Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (1): 18-26.DOI: 10.17521/cjpe.2021.0163
Special Issue: 全球变化与生态系统; 青藏高原植物生态学:生态系统生态学
• Research Articles • Previous Articles Next Articles
Ning LIU1,2, Shou-Zhang PENG3,*(), Yun-Ming CHEN3
Received:
2021-04-28
Accepted:
2021-08-19
Online:
2022-01-20
Published:
2022-04-13
Contact:
Shou-Zhang PENG
Supported by:
Ning LIU, Shou-Zhang PENG, Yun-Ming CHEN. Temporal effects of climate factors on vegetation growth on the Qingzang Plateau, China[J]. Chin J Plant Ecol, 2022, 46(1): 18-26.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0163
土地覆盖类型 Land cover type | R2_No | R2_Lag | R2_Acc | R2_Lagacc |
---|---|---|---|---|
常绿针叶林 Evergreen needleleaf forests | 0.45 | 0.46 | 0.47 | 0.50 |
常绿阔叶林 Evergreen broadleaf forests | 0.39 | 0.42 | 0.43 | 0.47 |
落叶阔叶林 Deciduous broadleaf forests | 0.41 | 0.41 | 0.43 | 0.46 |
混交林 Mixed forests | 0.45 | 0.45 | 0.45 | 0.49 |
稀疏灌丛 Sparse shrublands | 0.37 | 0.40 | 0.41 | 0.44 |
木本稀树草原 Woody savannas | 0.42 | 0.43 | 0.44 | 0.47 |
稀树草原 Savannas | 0.42 | 0.41 | 0.43 | 0.47 |
草地 Grasslands | 0.40 | 0.41 | 0.44 | 0.47 |
永久性湿地 Permanent wetlands | 0.49 | 0.48 | 0.48 | 0.51 |
耕地 Croplands | 0.40 | 0.42 | 0.43 | 0.47 |
Table 1 Average determination coefficients of different vegetation types under assumptions of four time lag accumulation effects on the Qingzang Plateau
土地覆盖类型 Land cover type | R2_No | R2_Lag | R2_Acc | R2_Lagacc |
---|---|---|---|---|
常绿针叶林 Evergreen needleleaf forests | 0.45 | 0.46 | 0.47 | 0.50 |
常绿阔叶林 Evergreen broadleaf forests | 0.39 | 0.42 | 0.43 | 0.47 |
落叶阔叶林 Deciduous broadleaf forests | 0.41 | 0.41 | 0.43 | 0.46 |
混交林 Mixed forests | 0.45 | 0.45 | 0.45 | 0.49 |
稀疏灌丛 Sparse shrublands | 0.37 | 0.40 | 0.41 | 0.44 |
木本稀树草原 Woody savannas | 0.42 | 0.43 | 0.44 | 0.47 |
稀树草原 Savannas | 0.42 | 0.41 | 0.43 | 0.47 |
草地 Grasslands | 0.40 | 0.41 | 0.44 | 0.47 |
永久性湿地 Permanent wetlands | 0.49 | 0.48 | 0.48 | 0.51 |
耕地 Croplands | 0.40 | 0.42 | 0.43 | 0.47 |
Fig. 2 Spatial pattern of determination coefficients (R2) evaluated by models considering both time lag and accumulation effects (Lagacc)(A), and spatial difference of R2 values between Lagacc model and that without considering the time effect (No)(B) of different vegetation types on the Qingzang Plateau.
土地覆盖类型 Land cover type | 样本数 No. of samples | 气温 Air temperature | 降水 Precipitation | ||
---|---|---|---|---|---|
滞后月份 Lag months | 累加月份 Accumulation months | 滞后月份 Lag months | 累加月份 Accumulation months | ||
常绿针叶林 Evergreen needleleaf forests | 48 030 | 1.54 | 4.60 | 1.63 | 4.69 |
常绿阔叶林 Evergreen broadleaf forests | 29 667 | 1.51 | 4.72 | 1.70 | 5.66 |
落叶阔叶林 Deciduous broadleaf forests | 4 519 | 1.66 | 4.81 | 1.68 | 4.91 |
混交林 Mixed forests | 50 746 | 1.56 | 4.72 | 1.69 | 5.20 |
稀疏灌丛 Sparse shrublands | 7 125 | 1.94 | 4.89 | 1.50 | 4.72 |
木本稀树草原 Woody savannas | 60 536 | 1.54 | 4.55 | 1.65 | 4.66 |
热带草原 Savannas | 10 940 | 1.60 | 4.48 | 1.68 | 5.13 |
草地 Grasslands | 1 433 101 | 1.61 | 4.32 | 1.45 | 5.19 |
永久性湿地 Permanent wetlands | 404 | 1.41 | 4.48 | 1.51 | 4.49 |
耕地 Croplands | 5 755 | 1.47 | 3.91 | 1.19 | 4.76 |
Table 2 Time lag and accumulation months of air temperature and precipitation on each vegetation type on the Qingzang Plateau evaluated by models considering both time lag and accumulation effects
土地覆盖类型 Land cover type | 样本数 No. of samples | 气温 Air temperature | 降水 Precipitation | ||
---|---|---|---|---|---|
滞后月份 Lag months | 累加月份 Accumulation months | 滞后月份 Lag months | 累加月份 Accumulation months | ||
常绿针叶林 Evergreen needleleaf forests | 48 030 | 1.54 | 4.60 | 1.63 | 4.69 |
常绿阔叶林 Evergreen broadleaf forests | 29 667 | 1.51 | 4.72 | 1.70 | 5.66 |
落叶阔叶林 Deciduous broadleaf forests | 4 519 | 1.66 | 4.81 | 1.68 | 4.91 |
混交林 Mixed forests | 50 746 | 1.56 | 4.72 | 1.69 | 5.20 |
稀疏灌丛 Sparse shrublands | 7 125 | 1.94 | 4.89 | 1.50 | 4.72 |
木本稀树草原 Woody savannas | 60 536 | 1.54 | 4.55 | 1.65 | 4.66 |
热带草原 Savannas | 10 940 | 1.60 | 4.48 | 1.68 | 5.13 |
草地 Grasslands | 1 433 101 | 1.61 | 4.32 | 1.45 | 5.19 |
永久性湿地 Permanent wetlands | 404 | 1.41 | 4.48 | 1.51 | 4.49 |
耕地 Croplands | 5 755 | 1.47 | 3.91 | 1.19 | 4.76 |
土地覆盖类型 Land cover type | 气温 Air temperature | 降水 Precipitation | ||||||
---|---|---|---|---|---|---|---|---|
无时间 效应 No | 滞后 效应 Lag | 累加 效应 Acc | 滞后与累加 的联合效应 Combined | 无时间 效应 No | 滞后 效应 Lag | 累加 效应 Acc | 滞后与累加 的联合效应 Combined | |
常绿针叶林 Evergreen needleleaf forests | 12.55 | 13.25 | 19.88 | 54.32 | 6.86 | 17.42 | 18.42 | 57.30 |
常绿阔叶林 Evergreen broadleaf forests | 8.06 | 17.53 | 21.84 | 52.57 | 7.07 | 14.74 | 16.66 | 61.53 |
落叶阔叶林 Deciduous broadleaf forests | 10.87 | 14.25 | 16.33 | 58.55 | 6.40 | 15.71 | 16.33 | 61.56 |
混交林 Mixed forests | 11.30 | 14.64 | 19.19 | 54.86 | 5.92 | 14.45 | 16.59 | 63.04 |
稀疏灌丛 Sparse shrublands | 7.00 | 18.68 | 14.04 | 60.28 | 6.68 | 14.47 | 22.44 | 56.41 |
木本稀树草原 Woody savannas | 12.51 | 14.04 | 19.89 | 53.56 | 7.06 | 16.62 | 17.20 | 59.12 |
稀树草原 Savannas | 10.55 | 17.88 | 19.18 | 52.39 | 6.72 | 12.49 | 14.95 | 65.84 |
草地 Grasslands | 13.55 | 17.43 | 18.22 | 50.81 | 8.07 | 12.57 | 24.65 | 54.71 |
永久性湿地 Permanent wetlands | 11.88 | 13.86 | 24.75 | 49.50 | 7.67 | 14.11 | 23.51 | 54.70 |
耕地 Croplands | 15.79 | 19.29 | 18.45 | 46.46 | 8.44 | 12.23 | 29.17 | 50.15 |
Table 3 Area proportion (%) of temporal effects of air temperature and precipitation on each vegetation type on the Qingzang Plateau evaluated by models considering both time lag and accumulation effects
土地覆盖类型 Land cover type | 气温 Air temperature | 降水 Precipitation | ||||||
---|---|---|---|---|---|---|---|---|
无时间 效应 No | 滞后 效应 Lag | 累加 效应 Acc | 滞后与累加 的联合效应 Combined | 无时间 效应 No | 滞后 效应 Lag | 累加 效应 Acc | 滞后与累加 的联合效应 Combined | |
常绿针叶林 Evergreen needleleaf forests | 12.55 | 13.25 | 19.88 | 54.32 | 6.86 | 17.42 | 18.42 | 57.30 |
常绿阔叶林 Evergreen broadleaf forests | 8.06 | 17.53 | 21.84 | 52.57 | 7.07 | 14.74 | 16.66 | 61.53 |
落叶阔叶林 Deciduous broadleaf forests | 10.87 | 14.25 | 16.33 | 58.55 | 6.40 | 15.71 | 16.33 | 61.56 |
混交林 Mixed forests | 11.30 | 14.64 | 19.19 | 54.86 | 5.92 | 14.45 | 16.59 | 63.04 |
稀疏灌丛 Sparse shrublands | 7.00 | 18.68 | 14.04 | 60.28 | 6.68 | 14.47 | 22.44 | 56.41 |
木本稀树草原 Woody savannas | 12.51 | 14.04 | 19.89 | 53.56 | 7.06 | 16.62 | 17.20 | 59.12 |
稀树草原 Savannas | 10.55 | 17.88 | 19.18 | 52.39 | 6.72 | 12.49 | 14.95 | 65.84 |
草地 Grasslands | 13.55 | 17.43 | 18.22 | 50.81 | 8.07 | 12.57 | 24.65 | 54.71 |
永久性湿地 Permanent wetlands | 11.88 | 13.86 | 24.75 | 49.50 | 7.67 | 14.11 | 23.51 | 54.70 |
耕地 Croplands | 15.79 | 19.29 | 18.45 | 46.46 | 8.44 | 12.23 | 29.17 | 50.15 |
Fig. 3 Time lag and accumulation months of air temperature (A) and precipitation (B) on vegetation growth on the Qingzang Plateau evaluated by models considering both time lag and accumulation effects. Lag-0, Lag-1, Lag-2 and Lag-3 represent the lag of 0, 1, 2 and 3 months, respectively, and 0-11 represent the accumulation months.
Fig. 4 Spatial distribution of partial correlation coefficients between normalized difference vegetation index (NDVI) and air temperature (A)/precipitation (B) on the Qingzang Plateau evaluated by models considering both time lag and accumulation effects.
Fig. 5 Spatial distribution of dominant climate factors on vegetation growth on the Qingzang Plateau evaluated by models considering both time lag and accumulation effects.
[1] |
Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532.
DOI PMID |
[2] | Cai J, Xie MS (2011). The relationship between grassland biomass and precipitation, temperature in alpine pastoral area. China Herbivores, 31(1), 44-46. |
[ 才吉, 谢民生 (2011). 高寒牧区草原生物量与降水、温度的关系. 中国草食动物, 31(1), 44-46.] | |
[3] | Chen H, Ju PJ, Zhang J, Wang YY, Zhu QA, Yan L, Kang XM, He YX, Zeng Y, Hao YB, Wang YF (2020). Attribution analyses of changes in alpine grasslands on the Qinghai- Tibetan Plateau. Chinese Science Bulletin, 65, 2406-2418. |
[ 陈槐, 鞠佩君, 张江, 王元云, 朱求安, 颜亮, 康晓明, 何奕忻, 曾源, 郝彦宾, 王艳芬 (2020). 青藏高原高寒草地生态系统变化的归因分析. 科学通报, 65, 2406-2418.] | |
[4] |
Chen T, de Jeu RAM, Liu YY, van der Werf GR, Dolman AJ (2014). Using satellite based soil moisture to quantify the water driven variability in NDVI: a case study over mainland Australia. Remote Sensing of Environment, 140, 330-338.
DOI URL |
[5] |
Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 22, 357-365.
DOI URL |
[6] | Cui QH, Jiang ZG, Liu JK, Su JP (2007). A review of the cause of rangeland degradation on Qinghai-Tibet Plateau. Pratacultural Science, 24(5), 20-26. |
[ 崔庆虎, 蒋志刚, 刘季科, 苏建平 (2007). 青藏高原草地退化原因述评. 草业科学, 24(5), 20-26.] | |
[7] |
Cui X, Graf HF, Langmann B, Chen W, Huang R (2006). Climate impacts of anthropogenic land use changes on the Tibetan Plateau. Global and Planetary Change, 54, 33-56.
DOI URL |
[8] |
Ding YX, Li Z, Peng SZ (2020). Global analysis of time-lag and -accumulation effects of climate on vegetation growth. International Journal of Applied Earth Observation and Geoinformation, 92, 102179. DOI: 10.1016/j.jag.2020. 102179.
DOI URL |
[9] |
Evans J, Geerken R (2004). Discrimination between climate and human-induced dryland degradation. Journal of Arid Environments, 57, 535-554.
DOI URL |
[10] |
Guo L, Cheng JM, Luedeling E, Koerner SE, He JS, Xu JC, Gang CC, Li W, Luo R, Peng C (2017). Critical climate periods for grassland productivity on China’s Loess Plateau. Agricultural and Forest Meteorology, 233, 101-109.
DOI URL |
[11] |
Guo L, Wang JH, Li MJ, Liu L, Xu JC, Cheng JM, Gang CC, Yu Q, Chen J, Peng CH, Luedeling E (2019). Distribution margins as natural laboratories to infer species’ flowering responses to climate warming and implications for frost risk. Agricultural and Forest Meteorology, 268, 299-307.
DOI URL |
[12] |
Hua T, Wang XM, Zhang CX, Lang LL, Li H (2017). Responses of vegetation activity to drought in Northern China. Land Degradation & Development, 28, 1913-1921.
DOI URL |
[13] |
Ivits E, Horion S, Erhard M, Fensholt R (2016). Assessing European ecosystem stability to drought in the vegetation growing season. Global Ecology and Biogeography, 25, 1131-1143.
DOI URL |
[14] |
Li PL, Zhu D, Wang YL, Liu D (2020). Elevation dependence of drought legacy effects on vegetation greenness over the Tibetan Plateau. Agricultural and Forest Meteorology, 295, 108190. DOI: 10.1016/j.agrformet.2020.108190.
DOI URL |
[15] | Li YC, Li Y, Zhu GR (2018). A new definition method of climate- sensitive region and its prediction. Acta Geographica Sinica, 73, 1283-1295. |
[ 李依婵, 李育, 朱耿睿 (2018). 一种新的气候变化敏感区的定义方法与预估. 地理学报, 73, 1283-1295.]
DOI |
|
[16] | Liu B, Sun YL, Wang YC, Zhang Y (2013). Monitoring and assessment of vegetation variation in North China based on SPOT/NDVI. Journal of Arid Land Resources and Environment, 27(9), 98-103. |
[ 刘斌, 孙艳玲, 王永财, 张悦 (2013). 基于SPOT/NDVI华北地区植被变化动态监测与评价. 干旱区资源与环境, 27(9), 98-103.] | |
[17] |
Liu XD, Chen BD (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742.
DOI URL |
[18] | Mishra NB, Mainali KP (2017). Greening and browning of the Himalaya: spatial patterns and the role of climatic change and human drivers. Science of the Total Environment, 587- 588, 326-339. |
[23] |
Shi CG, Sun G, Zhang HX, Xiao BX, Ze B, Zhang NN, Wu N (2014). Effects of warming on chlorophyll degradation and carbohydrate accumulation of alpine herbaceous species during plant senescence on the Tibetan Plateau. PLOS ONE, 9, e107874. DOI: 10.1371/journal.pone.0107874.
DOI URL |
[24] |
Stow D, Daeschner S, Hope A, Douglas D, Petersen A, Myneni R, Zhou L, Oechel W (2003). Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. International Journal of Remote Sensing, 24, 1111-1117.
DOI URL |
[25] | Sun YL, Guo P (2012). Variation of vegetation coverage and its relationship with climate change in north China from 1982 to 2006. Ecology and Environmental Sciences, 21, 7-12. |
[ 孙艳玲, 郭鹏 (2012). 1982-2006年华北植被覆盖变化及其与气候变化的关系. 生态环境学报, 21, 7-12.] | |
[26] |
Sun YL, Shan M, Pei XR, Zhang XK, Yang YL (2020). Assessment of the impacts of climate change and human activities on vegetation cover change in the Haihe River basin, China. Physics and Chemistry of the Earth, 115, 102834. DOI: 10.1016/j.pce.2019.102834.
DOI |
[27] |
Vicente-Serrano SM, Beguería S, López-Moreno JI (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696-1718.
DOI URL |
[28] |
Wang Q, Zhang QP, Zhou W (2012). Grassland coverage changes and analysis of the driving forces in Maqu County. Physics Procedia, 33, 1292-1297.
DOI URL |
[29] | Wang QX, Lv SH, Bao Y, Ma D, Li RQ (2014). Characteristics of vegetation change and its relationship with climate factors in different time-scales on Qinghai-Xizang Plateau. Plateau Meteorology, 33, 301-312. |
[ 王青霞, 吕世华, 鲍艳, 马迪, 李瑞青 (2014). 青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析. 高原气象, 33, 301-312.]
DOI |
|
[30] | Wang ZP, Zhang XZ, He YT, Li M, Shi PL, Zu JX, Niu B (2018). Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015. Chinese Journal of Applied Ecology, 29, 75-83. |
[ 王志鹏, 张宪洲, 何永涛, 李猛, 石培礼, 俎佳星, 牛犇 (2018). 2000-2015年青藏高原草地归一化植被指数对降水变化的响应. 应用生态学报, 29, 75-83.] | |
[31] |
Wen YY, Liu XP, Pei FS, Li X, Du GM (2018). Non-uniform time-lag effects of terrestrial vegetation responses to asymmetric warming. Agricultural and Forest Meteorology, 252, 130-143.
DOI URL |
[36] |
Zhang HC, Liu SG, Regnier P, Yuan WP (2018). New insights on plant phenological response to temperature revealed from long-term widespread observations in China. Global Change Biology, 24, 2066-2078.
DOI URL |
[37] | Zhang YL, Li BY, Zheng D (2002). A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21(1), 1-8. |
[ 张镱锂, 李炳元, 郑度 (2002). 论青藏高原范围与面积. 地理研究, 21(1), 1-8.] | |
[38] | Zhang YL, Liu LS, Wang ZF, Bai WQ, Ding MJ, Wang XH, Yan JZ, Xu EQ, Wu X, Zhang BH, Liu QH, Zhao ZL, Liu FG, Zheng D (2019). Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chinese Science Bulletin, 64, 2865-2875. |
[ 张镱锂, 刘林山, 王兆锋, 摆万奇, 丁明军, 王秀红, 阎建忠, 许尔琪, 吴雪, 张炳华, 刘琼欢, 赵志龙, 刘峰贵, 郑度 (2019). 青藏高原土地利用与覆被变化的时空特征. 科学通报, 64, 2865-2875.] | |
[39] | Zhao QQ, Zhang JP, Zhao TB, Li JH (2021). Vegetation changes and its response to climate change in China since 2000. Plateau Meteorology, 40, 292-301. |
[ 赵倩倩, 张京朋, 赵天保, 李建华 (2021). 2000年以来中国区域植被变化及其对气候变化的响应. 高原气象, 40, 292-301.]
DOI |
|
[40] | Zheng D (1996). Research on the natural territory system of the Qinghai-Tibet Plateau. Science in China (Series D), 26, 336-341. |
[35] | [ 张戈丽, 徐兴良, 周才平, 张宏斌, 欧阳华 (2011). 近30年来呼伦贝尔地区草地植被变化对气候变化的响应. 地理学报, 66, 47-58.] |
Zhang GL, Xu XL, Zhou CP, Zhang HB, Ouyang H (2011). Responses of vegetation changes to climatic variations in Hulun Buir Grassland in past 30 years. Acta Geographica Sinica, 66, 47-58. | |
[34] |
Yang W, Yang L, Merchant JW (1997). An assessment of AVHRR/NDVI-ecoclimatological relations in Nebraska, USA. International Journal of Remote Sensing, 18, 2161-2180.
DOI URL |
[33] | [ 薛宇轩, 卢宏玮 (2020). 青藏高原植被覆盖变化及气候驱动因子分析. 湖北农业科学, 59(15), 44-48.] |
Xue YX, Lu HW (2020). Analysis of vegetation cover change and climate driving factors on the Qinghai-Tibet Plateau. Hubei Agricultural Sciences, 59(15), 44-48. | |
[32] |
Wu DH, Zhao X, Liang SL, Zhou T, Huang KC, Tang BJ, Zhao WQ (2015). Time-lag effects of global vegetation responses to climate change. Global Change Biology, 21, 3520-3531.
DOI URL |
[22] |
Schwalm CR, Anderegg WRL, Michalak AM, Fisher JB, Biondi F, Koch G, Litvak M, Ogle K, Shaw JD, Wolf A, Huntzinger DN, Schaefer K, Cook R, Wei YX, Fang YY, Hayes D, Huang MY, Jain A, Tian HQ (2017). Global patterns of drought recovery. Nature, 548, 202-205.
DOI URL |
[21] |
Rees M, Condit R, Crawley M, Pacala S, Tilman D (2001). Long-term studies of vegetation dynamics. Science, 293, 650-655.
DOI PMID |
[20] |
Peng SZ, Ding YX, Liu WZ, Li Z (2019b). 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11, 1931-1946.
DOI URL |
[19] |
Peng J, Wu CY, Zhang XY, Wang XY, Gonsamo A (2019a). Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Global Change Biology, 25, 2174-2188.
DOI URL |
[40] | [ 郑度 (1996). 青藏高原自然地域系统研究. 中国科学(D辑), 26, 336-341.] |
[1] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[2] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[3] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[4] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[5] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[6] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[7] | JIN Yi-Li, WANG Hao-Yan, WEI Lin-Feng, HOU Ying, HU Jing, WU Kai, XIA Hao-Jun, XIA Jie, ZHOU Bo-Rui, LI Kai, NI Jian. A plot-based dataset of plant community on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(7): 846-854. |
[8] | LU Jing, MA Zong-Qi, GAO Peng-Fei, FAN Bao-Li, SUN Kun. Changes in the Hippophae tibetana population structure and dynamics, a pioneer species of succession, to altitudinal gradients in the Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(5): 569-579. |
[9] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[10] | WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands [J]. Chin J Plant Ecol, 2022, 46(4): 461-472. |
[11] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[12] | NIE Xiu-Qing, WANG Dong, ZHOU Guo-Ying, XIONG Feng, DU Yan-Gong. Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region [J]. Chin J Plant Ecol, 2021, 45(9): 996-1005. |
[13] | CHEN Zhe, WANG Hao, WANG Jin-Zhou, SHI Hui-Jin, LIU Hui-Ying, HE Jin-Sheng. Estimation on seasonal dynamics of alpine grassland aboveground biomass using phenology camera-derived NDVI [J]. Chin J Plant Ecol, 2021, 45(5): 487-495. |
[14] | WANG Yi, SUN Jian, YE Chong-Chong, ZENG Tao. Climatic factors drive the aboveground ecosystem functions of alpine grassland via soil microbial biomass nitrogen on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 434-443. |
[15] | SUN Jian, WANG Yi, LIU Guo-Hua. Linkages of aboveground plant carbon accumulation rate with ecosystem multifunctionality in alpine grassland, Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 496-506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn