Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (10): 1289-1304.DOI: 10.17521/cjpe.2022.0226
• Research Articles • Previous Articles Next Articles
Received:
2022-06-02
Accepted:
2022-09-12
Online:
2022-10-20
Published:
2022-09-21
Contact:
*Lü Xiao-Liang(luxiaoliang@nwafu.edu.cn)
Supported by:
XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence[J]. Chin J Plant Ecol, 2022, 46(10): 1289-1304.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0226
名称 Name | 经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 生态系统类型 Ecosystem type |
---|---|---|---|---|
CA-Cbo | 79.93° W | 44.32° N | 120 | 落叶阔叶林 Deciduous broadleaf forests |
US-MMS | 86.41° W | 39.32° N | 275 | 落叶阔叶林 Deciduous broadleaf forests |
US-MOz | 92.20° W | 38.74° N | 219 | 落叶阔叶林 Deciduous broadleaf forests |
US-Ha1 | 72.17° W | 42.54° N | 340 | 混交林 Mixed forests |
Table 1 Details of the four AmeriFlux eddy flux sites
名称 Name | 经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 生态系统类型 Ecosystem type |
---|---|---|---|---|
CA-Cbo | 79.93° W | 44.32° N | 120 | 落叶阔叶林 Deciduous broadleaf forests |
US-MMS | 86.41° W | 39.32° N | 275 | 落叶阔叶林 Deciduous broadleaf forests |
US-MOz | 92.20° W | 38.74° N | 219 | 落叶阔叶林 Deciduous broadleaf forests |
US-Ha1 | 72.17° W | 42.54° N | 340 | 混交林 Mixed forests |
Fig. 2 Spatial distribution of revegetation and existing vegetation of the Loess Plateau. A, Revegetated forest area. B, Revegetated grassland area. C, Existing forest area. D, Existing grassland area.
Fig. 3 Spatial distribution of annual average gross primary production (GPP) in the revegetation and existing vegetation areas of the Loess Plateau in 2020. A, GPP of revegetated forest. B, GPP of revegetated grassland. C, GPP of existing forest. D, GPP of existing grassland.
Fig. 4 Comparison of gross primary production (GPP) calculated based on TROPOspheric Monitoring Instrument (TROPOMI) solar-induced chlorophyll fluorescence (SIF) and observed GPP. A, CA-Cbo. B, US-MMS. C, US-MOz. D, US-Ha1. R2, determinate coefficient; RMSE, root mean square error; rRMSE, relative root mean square error.
Fig. 5 Comparison of mean top-of-canopy solar-induced chlorophyll fluorescence (SIFTOC) and gross primary production (GPP) between revegetation and existing vegetation area in the Loess Plateau in 2020. A, Mean SIFTOC comparison between revegetated forest and existing forest. B, Mean SIFTOC comparison between revegetated grassland and existing grassland. C, mean GPP comparison between revegetated forest and existing forest. D, Mean GPP comparison between revegetated grassland and existing grassland.
Fig. 6 Gross primary production difference (GPPD) between revegetation and existing vegetation area under different leaf area index (LAI) level in the Loess Plateau in 2020. A, GPPD of revegetated forest under different LAI levels. B, GPPD of revegetated grassland under different LAI levels.
Fig. 7 Gross primary production difference (GPPD) between revegetation and existing vegetation area under different conditions in the Loess Plateau in 2020. A, GPPD of revegetated forest under different land use/cover change types. B, GPPD of revegetated grassland under different land use/cover change types. C, GPPD of revegetated forest under different Sen slope levels. D, GPPD of revegetated grassland under different Sen slope levels.
Fig. 8 Gross primary production difference (GPPD) between revegetation and existing vegetation area under different restoration time in the Loess Plateau in 2020. A, GPPD of revegetated forest under different restoration time. B, GPPD of revegetated grassland under different restoration time.
Fig. 9 Gross primary production difference (GPPD) between revegetation and existing vegetation area under different climate conditions in the Loess Plateau in 2020. A, GPPD of revegetated forest under different temperature levels. B, GPPD of revegetated grassland under different temperature levels. C, GPPD of revegetated forest under different soil moisture levels. D, GPPD of revegetated grassland under different soil moisture levels.
[1] | An WM, Liang HB, Wang C, Wang S, Li ZS, Lü YH, Liu GH, Fu BJ. (2017). Dynamic characteristic of soil water with an increase in restoration years on the shady and sunny slope aspects of the Loess Plateau. Acta Ecologica Sinica, 37, 6120-6127. |
[安文明, 梁海斌, 王聪, 王帅, 李宗善, 吕一河, 刘国华, 傅伯杰 (2017). 黄土高原阴/阳坡向林草土壤水分随退耕年限的变化特征. 生态学报, 37, 6120-6127.] | |
[2] |
Bacour C, Maignan F, MacBean N, Porcar-Castell A, Flexas J, Frankenberg C, Peylin P, Chevallier F, Vuichard N, Bastrikov V. (2019). Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model. Journal of Geophysical Research: Biogeosciences, 124, 3281-3306.
DOI URL |
[3] |
Badgley G, Field CB, Berry JA. (2017). Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 3, e1602244. DOI: 10.1126/sciadv.1602244.
DOI |
[4] |
Bilger W, Björkman O. (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25, 173-185.
DOI PMID |
[5] |
Chen C, Park T, Wang XH, Piao SL, Xu BD, Chaturvedi RK, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu ZC, Nemani RR, Myneni RB. (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 122-129.
DOI PMID |
[6] | Chen YM, Liang YM, Cheng JM. (2002). The zonal character of vegetation construction on Loess Plateau. Acta Phytoecologica Sinica, 26, 339-345. |
[陈云明, 梁一民, 程积民 (2002). 黄土高原林草植被建设的地带性特征. 植物生态学报, 26, 339-345.] | |
[7] |
Cui GY, Chen YM, Cao Y, An CC. (2015). Analysis on carbon stock distribution patterns of forest ecosystems in Shaanxi Province. Chinese Journal of Plant Ecology, 39, 333-342.
DOI URL |
[崔高阳, 陈云明, 曹扬, 安淳淳 (2015). 陕西省森林生态系统碳储量分布格局分析. 植物生态学报, 39, 333-342.]
DOI |
|
[8] |
Doughty R, Köhler P, Frankenberg C, Magney TS, Xiao XM, Qin YW, Wu XC, Moore B. (2019). TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proceedings of the National Academy of Sciences of the United States of America, 116, 22393-22398.
DOI PMID |
[9] |
Frankenberg C, Fisher JB, Worden J, Badgley G, Saatchi SS, Lee JE, Toon GC, Butz A, Jung M, Kuze A, Yokota T. (2011). New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters, 38, L17706. DOI: 10.1029/2011GL048738.
DOI |
[10] | Gao ZL. (2012). Analysis of land desertification of Loess Plateau sand and desert areas-causes and remedial measures. Journal of Sediment Rsearch, (6), 1-10. |
[高照良 (2012). 黄土高原沙地和沙漠区的土地沙漠化研究. 泥沙研究, (6), 1-10.] | |
[11] | Gao JJ, Mu XM, Sun WY. (2016). Spatial-temporal change of vegetation coverage in the Loess Plateau from 1981 to 2012. Soil and Water Conservation in China, 7, 52-56. |
[高健健, 穆兴民, 孙文义 (2016). 1981-2012年黄土高原植被覆盖度时空变化特征. 中国水土保持, 7, 52-56.] | |
[12] |
Gu LH, Han JM, Wood JD, Chang CYY, Sun Y. (2019). Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytologist, 223, 1179-1191.
DOI PMID |
[13] | Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, et al. (2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111, E1327-E1333. |
[14] | Guo YQ, Wang NJ, Chu XS, Li C, Luo XQ, Feng H. (2019). Analyzing vegetation coverage changes and its reasons on the Loess Plateau based on Google Earth Engine. China Environmental Science, 39, 4804-4811. |
[郭永强, 王乃江, 褚晓升, 李成, 罗晓琦, 冯浩 (2019). 基于Google Earth Engine分析黄土高原植被覆盖变化及原因. 中国环境科学, 39, 4804-4811.] | |
[15] |
Han JM, Chang CYY, Gu LH, Zhang YJ, Meeker EW, Magney TS, Walker AP, Wen JM, Kira O, McNaull S, Sun Y. (2022). The physiological basis for estimating photosynthesis from Chla fluorescence. New Phytologist, 234, 1206-1219.
DOI URL |
[16] | Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195-213. |
[17] |
Jeong SJ, Schimel D, Frankenberg C, Drewry DT, Fisher JB, Verma M, Berry JA, Lee JE, Joiner J. (2017). Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sensing of Environment, 190, 178-187.
DOI URL |
[18] |
Jian SQ, Zhao CY, Fang SM, Yu K, Ma WY. (2013). Water storage capacity of the canopy dominated by Caragana korshinskii and Hippophae rhamnoides in hilly and gully region on the Loess Plateau of Northwest China. Chinese Journal of Plant Ecology, 37, 45-51.
DOI URL |
[荐圣淇, 赵传燕, 方书敏, 余凯, 马文瑛 (2013). 黄土高原丘陵沟壑区柠条与沙棘冠层的持水能力. 植物生态学报, 37, 45-51.]
DOI |
|
[19] |
Kendall MG. (1948). Rank correlation methods. Biometrika, 44, 298.
