B radiation on the efficiency of PSII photochemistry in the alpine plant Saussurea superba under different weather conditions in the Qinghai-Tibet Plateau of China. Chinese Journal of Plant Ecology, 35, 741-750.
DOI URL |
[师生波, 尚艳霞, 朱鹏锦, 杨莉, 张波 (2011). 不同天气类型下UV-B辐射对高山植物美丽风毛菊叶片PSII光化学效率的影响分析. 植物生态学报, 35, 741-750.]
DOI |
|
[26] | Sun BG, Long RJ, Wang CT (2007). A study on the plant population phenology in Qinghai-Tibet Plateau Kobrecia pygmaea meadow. Pratacultural Science, 24(8), 16-20. |
[孙步功, 龙瑞军, 王长庭 (2007). 青藏高原冷龙岭南麓高寒小嵩草草甸植物种群物候学研究. 草业科学, 24(8), 16-20.] | |
[27] |
Sun HL, Zheng D, Yao TD, Zhang YL (2012). Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica, 67, 3-12.
DOI |
[孙鸿烈, 郑度, 姚檀栋, 张镱锂 (2012). 青藏高原国家生态安全屏障保护与建设. 地理学报, 67, 3-12.]
DOI |
|
[28] |
Tikkanen M, Mekala NR, Aro EM (2014). Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochimica et Biophysica Acta, 1837, 210-215.
DOI PMID |
[29] |
Valizadeh-Kamran R, Toorchi M, Mogadam M, Mohammadi H, Pessarakli M (2018). Effects of freeze and cold stress on certain physiological and biochemical traits in sensitive and tolerant barley (Hordeum vulgare) genotypes. Journal of Plant Nutrition, 41, 102-111.
DOI URL |
[30] |
Krüger GHJ (2004). Dark chilling inhibition of photosynthesis and symbiotic nitrogen fixation in soybean during pod filling. Journal of Plant Physiology, 161, 599-609.
PMID |
[31] | Wang CT, Long RJ, Ding LM (2004). Study of alpine meadow of basic characteristic in Qinghai Tibet Plateau. Pratacultural Science, 21(8), 16-19. |
[王长庭, 龙瑞军, 丁路明 (2004). 青藏高原高寒嵩草草甸基本特征的研究. 草业科学, 21(8), 16-19.] | |
[32] | Wang LJ, Li TL, Hao JH, Chen WZ (2010). Effects of low night temperature in short time on photosynthesis of tomato. Journal of Agricultural University of Hebei, 33(4), 46-50. |
[王丽娟, 李天来, 郝敬虹, 陈伟芝 (2010). 短期低夜温处理对番茄光合作用的影响. 河北农业大学学报, 33(4), 46-50.] | |
[33] | Wang WY, Wang QJ, Deng ZF (1998). Communities structural characteristic and plant distribution pattern in alpine Kobresia meadow, Haibei region of Qinghai Province. Acta Phytoecologica Sinica, 22, 336-343. |
[王文颖, 王启基, 邓自发 (1998). 青海海北地区高山嵩草草甸植物群落的结构特征及其分布格局. 植物生态学报, 22, 336-343.] | |
[34] | Xu DQ (2002). Photosynthetic Efficiency. Shanghai Scientific and Technical Press, Shanghai. |
[许大全 (2002). 光合作用效率. 上海科学技术出版社, 上海.] | |
[35] |
Yamori W, Hikosaka K, Way DA (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 119, 101-117.
DOI PMID |
[36] |
Yu BH, Lü CH (2011). Assessment of ecological vulnerability on the Tibetan Plateau. Geographical Research, 30, 2289-2295.
DOI |
[于伯华, 吕昌河 (2011). 青藏高原高寒区生态脆弱性评价. 地理研究, 30, 2289-2295.] | |
[37] | Zhou XM (2001). Chinese Kobresia Meadow. Science Press, Beijing. |
[周兴民 (2001). 中国嵩草草甸. 科学出版社, 北京.] |
[1] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[2] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[3] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[4] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[5] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[6] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[7] | JIN Yi-Li, WANG Hao-Yan, WEI Lin-Feng, HOU Ying, HU Jing, WU Kai, XIA Hao-Jun, XIA Jie, ZHOU Bo-Rui, LI Kai, NI Jian. A plot-based dataset of plant community on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(7): 846-854. |
[8] | LU Jing, MA Zong-Qi, GAO Peng-Fei, FAN Bao-Li, SUN Kun. Changes in the Hippophae tibetana population structure and dynamics, a pioneer species of succession, to altitudinal gradients in the Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(5): 569-579. |
[9] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[10] | WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands [J]. Chin J Plant Ecol, 2022, 46(4): 461-472. |
[11] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[12] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[13] | XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2022, 46(10): 1289-1304. |
[14] | Ning LIU, Shou-Zhang PENG, Yun-Ming CHEN. Temporal effects of climate factors on vegetation growth on the Qingzang Plateau, China [J]. Chin J Plant Ecol, 2022, 46(1): 18-26. |
[15] | NIE Xiu-Qing, WANG Dong, ZHOU Guo-Ying, XIONG Feng, DU Yan-Gong. Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region [J]. Chin J Plant Ecol, 2021, 45(9): 996-1005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn