Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (5): 434-443.DOI: 10.17521/cjpe.2020.0204
Special Issue: 全球变化与生态系统; 生态系统结构与功能; 青藏高原植物生态学:植物-土壤-微生物; 微生物生态学
• Research Articles • Previous Articles Next Articles
WANG Yi1,2, SUN Jian2,*(), YE Chong-Chong2,3, ZENG Tao1,*()
Received:
2020-06-22
Accepted:
2020-10-22
Online:
2021-05-20
Published:
2020-12-09
Contact:
SUN Jian,ZENG Tao
WANG Yi, SUN Jian, YE Chong-Chong, ZENG Tao. Climatic factors drive the aboveground ecosystem functions of alpine grassland via soil microbial biomass nitrogen on the Qingzang Plateau[J]. Chin J Plant Ecol, 2021, 45(5): 434-443.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0204
调查指标 Survey indicator | p | 平均值 Mean | 标准误 SE | 最大值 Max | 最小值 Min |
---|---|---|---|---|---|
地上生态系统功能 Aboveground ecosystem functions | 0.200 | 0.05 | 0.54 | 1.77 | -1.70 |
地上生物量 Aboveground biomass (g·m-2) | 0.000 | 91.15 | 77.22 | 318.48 | 7.56 |
地下生物量 Belowground biomass (g·m-2) | 0.000 | 3.20 | 6.16 | 42.53 | 0.01 |
叶片碳含量 Leaf carbon content (g·kg-1) | 0.000 | 40.59 | 3.75 | 45.12 | 27.42 |
叶片磷含量 Leaf phosphorus content (g·kg-1) | 0.001 | 1.67 | 0.79 | 5.32 | 0.34 |
叶片氮含量 Leaf nitrogen content (g·kg-1) | 0.098 | 17.98 | 4.34 | 34.44 | 5.90 |
土壤含水量 Soil water content (%) | 0.000 | 0.15 | 0.13 | 0.53 | 0.01 |
土壤速效磷含量 Soil available phosphorus content (mg·kg-1) | 0.001 | 2.50 | 1.66 | 8.48 | 0.32 |
土壤速效氮含量 Soil available nitrogen content (mg·kg-1) | 0.000 | 130.35 | 118.11 | 536.78 | 12.03 |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 0.000 | 24.23 | 25.74 | 128.63 | 0.75 |
土壤总磷含量 Soil total phosphorus content (g·kg-1) | 0.025 | 0.49 | 0.32 | 2.03 | 0.05 |
土壤总氮含量 Soil total nitrogen content (g·kg-1) | 0.000 | 1.64 | 1.42 | 6.82 | 0.29 |
土壤微生物生物量碳含量 Microbial biomass carbon content (mg·kg-1) | 0.000 | 398.98 | 423.82 | 2 064.00 | 3.50 |
土壤微生物生物量氮含量 Microbial biomass nitrogen content (mg·kg-1) | 0.000 | 123.34 | 115.03 | 451.20 | 2.60 |
Table 1 Descriptive statistics of each index in the transect survey on the Qingzang Plateau
调查指标 Survey indicator | p | 平均值 Mean | 标准误 SE | 最大值 Max | 最小值 Min |
---|---|---|---|---|---|
地上生态系统功能 Aboveground ecosystem functions | 0.200 | 0.05 | 0.54 | 1.77 | -1.70 |
地上生物量 Aboveground biomass (g·m-2) | 0.000 | 91.15 | 77.22 | 318.48 | 7.56 |
地下生物量 Belowground biomass (g·m-2) | 0.000 | 3.20 | 6.16 | 42.53 | 0.01 |
叶片碳含量 Leaf carbon content (g·kg-1) | 0.000 | 40.59 | 3.75 | 45.12 | 27.42 |
叶片磷含量 Leaf phosphorus content (g·kg-1) | 0.001 | 1.67 | 0.79 | 5.32 | 0.34 |
叶片氮含量 Leaf nitrogen content (g·kg-1) | 0.098 | 17.98 | 4.34 | 34.44 | 5.90 |
土壤含水量 Soil water content (%) | 0.000 | 0.15 | 0.13 | 0.53 | 0.01 |
土壤速效磷含量 Soil available phosphorus content (mg·kg-1) | 0.001 | 2.50 | 1.66 | 8.48 | 0.32 |
土壤速效氮含量 Soil available nitrogen content (mg·kg-1) | 0.000 | 130.35 | 118.11 | 536.78 | 12.03 |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 0.000 | 24.23 | 25.74 | 128.63 | 0.75 |
土壤总磷含量 Soil total phosphorus content (g·kg-1) | 0.025 | 0.49 | 0.32 | 2.03 | 0.05 |
土壤总氮含量 Soil total nitrogen content (g·kg-1) | 0.000 | 1.64 | 1.42 | 6.82 | 0.29 |
土壤微生物生物量碳含量 Microbial biomass carbon content (mg·kg-1) | 0.000 | 398.98 | 423.82 | 2 064.00 | 3.50 |
土壤微生物生物量氮含量 Microbial biomass nitrogen content (mg·kg-1) | 0.000 | 123.34 | 115.03 | 451.20 | 2.60 |