DOI URL |
[20] | Köhler P, Frankenberg C, Magney TS, Guanter L, Joiner J, Landgraf J. (2018). Global retrievals of solar induced chlorophyll fluorescence with TROPOMI: first results and inter-sensor comparison to OCO-2. Geophysical Research Letters, 45, 10456-10463. |
[21] |
Lee J, Frankenberg C, van der Tol C, Berry J, Guanter L, Boyce CK, Fisher J, Morrow E, Worden J, Asefi S, Badgley G, Saatchi S. (2013). Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Proceedings of the Royal Society B: Biological Sciences, 280, 20130171. DOI: 10.1098/rspb.2013.0171.
DOI |
[22] |
Li J, Chen B, Li XF, Zhao YJ, Ci RYJ, Jiang B, Hu W, Cheng JM, Shao MA. (2008). Effects of deep soil desiccation on artificial forestlands in different vegetation zones on the Loess Plateau of China. Acta Ecologica Sinica, 28, 1429-1445.
DOI URL |
[李军, 陈兵, 李小芳, 赵玉娟, 次仁央金, 蒋斌, 胡伟, 程积民, 邵明安 (2008). 黄土高原不同植被类型区人工林地深层土壤干燥化效应. 生态学报, 28, 1429-1445.] | |
[23] | Li J, Wang XC, Shao MA, Zhao YJ, Li XF. (2010). Simulation of biomass and soil desiccation of Robinia pseudoacacia forestlands on semi-arid and semi-humid regions of China’s Loess Plateau. Chinese Journal of Plant Ecology, 34, 330-339. |
[李军, 王学春, 邵明安, 赵玉娟, 李小芳 (2010). 黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟. 植物生态学报, 34, 330-339.]
DOI |
|
[24] |
Liu JY, Ning J, Kuang WH, Xu XL, Zhang SW, Yan CZ, Li RD, Wu SX, Hu YF, Du GM, Chi WF, Pan T, Ning J. (2018). Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015. Acta Geographica Sinica, 73, 789-802.
DOI |
[刘纪远, 宁佳, 匡文慧, 徐新良, 张树文, 颜长珍, 李仁东, 吴世新, 胡云锋, 杜国明, 迟文峰, 潘涛, 宁静 (2018). 2010-2015年中国土地利用变化的时空格局与新特征. 地理学报, 73, 789-802.]
DOI |
|
[25] | Liu JY, Zhang ZX, Zhuang DF, Wang YM, Zhou WC, Zhang SW, Li RD, Jiang N, Wu SX. (2003). A study on the spatial-temporal dynamic changes of land-use and driving forces analyses of China in the 1990s. Geographical Research, 22, 1-12. |
[刘纪远, 张增祥, 庄大方, 王一谋, 周万村, 张树文, 李仁东, 江南, 吴世新 (2003). 20世纪90年代中国土地利用变化时空特征及其成因分析. 地理研究, 22, 1-12.] | |
[26] |
Liu YY, Wang Q, Yang Y, Gang CC, Zhang ZY, Tong LJ, Li JL. (2019). Spatial-temporal dynamics of grassland NPP and its driving factors in the Loess Plateau, China. Chinese Journal of Applied Ecology, 30, 2309-2319.
DOI |
[刘洋洋, 王倩, 杨悦, 刚成诚, 章钊颖, 同琳静, 李建龙 (2019). 黄土高原草地净初级生产力时空动态及其影响因素. 应用生态学报, 30, 2309-2319.]
DOI |
|
[27] |
Liu ZQ, Zhao F, Liu XJ, Yu Q, Wang YF, Peng XB, Cai HJ, Lu XL. (2022). Direct estimation of photosynthetic CO2 assimilation from solar-induced chlorophyll fluorescence (SIF). Remote Sensing of Environment, 271, 112893. DOI: 10.1016/j.rse.2022.112893.
DOI |
[28] | Liu ZY, Wang B, Zhao YS, Niu X. (2018). Monitoring and evaluation of the effects of Grain for Green Project in the upper and middle reaches of China’s Yangtze River. Chinese Journal of Applied Ecology, 29, 2463-2469. |
[刘祖英, 王兵, 赵雨森, 牛香 (2018). 长江中上游地区退耕还林成效监测与评价. 应用生态学报, 29, 2463-2469.]
DOI |
|
[29] | Mann HB. (1945). Nonparametric tests against trend. Econometrica, 245-259. |
[30] |
Meroni M, Rossini M, Guanter L, Alonso L, Rascher U, Colombo R, Moreno J. (2009). Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sensing of Environment, 113, 2037-2051.
DOI URL |
[31] | Myneni R, Knyazikhin Y, Park T. (2015). MOD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid V006 Data Set. NASA EOSDIS Land Processes DAAC. 2022-03-10.10.5067/MODIS/MOD15A2H.006. |
[32] |
Running SW, Nemani RR, Heinsch FA, Zhao MS, Reeves M, Hashimoto H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54, 547-560.
DOI URL |
[33] |
Savitzky A, Golay MJE. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627-1639.
DOI URL |
[34] |
Su CH, Fu BJ. (2013). Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Global and Planetary Change, 101, 119-128.
DOI URL |
[35] |
Tan CW, Samanta A, Jin XL, Tong L, Ma C, Guo WS, Knyazikhin Y, Myneni RB. (2013). Using hyperspectral vegetation indices to estimate the fraction of photosynthetically active radiation absorbed by corn canopies. International Journal of Remote Sensing, 34, 8789-8802.
DOI URL |
[36] |
Tong XW, Brandt M, Yue YM, Horion S, Wang KL, Keersmaecker WD, Tian F, Schurgers G, Xiao XM, Luo YQ, Chen C, Myneni R, Shi Z, Chen HS, Fensholt R. (2018). Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 1, 44-50.
DOI URL |
[37] |
Tucker CJ. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127-150.
DOI URL |
[38] |
van der Tol C, Berry JA, Campbell PKE, Rascher U. (2014). Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. Journal of Geophysical Research: Biogeosciences, 119, 2312-2327.
PMID |
[39] |
van der Tol C, Verhoef W, Rosema A. (2009). A model for chlorophyll fluorescence and photosynthesis at leaf scale. Agricultural and Forest Meteorology, 149, 96-105.
DOI URL |
[40] | Vermote EF, Kotchenova S, Ray J. (2011). Modis Surface Reflectance User’s Guide. MODIS Land Surface Reflectance Science Computing Facility: Greenbelt. 2022-03-25. https://lpdaac.usgs.gov/products/mod09a1v006/. |
[41] | Wang CS, Meng FD, Li XE, Jiang LL, Wang SP. (2014). Factors affecting plant primary productivity of grasslands: a review. Acta Ecologica Sinica, 34, 4125-4132. |
[王常顺, 孟凡栋, 李新娥, 姜丽丽, 汪诗平 (2014). 草地植物生产力主要影响因素研究综述. 生态学报, 34, 4125-4132.] | |
[42] |
Wang Z, Xiao XM, Yan XD. (2010). Modeling gross primary production of maize cropland and degraded grassland in northeastern China. Agricultural and Forest Meteorology, 150, 1160-1167.
DOI URL |
[43] | Xiao X, Yan H, Kalfas J, Zhang Q. (2011). Satellite-based Modeling of Gross Primary Production of Terrestrial Ecosystems. Advances in Environmental Remote Sensing: Sensors, Algorithms, and Application. Taylor & Francis Group, Boca Raton. 367-397. |
[44] |
Yin X, Struik PC. (2009). C3 and C4 photosynthesis models: an overview from the perspective of crop modelling. NJAS - Wageningen Journal of Life Sciences, 57, 27-38.
DOI URL |
[45] | You NS, Dong JW, Xiao T, Liu JY, Xiao XM. (2020). The effects of the “grain for green” project on gross primary productivity in the Loess Plateau. Scientia Geographica Sinica, 40, 315-323. |
[尤南山, 董金玮, 肖桐, 刘纪远, Xiao Xiangming (2020). 退耕还林还草工程对黄土高原植被总初级生产力的影响. 地理科学, 40, 315-323.]
DOI |
|
[46] |
Zarco-Tejada PJ, Morales A, Testi L, Villalobos FJ. (2013). Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sensing of Environment, 133, 102-115.
DOI URL |
[47] | Zhang JZ, Li CG, Wang T. (2022). Dynamic changes of vegetation coverage on the Loess Plateau and its factors. Research of Soil and Water Conservation, 29, 224-230. |
[张家政, 李崇贵, 王涛 (2022). 黄土高原植被覆盖时空变化及原因. 水土保持研究, 29, 224-230.] | |
[48] | Zhang ZY, Wang SH, Qiu B, Song L, Zhang YG. (2019). Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application. Journal of Remote Sensing, 23, 37-52. |
[章钊颖, 王松寒, 邱博, 宋练, 张永光 (2019). 日光诱导叶绿素荧光遥感反演及碳循环应用进展. 遥感学报, 23, 37-52.] | |
[49] |
Zhao AZ, Zhang AB, Lu CY, Wang DL, Wang HF, Liu HX. (2017). Spatiotemporal variation of vegetation coverage before and after implementation of Grain for Green Program in Loess Plateau, China. Ecological Engineering, 104, 13-22.
DOI URL |
[50] |
Zhu ZC, Piao SL, Myneni RB, Huang MT, Zeng ZZ, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao CX, Cheng L, Kato E, Koven C, Li Y, et al. (2016). Greening of the Earth and its drivers. Nature Climate Change, 6, 791-795.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn