Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (7): 566-575.doi: 10.17521/cjpe.2019.0044

• Research Articles • Previous Articles     Next Articles

Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands

FU Yi-Wen1,2,TIAN Da-Shuan2,WANG Jin-Song2,NIU Shu-Li2,3,ZHAO Ken-Tian1,*()   

  1. 1Institute of Plateau Ecology, Tibet Agriculture and Animal Husbandry College, Nyingchi, Xizang 860000, China
    2Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-02-28 Accepted:2019-07-10 Online:2019-12-12 Published:2019-07-20
  • Contact: ZHAO Ken-Tian
  • Supported by:
    Supported by the National Natural Science Foundation of China(31600356);the National Basic R&D Program of China(2017YFA0604801)


Aims Nitrogen use efficiency (NUE) is a key functional trait in plants, which closely relates to ecosystem functions. However, it is still unclear about the regional patterns and affecting factors of plant NUE.
Methods This study quantified leaf and root NUE in 139 grassland plant species and explored their relationships with environmental factors and plant functional groups across 82 sampling sites in Nei Mongol and Qinghai-‌Xizang Plateau.
Important findings 1) We found that leaf NUE (53 g·g -1) in meadow steppe was significantly greater than those in alpine meadow (46 g·g -1), desert steppe (41 g·g -1) and typical steppe (39 g·g -1). Root NUE (108 g·g -1) in alpine meadow was higher than those in other ecosystems. 2) Leaf NUE was more sensitive to temperature than root NUE, but with increasing drought index they all showed a significant decrease. 3) Leaf and root NUE in forbs were significantly lower than sedges and grasses. In addition, leaf and root NUE of legume were 48% and 60% lower than those of non-legume, respectively. 4) Plant NUE did not show any significant relationship with soil nitrogen content. Overall, there was significant difference between leaf and root NUE in their spatial patterns in the Nei Mongol and Qinghai-Xizang Plateau grasslands. The main impacting factors were plant functional group and drought index. The findings are helpful for better understanding the mechanisms underlying the variation of grassland productivity in China, and also provide more scientific basis for grassland management.

Key words: nitrogen use efficiency, plant functional group, functional traits, drought index, grassland ecosystem

Fig. 1

Differences of leaf and root nitrogen use efficiency (NUE) among different grassland ecosystems along a precipitation gradient. Different lowercase letters indicate a significant difference (p < 0.05), and n represents the sample size of observations."

Fig. 2

Relationships of leaf or root nitrogen use efficiency (NUE) with mean annual air temperature and mean annual precipitation. n represents the sample size of observations."

Fig. 3

Relationships between drought index and leaf or root nitrogen use efficiency (NUE) in grassland plants. Different lowercase letters indicate a significant difference (p < 0.05), and n represents the sample size of observations."

Fig. 4

Leaf and root nitrogen use efficiency (NUE) among different grassland plant functional groups. Different lowercase letters indicate a significant difference (p < 0.05), and n represents the sample size of observations."

Fig. 5

Relationships of grassland plant leaf or root nitrogen use efficiency (NUE) with soil total nitrogen or available nitrogen content. n represents the sample size of observations."

Fig. 6

Direct and indirect impacts of biotic (plant functional group (PFG)) and abiotic (mean annual air temperature (MAT), mean annual precipition (MAP) and drought index (r)) factors on leaf or root nitrogen use efficiency (NUE) in grassland plants. Line thickness indicates relative effect size. Solid lines denote a significant influence (p < 0.05), whereas dashed lines indicate no significant impact (p > 0.05). Green color represents a negative effect, while red color denotes a positive impact. R2 indicates how much variation can be explained."

[1] Aerts R, Chapin III FS ( 1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances Ecological Research, 30, 1-67.
[2] Aerts R, de Caluwe H ( 1994). Nitrogen use efficiency of Carex species in relation to nitrogen supply. Ecology, 75, 2362-2372.
doi: 10.2307/1940890
[3] An Y, Wan SQ, Zhou XH, Subedar AA, Wallace LL, Luo YQ ( 2005). Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Global Change Biology, 11, 1733-1744.
doi: 10.1111/gcb.2005.11.issue-10
[4] Bai CL ( 2013). Study on Nutrient Use and Stoichiometry of Dominant Plants in Desert Steppe. PhD dissertation, Inner Mongolia Agricultural University, Huhhot.
[ 白春利 ( 2013). 荒漠草原优势植物养分利用及化学计量特征研究. 博士学位论文, 内蒙古农业大学, 呼和浩特.]
[5] Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG ( 2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
doi: 10.1890/07-0992.1 pmid: 18724724
[6] Berendse F, Aerts R ( 1987). Nitrogen-use-efficiency: A biologically meaningful definition? Functional Ecology, 1, 293-296.
[7] Birk EM, Vitousek PM ( 1986). Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology, 67, 69-79.
doi: 10.2307/1938504
[8] Briske DD, Zhao ML, Han GD, Xiu CB, Kemp DR, Willms W, Havstad K, Kang L, Wang ZW, Wu JG, Han XG, Bai YF ( 2015). Strategies to alleviate poverty and grassland degradation in Inner Mongolia: Intensification vs production efficiency of livestock systems. Journal of Environmental Management, 152, 177-182.
doi: 10.1016/j.jenvman.2014.07.036 pmid: 25687702
[9] Burton J, Chen CG, Xu ZH, Ghadiri H ( 2007). Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia. Soil Biology & Biochemistry, 39, 426-433.
doi: 10.1111/gcb.14962 pmid: 31838767
[10] Chapin III FS, Moilanen L ( 1991). Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 72, 709-715.
doi: 10.2307/2937210
[11] Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G ( 2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11, 1189-1197.
doi: 10.1111/j.1461-0248.2008.01228.x pmid: 18684118
[12] Cramer MD, Hawkins HJ, Verboom GA ( 2009). The importance of nutritional regulation of plant water flux. Oecologia, 161, 15-24.
doi: 10.1007/s00442-009-1364-3 pmid: 19449035
[13] Du ZC, Yang ZG, Cui XY ( 2001). A comparative study on leaf area index of five plant communities in typical steppe region of Inner Mongolia. Grassland of China, 23, 13-18.
[ 杜占池, 杨宗贵, 崔骁勇 ( 2001). 内蒙古典型草原地区5类植物群落叶面积指数的比较研究. 中国草地, 23, 13-18.]
[14] Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH ( 1996). Organism size, life history, and N:P stoichiometry: Toward a unified view of cellular and ecosystem processes. BioScience, 46, 674-684.
doi: 10.2307/1312897
[15] Field C, Merino J, Mooney HA ( 1983). Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia, 60, 384-389.
doi: 10.1007/BF00376856 pmid: 28310700
[16] Geng Y, Ma WH, Wang L, Baumann F, Kühn P, Scholten T, He JS ( 2017). Linking above- and belowground traits to soil and climate variables: An integrated database on China’s grassland species. Ecology, 98, 1471. DOI: 10.1002/‌ecy.1780.
doi: 10.1002/ecy.1780
[17] Gong XY, Chen Q, Lin S, Brueck H, Dittert K, Taube F, Schnyder H ( 2011). Tradeoffs between nitrogen- and water-‌use efficiency in dominant species of the semiarid steppe of Inner Mongolia. Plant and Soil, 340, 227-238.
doi: 10.1007/s11104-010-0525-9
[18] Han WX, Chen YH, Zhao FJ, Tang LY, Jiang RF, Zhang FS ( 2012). Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Global Ecology and Biogeography, 21, 376-382.
doi: 10.1111/j.1466-8238.2011.00677.x
[19] He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY ( 2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
doi: 10.13287/j.1001-9332.201907.025 pmid: 31418219
[20] Hiremath AJ, Ewel JJ ( 2001). Ecosystem nutrient use efficiency, productivity, and nutrient accrual in model tropical communities. Ecosystems, 4, 669-682.
doi: 10.1007/s10021-001-0036-x
[21] Hu ZQ, Yu GR, Fan JW, Zhong HP, Wang SQ, Li SG ( 2010). Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology and Biogeography, 19, 842-851.
doi: 10.1111/geb.2010.19.issue-6
[22] Le Houerou HN ( 1984). Rain use efficiency: A unifying concept in arid-land ecology. Journal of Arid Environments, 7, 213-247.
[23] Li XF, Zheng XB, Han SJ, Zheng JQ, Li TH ( 2010). Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litterfall of six tree species in a mixed birch and poplar forest, northeastern China. Canadian Journal of Forest Research, 40, 2256-2261.
doi: 10.1139/X10-167
[24] Liu HY, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders NJ, Classen AT, Reich PB, He JS ( 2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
doi: 10.1073/pnas.1700299114 pmid: 29666319
[25] Lü XT ( 2010). Nutrient Use Responses of Dominant Plants to Biodiversity, Nitrogen and Water Amendment in A Temperate Steppe. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing.
[ 吕晓涛 ( 2010). 生物多样性、水分和氮素添加对典型草原优势植物养分利用的影响. 博士学位论文, 中囯科学院植物研究所, 北京.]
[26] McCulley RL, Burke IC, Lauenroth WK ( 2009). Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plains of North America. Oecologia, 159, 571-581.
doi: 10.1007/s00442-008-1229-1 pmid: 19034525
[27] Niu SL, Sherry RA, Zhou XH, Wan SQ, Luo YQ ( 2010). Nitrogen regulation of the climate-carbon feedback: Evidence from a long-term global change experiment. Ecology, 91, 3261-3273.
doi: 10.1890/09-1634.1 pmid: 21141187
[28] Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE ( 2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368-19373.
doi: 10.1073/pnas.1006463107 pmid: 20974944
[29] Patil RH, Laegdsmand M, Olesen JE, Porter JR ( 2010). Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agriculture, Ecosystems & Environment, 139, 195-205.
doi: 10.1007/s11356-019-06538-4 pmid: 31838703
[30] Peng YY, Peng HY, Han WX ( 2017). The comparison of nitrogen- and phosphorus-use efficiency between legume and non-nitrogen-fixing plant. Journal of China Agricultural University, 22, 48-55.
[ 彭昀月, 彭慧元, 韩文轩 ( 2017). 豆科和非固氮植物氮磷利用效率的比较研究. 中国农业大学学报, 22, 48-55.]
[31] Poorter H, Evans JR ( 1998). Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 116, 26-37.
doi: 10.1007/s004420050560 pmid: 28308535
[32] Reed SC ( 2017). Disentangling the complexities of how legumes and their symbionts regulate plant nitrogen access and storage. New Phytologist, 213, 478-480.
doi: 10.1111/nph.14390 pmid: 28000933
[33] Reich PB ( 2009). Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science, 326, 1399-1402.
doi: 10.1126/science.1178820 pmid: 19965757
[34] Shi YJ, Gao S, Zhou DH, Liu MX, Wang JF, Knops JMH, Mu CS ( 2017). Fall nitrogen application increases seed yield, forage yield and nitrogen use efficiency more than spring nitrogen application in Leymus chinensis, a perennial grass. Field Crops Research, 214, 66-72.
doi: 10.1016/j.fcr.2017.08.022
[35] Silver WL ( 1994). Is nutrient availability related to plant nutrient use in humid tropical forests? Oecologia, 98, 336-343.
doi: 10.1007/BF00324222 pmid: 28313910
[36] Steenvoorden JHAM ( 1988). How to reduce nitrogen losses in intensive-grassland management. Ecological Bulletins, 39, 126-130.
doi: 10.1016/j.jenvman.2019.109817 pmid: 31783211
[37] Su B, Han XG, Huang JH, Qu CM ( 2000). The nutrient use efficiency ( NUE) of plants and it’s implications on the strategy of plant adaptation to nutrient-stressed environments. Acta Ecologica Sinica, 20, 335-343.
[ 苏波, 韩兴国, 黄建辉, 渠春梅 ( 2000). 植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略. 生态学报, 20, 335-343.]
[38] Thornthwaite CW ( 1948). An approach toward a rational classification of climate. Geographical Review, 38, 55-94.
doi: 10.2307/210739
[39] Tian YH, Liu YQ, Jin JJ ( 2017). Effect of irrigation schemes on forage yield, water use efficiency, and nutrients in artificial grassland under arid conditions. Sustainability, 9, 2035.
doi: 10.3390/su9112035
[40] Vázquez de Aldana BR, Berendse F ( 1997). Nitrogen-use efficiency in six perennial grasses from contrasting habitats. Functional Ecology, 11, 619-626.
doi: 10.1186/1471-2164-11-619 pmid: 21054883
[41] Vermeer JG, Berendse F ( 1983). The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities. Vegetatio, 53, 121-126.
doi: 10.1007/BF00043032
[42] Vitousek PM, Howarth RW ( 1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115.
[43] Wang JS, Sun J, Yu Z, Li Y, Tian DS, Wang BX, Li ZL, Niu SL ( 2019). Vegetation type controls root turnover in global grasslands. Global Ecology and Biogeography, 28, 442-455.
doi: 10.1111/geb.v28.4
[44] Wang XX, Dong SK, Gao QZ, Zhang Y, Hu GZ, Luo WR ( 2018). The rate of soil nitrogen transformation decreased by the degradation of alpine grasslands in the Qinghai Tibet Plateau. Acta Prataculturae Sinica, 27(6), 1-9.
[ 王学霞, 董世魁, 高清竹, 张勇, 胡国铮, 罗文蓉 ( 2018). 青藏高原退化高寒草地土壤氮矿化特征以及影响因素研究. 草业学报, 27(6), 1-9]
[45] Wang Y, Wesche K ( 2016). Vegetation and soil responses to livestock grazing in Central Asian grasslands: A review of Chinese literature. Biodiversity and Conservation, 25, 2401-2420.
doi: 10.1007/s10531-015-1034-1
[46] Xu GH, Fan XR, Miller AJ ( 2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450
[47] Xu SJ, Fan XY, Wang LL, Zhang XF, An LZ ( 2015). The patterns of nitrogen and phosphorus stoichiometry across communities along altitudinal gradients in Qilian Mountains, China. Biochemical Systematics and Ecology, 62, 58-65.
doi: 10.1016/j.bse.2015.07.037
[48] Yang XX, Ren F, Zhou HK, He JS ( 2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159-166.
doi: 10.3724/SP.J.1258.2014.00014
[ 杨晓霞, 任飞, 周华坤, 贺金生 ( 2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159-166.]
doi: 10.3724/SP.J.1258.2014.00014
[49] Yu HL, Fan JW, Harris W, Li YZ ( 2017). Relationships between below-ground biomass and foliar N:P stoichiometry along climatic and altitudinal gradients of the Chinese grassland transect. Plant Ecology, 218, 661-671.
doi: 10.1007/s11258-017-0719-9
[50] Yu HY, Luedeling E, Xu JC ( 2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156.
doi: 10.1073/pnas.1012490107 pmid: 21115833
[51] Yuan ZY, Li LH, Han XG, Chen SP, Wang ZW, Chen QS, Bai WM ( 2006). Nitrogen response efficiency increased monotonically with decreasing soil resource availability: A case study from a semiarid grassland in northern China. Oecologia, 148, 564-572.
doi: 10.1007/s00442-006-0409-0 pmid: 16708228
[52] Zhang Y, Chen HYH ( 2015). Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252.
doi: 10.1111/1365-2745.12425
[53] Zhang YL, Qi W, Zhou CP, Ding MJ, Liu LS, Gao JG, Bai WQ, Wang ZF, Zheng D ( 2014). Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. Journal of Geographical Sciences, 24, 269-287.
doi: 10.1007/s11442-014-1087-1
[54] Zhu JT, Li XY, Zhang XM, Lin LS, Yang SG ( 2010). Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert. Chinese Journal of Plant Ecology, 34, 1025-1032.
[ 朱军涛, 李向义, 张希明, 林丽莎, 杨尚功 ( 2010). 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配. 植物生态学报, 34, 1025-1032.]
[55] Zuo XA, Zhang J, Lv P, Zhou X, Li YL, Luo YY, Luo YQ, Lian J, Yue XY ( 2016). Plant functional diversity mediates the effects of vegetation and soil properties on community-‌level plant nitrogen use in the restoration of semiarid sandy grassland. Ecological Indicators, 64, 272-280.
doi: 10.1016/j.ecolind.2016.01.012
[1] Yang-Jian ZHANG Jun-Tao ZHU Ruo-Nan SHEN Li WANG. Research progress on the effects of grazing on grassland ecosystem [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[2] Shitong Wang,Yaozhan Xu,Teng Yang,Xinzeng Wei,Mingxi Jiang. Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 277-288.
[3] Zhang Lu,He Xinhua. Nitrogen Utilization Mechanism in C3 and C4 Plants [J]. Chin Bull Bot, 2020, 55(2): 228-239.
[4] Han Mei-ling, Tan Ru-jiao, Chao Dai-yin. A New Progress of Green Revolution: Epigenetic Modification Dual-regulated by Gibberellin and Nitrogen Supply Contributes to Breeding of High Yield and Nitrogen Use Efficiency Rice [J]. Chin Bull Bot, 2020, 55(1): 5-8.
[5] MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565.
[6] ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511.
[7] Gu Hanjiao, Zhang Cancan, Wang Jinsong, Shi Xuewen, Xia Ruixue, Liu Bin, Chen Fusheng, Bu Wensheng. Variation in basic morphological and functional traits of Chinese bamboo [J]. Biodiv Sci, 2019, 27(6): 585-594.
[8] Xie Lihong,Huang Qingyang,Cao Hongjie,Yang Fan,Wang Jifeng,Ni Hongwei. Leaf functional traits of Acer mono in Wudalianchi Volcano, China [J]. Biodiv Sci, 2019, 27(3): 286-296.
[9] HE Yun-Yu, GUO Shui-Liang, WANG Zhe. Research progress of trade-off relationships of plant functional traits [J]. Chin J Plant Ecol, 2019, 43(12): 1021-1035.
[10] Ruyun Zhang,Yanpeng Li,Yunlong Ni,Xujun Gui,Juyu Lian,Wanhui Ye. Intraspecific variation of leaf functional traits along the vertical layer in a subtropical evergreen broad-leaved forest of Dinghushan [J]. Biodiv Sci, 2019, 27(12): 1279-1290.
[11] LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898.
[12] LIANG Shi-Chu, LIU Run-Hong, RONG Chun-Yan, CHANG Bin, JIANG Yong. Variation and correlation of plant functional traits in the riparian zone of the Lijiang River, Guilin, Southwest China [J]. Chin J Plant Ecol, 2019, 43(1): 16-26.
[13] GAO Si-Han, GE Yu-Xi, ZHOU Li-Yi, ZHU Bao-Lin, GE Xing-Yu, LI Kai, NI Jian. What is the optimal number of leaves when measuring leaf area of tree species in a forest community? [J]. Chin J Plan Ecolo, 2018, 42(9): 917-925.
[14] LIU Yuan-Yuan, MA Jin-Ze, BU Zhao-Jun, WANG Sheng-Zhong, ZHANG Xue-Bing, ZHANG Ting-Yu, LIU Sha-Sha, FU Biao, KANG Yuan. Effect of geographical sources and biochemical traits on plant litter decomposition in a peatland [J]. Chin J Plan Ecolo, 2018, 42(7): 713-722.
[15] ZHU Qi-Lin, XIANG Rui, TANG Li, LONG Guang-Qiang. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition [J]. Chin J Plan Ecolo, 2018, 42(6): 672-680.
Full text



[1] Bingyu Zhang;Xiaohua Su*;Xiangming Zhou. Gene Regulation in Flower Development in the Forest[J]. Chin Bull Bot, 2008, 25(04): 476 -482 .
[2] Cai Ji-jiong and Wang Zi-qing. A Preliminary Report on Pollen Morphology and Constituent of Pinus massoniana[J]. Chin Bull Bot, 1988, 5(03): 167 -169 .
[3] Zhang Fu-ren and Mo Ri-gen. A Simple Technique for Observing Fracture Surface of Pollen Grains by SEM[J]. Chin Bull Bot, 1992, 9(03): 63 -64 .
[4] MA Yue-Ping CHEN Fan DAI Si-Lan. Studies of LEAFY Homologue Genes in Higher Plants[J]. Chin Bull Bot, 2005, 22(05): 605 -613 .
[5] Lin Zhong-Ping. Isolating of DNA from Plant Materials[J]. Chin Bull Bot, 1984, 2(04): 44 -46 .
[6] Liu Rong-zhen and Wang Hou. The Effect of Ammonia Humic Acid Fertilizers on the Activity of End-Group Oxidase of Rice Seeding in Sludge[J]. Chin Bull Bot, 1985, 3(06): 21 -23 .
[7] LI Xin-Rong;CHEN Zhong-Xin;CHEN Xu-Dong and DONG Xue-Jun. Study on the Interconnections Among Several Communities of Desert Shrubs in West Ordos Plateau[J]. Chin Bull Bot, 1998, 15(01): 56 -62 .
[8] Li Ru-juan;Shang Zong-yan and Zhang Ji-zu. The Chromosome Observation on 3 Species in the Genus Gynostemma[J]. Chin Bull Bot, 1989, 6(04): 245 -247 .
[9] Tai Wang;Qian Qian;Ming Yuan;Xiaojing Wang;Weicai Yang;Lijia Qu;Hongzhi Kong;Yinong Xu;Gaoming Jiang;Kang Chong. Research Advances on Plant Science in China in 2009[J]. Chin Bull Bot, 2010, 45(03): 265 -306 .
[10] Zhou Jilun. An Approach on the Multifactors of Ecological Systematic Analysis of Vegetation-A Review for the Works of 《Classification of Plant Communities》 by Whittaker R.H.[J]. Chin J Plan Ecolo, 1981, 5(2): 159 .