Fig. 2 Relationships between climate factors, belowground biomass, soil factors and aboveground ecosystem functions (AEF). A, The correlation between AEF value and each factor; black box indicates positive correlation, and red box indicates negative correlation, * and ** represented significantly correlated with AEF value (p < 0.05 and p < 0.01). B, Principal component analysis of AEF value and each factor. AI, aridity index; AMT, mean annual air temperature; ATP, mean annual precipitation; BGB, belowground biomass; EMF, ecosystem multi-function; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; SAN, soil available nitrogen content; SAP, soil available phosphorus content; SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content.
Fig. 3 Relative importance of environmental factors and soil factors to aboveground ecosystem functions. AI, aridity index; AMT, mean annual air temperature; ATP, mean annual precipitation; BGB, belowground biomass; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; SAN, soil available nitrogen content; SAP, soil available phosphorus content; SOC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content.
Fig. 4 Relationships of climate and soil factors with aboveground ecosystem functions. AEF, aboveground ecosystem functions value; AI, aridity index; ATP, mean annual precipitation; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; SOC, soil organic carbon content; STN, soil total nitrogen content. Except for AEF, all other are log-transformed data.
Fig. 5 Changes of soil nutrient and microbial properties with climatic factors. AI, aridity index; ATP, mean annual precipitation; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; SOC, soil organic carbon content; STN, soil total nitrogen content. All data are log-transformed data.
Fig. 6 Effects of climatic and soil factors on aboveground ecosystem functions value (AEF). The path with significant effect is shown in the figure (p < 0.05), the solid lines indicate a positive effect and the dotted line indicates a positive effect. AI, aridity index; ATP, mean annual precipitation; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; SOC, soil organic carbon content; STN, soil total nitrogen content.
[1] | Bai JB,Xu XL,Fu G,Song MH,He YT,Jiang J(2011).Effects of temperature and nitrogen input on nitrogen mineralization in alpine soils on Tibetan Plateau.Agricultural Science & Technology,12, 1909-1912. |
[2] | Bao SD(2000).Soil and Agricultural Chemistry Analysis.China Agriculture Press,Beijing. |
[鲍士旦(2000).土壤农化分析.中国农业出版社,北京.] | |
[3] |
Bardgett RD,van der Putten WH(2014).Belowground biodiversity and ecosystem functioning.Nature,515, 505-511.
DOI URL |
[4] |
Baumann F,He J,Schmidt K,Kühn P,Scholten T(2009).Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau.Global Change Biology,15, 3001-3017.
DOI URL |
[5] | Bradford MA,Wood SA,Bardgett RD,Black HIJ,Bonkowski M,Eggers T,Grayston SJ,Kandeler E,Manning P,Setälä H,Jones TH(2014).Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition.Proceedings of the National Academy of Sciences of the United States of America,111, 14478-14483. |
[6] |
Chen QL,Ding J,Zhu D,Hu HW,Delgado-Baquerizo M,Ma YB,He JZ,Zhu YG(2019).Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils.Soil Biology & Biochemistry,141, 107686. DOI:10.1016/j.soilbio.2019.107686.
DOI URL |
[7] |
Cong WF,van Ruijven J,van der Werf W,de Deyn GB,Mommer L,Berendse F,Hoffland E(2015).Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil.Soil Biology & Biochemistry,80, 341-348.
DOI URL |
[8] |
Delgado-Baquerizo M,Eldridge DJ,Ochoa V,Gozalo B,Singh BK,Maestre FT(2017).Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe.Ecology Letters,20, 1295-1305.
DOI PMID |
[9] |
Delgado-Baquerizo M,Maestre FT,Reich PB,Jeffries TC,Gaitan JJ,Encinar D,Berdugo M,Campbell CD,Singh BK(2016).Microbial diversity drives multifunctionality in terrestrial ecosystems.Nature Communications,7, 10541. DOI:10.1038/ncomms10541.
DOI PMID |
[10] | Friedman JH,Popescu BE(2008).Predictive learning via rule ensembles.The Annals of Applied Statistics,2, 916-954. |
[11] |
Fu YW,Tian DS,Wang JS,Niu SL,Zhao KT(2019).Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands.Chinese Journal of Plant Ecology,43, 566-575.
DOI URL |
[符义稳,田大栓,汪金松,牛书丽,赵垦田(2019).内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素.植物生态学报,43, 566-575.] | |
[12] |
Gans JD,Wolinsky M,Dunbar J(2005).Computational improvements reveal great bacterial diversity and high metal toxicity in soil.Science,309, 1387-1390.
DOI URL |
[13] |
Hooper DU,Bignell DE,Brown VK,Brussard L,Mark Dangerfield J,Wall DH,Wardle DA,Coleman DC,Giller KE,Lavelle P,van der Putten WH,de Ruiter PC,Rusek J,Silver WL,Tiedje JM,Wolters V(2000).Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks.BioScience,50, 1049-1061.
DOI URL |
[14] |
Hooper DU,Chapin FS,Ewel JJ,Hector A,Inchausti P,Lavorel S,Lawton JH,Lodge DM,Loreau M,Naeem S,Schmid B,Setälä H,Symstad AJ,Vandermeer J,Wardle DA(2005).Effects of biodiversity on ecosystem functioning: a consensus of current knowledge.Ecological Monographs,75, 3-35.
DOI URL |
[15] | Huang CY(2000).Pedology.China Agriculture Press,Beijing. |
[黄昌勇(2000).土壤学,中国农业出版社,北京.] | |
[16] |
Jing X,Sanders NJ,Shi Y,Chu HY,Classen AT,Zhao K,Chen LT,Shi Y,Jiang YX,He JS(2015).The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate.Nature Communications,6, 8159. DOI:10.1038/ncomms9159.
DOI PMID |
[17] |
Lefcheck JS,Byrnes JEK,Isbell F,Gamfeldt L,Griffin JN,Eisenhauer N,Hensel MJS,Hector A,Cardinale BJ,Duffy JE(2015).Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.Nature Communications,6, 6936. DOI:10.1038/ncomms7936.
DOI URL |
[18] | Li G,Wang LJ,Li YJ,Qiao J,Zhang HF,Song XL,Yang DL(2013).Effects of different vegetation restoration patterns on the diversity of soil nitrogen-fixing microbes in Hulunbeier sandy land, Inner Mongolia of North China.Chinese Journal of Applied Ecology,24, 1639-1646. |
[李刚,王丽娟,李玉洁,乔江,张海芳,宋晓龙,杨殿林(2013).呼伦贝尔沙地不同植被恢复模式对土壤固氮微生物多样性的影响.应用生态学报,24, 1639-1646.] | |
[19] | Li L,Gao JQ,Lei GC,Lü C,Suo L(2011).Distribution patterns of soil organic carbon and total nitrogen in Zoige peat land with different ground water table.Chinese Journal of Ecology,30, 2449-2455. |
[李丽,高俊琴,雷光春,吕偲,索郎夺尔基(2011).若尔盖不同地下水位泥炭湿地土壤有机碳和全氮分布规律.生态学杂志,30, 2449-2455.] | |
[20] |
López-Rojo N,Pozo J,Pérez J,Basaguren A,Martínez A,Tonin AM,Correa-Araneda F,Boyero L(2019).Plant diversity loss affects stream ecosystem multifunctionality.Ecology,100, e02847. DOI:10.1002/ecy.2847.
DOI |
[21] |
Luo YQ,Su B,Currie WS,Dukes JS,Finzi A,Hartwig U,Hungate B,Mc Murtrie RE,Oren R,Parton WJ,Pataki DE,Shaw MR,Zak DR,Field CB(2004).Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide.BioScience,54, 731-739.
DOI URL |
[22] |
Maestre FT,Quero JL,Gotelli NJ,Escudero A,Ochoa V,Delgado-Baquerizo M,Garcia-Gomez M,Bowker MA,Soliveres S,Escolar C,Garcia-Palacios P,Berdugo M,Valencia E,Gozalo B,Gallardo A,et al.(2012).Plant species richness and ecosystem multifunctionality in global drylands.Science,335, 214-218.
DOI URL |
[23] | Meyer ST,Ptacnik R,Hillebrand H,Bessler H,Buchmann N,Ebeling A,Eisenhauer N,Engels C,Fischer M,Halle S,Klein AM,Oelmann Y,Roscher C,Rottstock T,Scherber C,et al.(2018).Biodiversity-multifunctionality relationships depend on identity and number of measured functions.Nature Ecology & Evolution,2, 44-49. |
[24] |
Niu SL,Wu MY,Han Y,Xia JY,Li LH,Wan SQ(2007).Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe.New Phytologist,177, 209-219.
DOI URL |
[25] |
Perkins DM,Bailey RA,Dossena M,Gamfeldt L,Reiss J,Trimmer M,Woodward G(2015).Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes.Global Change Biology,21, 396-406.
DOI PMID |
[26] |
Shipley B,Meziane D(2002).The balanced-growth hypothesis and the allometry of leaf and root biomass allocation.Functional Ecology,16, 326-331.
DOI URL |
[27] |
Sistla SA,Schimel JP(2012).Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change.New Phytologist,196, 68-78.
DOI PMID |
[28] | Sun HL,Zheng D,Yao TD,Zhang YL(2012).Protection and construction of the national ecological security shelter zone on Tibetan Plateau.Acta Geographica Sinica,67, 3-12. |
[孙鸿烈,郑度,姚檀栋,张镱锂(2012).青藏高原国家生态安全屏障保护与建设.地理学报,67, 3-12.] | |
[29] |
Sun J,Ma BB,Lu XY(2018).Grazing enhances soil nutrient effects: trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau.Land Degradation & Development,29, 337-348.
DOI URL |
[30] | Sun J,Zhang ZC,Dong SK(2019).Adaptive management of alpine grassland ecosystems over Tibetan Plateau.Pratacultural Science,36, 933-938. |
[孙建,张振超,董世魁(2019).青藏高原高寒草地生态系统的适应性管理.草业科学,36, 933-938.] | |
[31] |
Sun J,Zhou TC,Liu M,Chen YC,Liu GH,Xu M,Shi PL,Peng F,Tsunekawa A,Liu Y,Wang XD,Dong SK,Zhang YJ,Li YN(2020).Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau.Global Ecology and Biogeography,29, 50-64.
DOI URL |
[32] |
Tedersoo L,Bahram M,Põlme S,Kõljalg U,Yorou NS,Wijesundera L,Ruiz LV,Vasco-Palacios AM,Thu PQ,Suija A,Smith ME,Sharp C,Saluveer E,Saitta A,Rosas M,et al.(2014).Global diversity and geography of soil fungi.Science,346, 1256688. DOI:10.1126/science.1256688.
DOI PMID |
[33] |
van der Heijden MGA,Klironomos JN,Ursic M,Moutoglis P,Streitwolf-Engel R,Boller T,Wiemken A,Sanders IR(1998).Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity.Nature,396, 69-72.
DOI URL |
[34] | Wagg C,Bender SF,Widmer F,van der Heijden MGA(2014).Soil biodiversity and soil community composition determine ecosystem multifunctionality.Proceedings of the National Academy of Sciences of the United States of America,111, 5266-5270. |
[35] | Wang DL,Wang L(2019).A new perspective on the concept of grassland management.Chinese Science Bulletin,64, 1106-1113. |
[王德利,王岭(2019).草地管理概念的新释义.科学通报,64, 1106-1113.] | |
[36] | Wang SP,Zhou GS,Lü YC,Zou JJ(2002).Distribution of soil carbon, nitrogen and phosphorus along Northeast China Transect (NECT) and their relationships with climatic factors.Acta Phytoecologica Sinica,26, 513-517. |
[王淑平,周广胜,吕育财,邹建军(2002).中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系.植物生态学报,26, 513-517.] | |
[37] |
Wang X,Xu ZW,Lü X,Wang RZ,Cai JP,Yang S,Li MH,Jiang Y(2017).Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland.Plant and Soil,418, 241-253.
DOI URL |
[38] | Wang Y,Liu BY,Liu M,Sun J,Zeng T(2019).Synergistic and inhibitory effects of soil enzymes along desertified gradients of the Zoige alpine meadow.Pratacultural Science,36, 939-951. |
[王毅,刘碧颖,刘苗,孙建,曾涛(2019).若尔盖地区沙化草地土壤酶协同和抑制效应.草业科学,36, 939-951.] | |
[39] |
Wardle DA,Bardgett RD,Klironomos JN,Setälä H,van der Putten WH,Wall DH(2004).Ecological linkages between aboveground and belowground biota.Science,304, 1629-1633.
PMID |
[40] | Whitford WG(2002).Ecology of Desert Systems.Academic Press, San Diego,USA. |
[41] | Xiong DP,Zhao GS,Wu JS,Shi PL,Zhang XZ(2016).The relationship between species diversity and ecosystem multifunctionality in alpine grasslands on the Tibetan Changtang Plateau.Acta Ecologica Sinica,36, 3362-3371. |
[熊定鹏,赵广帅,武建双,石培礼,张宪洲(2016).羌塘高寒草地物种多样性与生态系统多功能关系格局.生态学报,36, 3362-3371.] | |
[42] |
Xu ZW,Li MH,Zimmermann NE,Li SP,Li H,Ren HY,Sun H,Han XG,Jiang Y,Jiang L(2018).Plant functional diversity modulates global environmental change effects on grassland productivity.Journal of Ecology,106, 1941-1951.
DOI URL |
[43] | Yan ZQ,Qi YC,Peng Q,Dong YS,He YL,Li ZL(2017).Advances in the effects of simulated precipitation and nitrogen deposition on grassland biomass.Acta Agrestia Sinica,25, 1165-1170. |
[闫钟清,齐玉春,彭琴,董云社,贺云龙,李兆林(2017).模拟降水和氮沉降增加对草地生物量影响的研究进展.草地学报,25, 1165-1170.] | |
[44] |
Yang XX,Ren F,Zhou HK,He JS(2014).Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology,38, 159-166.
DOI URL |
[杨晓霞,任飞,周华坤,贺金生(2014).青藏高原高寒草甸植物群落生物量对氮、磷添加的响应.植物生态学报,38, 159-166.] | |
[45] | Yang YH,Piao SL(2006).Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau.Journal of Plant Ecology (Chinese Version),30, 1-8. |
[杨元合,朴世龙(2006).青藏高原草地植被覆盖变化及其与气候因子的关系.植物生态学报,30, 1-8.] | |
[46] | Yang YH,Rao S,Hu HF,Chen AP,Ji CJ,Zhu B,Zuo WY,Li XR,Shen HH,Wang ZH,Tang YH,Fang JY(2004).Plant species richness of alpine grasslands in relation to environmental factors and biomass on the Tibetan Plateau.Chinese Biodiversity,12, 200-205. |
[杨元合,饶胜,胡会峰,陈安平,吉成均,朱彪,左闻韵,李轩然,沈海花,王志恒,唐艳鸿,方精云(2004).青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系.生物多样性,12, 200-205.] | |
[47] |
Zavaleta ES,Pasari JR,Hulvey KB,Tilman GD(2010).Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity.Proceedings of the National Academy of Sciences of the United States of America,107, 1443-1446.
DOI PMID |
[1] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[2] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[3] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[4] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[5] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[6] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[7] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[8] | DONG Quan-Min, ZHAO Xin-Quan, LIU Yu-Zhen, FENG Bin, YU Yang, YANG Xiao-Xia, ZHANG Chun-Ping, CAO Quan, LIU Wen-Ting. Effects of different herbivore assemblage on relationship between Kobresia humilis seed size and seed number in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(9): 1018-1026. |
[9] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[10] | JIN Yi-Li, WANG Hao-Yan, WEI Lin-Feng, HOU Ying, HU Jing, WU Kai, XIA Hao-Jun, XIA Jie, ZHOU Bo-Rui, LI Kai, NI Jian. A plot-based dataset of plant community on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(7): 846-854. |
[11] | LU Jing, MA Zong-Qi, GAO Peng-Fei, FAN Bao-Li, SUN Kun. Changes in the Hippophae tibetana population structure and dynamics, a pioneer species of succession, to altitudinal gradients in the Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(5): 569-579. |
[12] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[13] | WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands [J]. Chin J Plant Ecol, 2022, 46(4): 461-472. |
[14] | CHEN Li, TIAN Xin-Min, REN Zheng-Wei, DONG Liu-Wen, XIE Chen-Di, ZHOU Xiao-Long. Effects of nutrient addition on plant diversity and above-ground biomass in alpine grasslands of Tianshan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(3): 280-289. |
[15] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn