Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (7): 566-575.DOI: 10.17521/cjpe.2019.0044
Special Issue: 全球变化与生态系统; 青藏高原植物生态学:生态系统生态学; 根系生态学
• Research Articles • Previous Articles Next Articles
FU Yi-Wen1,2,TIAN Da-Shuan2,WANG Jin-Song2,NIU Shu-Li2,3,ZHAO Ken-Tian1,*()
Received:
2019-02-28
Accepted:
2019-07-10
Online:
2019-07-20
Published:
2019-12-12
Contact:
ZHAO Ken-Tian
Supported by:
FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands[J]. Chin J Plant Ecol, 2019, 43(7): 566-575.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0044
Fig. 1 Differences of leaf and root nitrogen use efficiency (NUE) among different grassland ecosystems along a precipitation gradient. Different lowercase letters indicate a significant difference (p < 0.05), and n represents the sample size of observations.
Fig. 2 Relationships of leaf or root nitrogen use efficiency (NUE) with mean annual air temperature and mean annual precipitation. n represents the sample size of observations.
Fig. 3 Relationships between drought index and leaf or root nitrogen use efficiency (NUE) in grassland plants. Different lowercase letters indicate a significant difference (p < 0.05), and n represents the sample size of observations.
Fig. 4 Leaf and root nitrogen use efficiency (NUE) among different grassland plant functional groups. Different lowercase letters indicate a significant difference (p < 0.05), and n represents the sample size of observations.
Fig. 5 Relationships of grassland plant leaf or root nitrogen use efficiency (NUE) with soil total nitrogen or available nitrogen content. n represents the sample size of observations.
Fig. 6 Direct and indirect impacts of biotic (plant functional group (PFG)) and abiotic (mean annual air temperature (MAT), mean annual precipition (MAP) and drought index (r)) factors on leaf or root nitrogen use efficiency (NUE) in grassland plants. Line thickness indicates relative effect size. Solid lines denote a significant influence (p < 0.05), whereas dashed lines indicate no significant impact (p > 0.05). Green color represents a negative effect, while red color denotes a positive impact. R2 indicates how much variation can be explained.
[1] | Aerts R, Chapin III FS ( 1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances Ecological Research, 30, 1-67. |
[2] |
Aerts R, de Caluwe H ( 1994). Nitrogen use efficiency of Carex species in relation to nitrogen supply. Ecology, 75, 2362-2372.
DOI URL |
[3] |
An Y, Wan SQ, Zhou XH, Subedar AA, Wallace LL, Luo YQ ( 2005). Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Global Change Biology, 11, 1733-1744.
DOI URL |
[4] | Bai CL ( 2013). Study on Nutrient Use and Stoichiometry of Dominant Plants in Desert Steppe. PhD dissertation, Inner Mongolia Agricultural University, Huhhot. |
[ 白春利 ( 2013). 荒漠草原优势植物养分利用及化学计量特征研究. 博士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[5] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG ( 2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
DOI URL PMID |
[6] | Berendse F, Aerts R ( 1987). Nitrogen-use-efficiency: A biologically meaningful definition? Functional Ecology, 1, 293-296. |
[7] |
Birk EM, Vitousek PM ( 1986). Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology, 67, 69-79.
DOI URL |
[8] |
Briske DD, Zhao ML, Han GD, Xiu CB, Kemp DR, Willms W, Havstad K, Kang L, Wang ZW, Wu JG, Han XG, Bai YF ( 2015). Strategies to alleviate poverty and grassland degradation in Inner Mongolia: Intensification vs production efficiency of livestock systems. Journal of Environmental Management, 152, 177-182.
DOI URL PMID |
[9] |
Burton J, Chen CG, Xu ZH, Ghadiri H ( 2007). Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia. Soil Biology & Biochemistry, 39, 426-433.
DOI URL PMID |
[10] |
Chapin III FS, Moilanen L ( 1991). Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 72, 709-715.
DOI URL |
[11] |
Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G ( 2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11, 1189-1197.
DOI URL PMID |
[12] |
Cramer MD, Hawkins HJ, Verboom GA ( 2009). The importance of nutritional regulation of plant water flux. Oecologia, 161, 15-24.
DOI URL PMID |
[13] | Du ZC, Yang ZG, Cui XY ( 2001). A comparative study on leaf area index of five plant communities in typical steppe region of Inner Mongolia. Grassland of China, 23, 13-18. |
[ 杜占池, 杨宗贵, 崔骁勇 ( 2001). 内蒙古典型草原地区5类植物群落叶面积指数的比较研究. 中国草地, 23, 13-18.] | |
[14] |
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH ( 1996). Organism size, life history, and N:P stoichiometry: Toward a unified view of cellular and ecosystem processes. BioScience, 46, 674-684.
DOI URL |
[15] |
Field C, Merino J, Mooney HA ( 1983). Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia, 60, 384-389.
DOI URL PMID |
[16] |
Geng Y, Ma WH, Wang L, Baumann F, Kühn P, Scholten T, He JS ( 2017). Linking above- and belowground traits to soil and climate variables: An integrated database on China’s grassland species. Ecology, 98, 1471. DOI: 10.1002/ecy.1780.
DOI URL |
[17] |
Gong XY, Chen Q, Lin S, Brueck H, Dittert K, Taube F, Schnyder H ( 2011). Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia. Plant and Soil, 340, 227-238.
DOI URL |
[18] |
Han WX, Chen YH, Zhao FJ, Tang LY, Jiang RF, Zhang FS ( 2012). Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Global Ecology and Biogeography, 21, 376-382.
DOI URL |
[19] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY ( 2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL PMID |
[20] |
Hiremath AJ, Ewel JJ ( 2001). Ecosystem nutrient use efficiency, productivity, and nutrient accrual in model tropical communities. Ecosystems, 4, 669-682.
DOI URL |
[21] |
Hu ZQ, Yu GR, Fan JW, Zhong HP, Wang SQ, Li SG ( 2010). Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology and Biogeography, 19, 842-851.
DOI URL |
[22] | Le Houerou HN ( 1984). Rain use efficiency: A unifying concept in arid-land ecology. Journal of Arid Environments, 7, 213-247. |
[23] |
Li XF, Zheng XB, Han SJ, Zheng JQ, Li TH ( 2010). Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litterfall of six tree species in a mixed birch and poplar forest, northeastern China. Canadian Journal of Forest Research, 40, 2256-2261.
DOI URL |
[24] |
Liu HY, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders NJ, Classen AT, Reich PB, He JS ( 2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI URL PMID |
[25] | Lü XT ( 2010). Nutrient Use Responses of Dominant Plants to Biodiversity, Nitrogen and Water Amendment in A Temperate Steppe. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. |
[ 吕晓涛 ( 2010). 生物多样性、水分和氮素添加对典型草原优势植物养分利用的影响. 博士学位论文, 中囯科学院植物研究所, 北京.] | |
[26] |
McCulley RL, Burke IC, Lauenroth WK ( 2009). Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plains of North America. Oecologia, 159, 571-581.
DOI URL PMID |
[27] |
Niu SL, Sherry RA, Zhou XH, Wan SQ, Luo YQ ( 2010). Nitrogen regulation of the climate-carbon feedback: Evidence from a long-term global change experiment. Ecology, 91, 3261-3273.
DOI URL PMID |
[28] |
Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE ( 2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368-19373.
DOI URL PMID |
[29] |
Patil RH, Laegdsmand M, Olesen JE, Porter JR ( 2010). Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agriculture, Ecosystems & Environment, 139, 195-205.
DOI URL PMID |
[30] | Peng YY, Peng HY, Han WX ( 2017). The comparison of nitrogen- and phosphorus-use efficiency between legume and non-nitrogen-fixing plant. Journal of China Agricultural University, 22, 48-55. |
[ 彭昀月, 彭慧元, 韩文轩 ( 2017). 豆科和非固氮植物氮磷利用效率的比较研究. 中国农业大学学报, 22, 48-55.] | |
[31] |
Poorter H, Evans JR ( 1998). Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 116, 26-37.
DOI URL PMID |
[32] |
Reed SC ( 2017). Disentangling the complexities of how legumes and their symbionts regulate plant nitrogen access and storage. New Phytologist, 213, 478-480.
DOI URL PMID |
[33] |
Reich PB ( 2009). Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science, 326, 1399-1402.
DOI URL PMID |
[34] |
Shi YJ, Gao S, Zhou DH, Liu MX, Wang JF, Knops JMH, Mu CS ( 2017). Fall nitrogen application increases seed yield, forage yield and nitrogen use efficiency more than spring nitrogen application in Leymus chinensis, a perennial grass. Field Crops Research, 214, 66-72.
DOI URL |
[35] |
Silver WL ( 1994). Is nutrient availability related to plant nutrient use in humid tropical forests? Oecologia, 98, 336-343.
DOI URL PMID |
[36] |
Steenvoorden JHAM ( 1988). How to reduce nitrogen losses in intensive-grassland management. Ecological Bulletins, 39, 126-130.
DOI URL PMID |
[37] | Su B, Han XG, Huang JH, Qu CM ( 2000). The nutrient use efficiency ( NUE) of plants and it’s implications on the strategy of plant adaptation to nutrient-stressed environments. Acta Ecologica Sinica, 20, 335-343. |
[ 苏波, 韩兴国, 黄建辉, 渠春梅 ( 2000). 植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略. 生态学报, 20, 335-343.] | |
[38] |
Thornthwaite CW ( 1948). An approach toward a rational classification of climate. Geographical Review, 38, 55-94.
DOI URL |
[39] |
Tian YH, Liu YQ, Jin JJ ( 2017). Effect of irrigation schemes on forage yield, water use efficiency, and nutrients in artificial grassland under arid conditions. Sustainability, 9, 2035.
DOI URL |
[40] |
Vázquez de Aldana BR, Berendse F ( 1997). Nitrogen-use efficiency in six perennial grasses from contrasting habitats. Functional Ecology, 11, 619-626.
DOI URL PMID |
[41] |
Vermeer JG, Berendse F ( 1983). The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities. Vegetatio, 53, 121-126.
DOI URL |
[42] | Vitousek PM, Howarth RW ( 1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[43] |
Wang JS, Sun J, Yu Z, Li Y, Tian DS, Wang BX, Li ZL, Niu SL ( 2019). Vegetation type controls root turnover in global grasslands. Global Ecology and Biogeography, 28, 442-455.
DOI URL |
[44] | Wang XX, Dong SK, Gao QZ, Zhang Y, Hu GZ, Luo WR ( 2018). The rate of soil nitrogen transformation decreased by the degradation of alpine grasslands in the Qinghai Tibet Plateau. Acta Prataculturae Sinica, 27(6), 1-9. |
[ 王学霞, 董世魁, 高清竹, 张勇, 胡国铮, 罗文蓉 ( 2018). 青藏高原退化高寒草地土壤氮矿化特征以及影响因素研究. 草业学报, 27(6), 1-9] | |
[45] |
Wang Y, Wesche K ( 2016). Vegetation and soil responses to livestock grazing in Central Asian grasslands: A review of Chinese literature. Biodiversity and Conservation, 25, 2401-2420.
DOI URL |
[46] |
Xu GH, Fan XR, Miller AJ ( 2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153-182.
DOI URL PMID |
[47] |
Xu SJ, Fan XY, Wang LL, Zhang XF, An LZ ( 2015). The patterns of nitrogen and phosphorus stoichiometry across communities along altitudinal gradients in Qilian Mountains, China. Biochemical Systematics and Ecology, 62, 58-65.
DOI URL |
[48] |
Yang XX, Ren F, Zhou HK, He JS ( 2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159-166.
DOI URL |
[ 杨晓霞, 任飞, 周华坤, 贺金生 ( 2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159-166.]
DOI URL |
|
[49] |
Yu HL, Fan JW, Harris W, Li YZ ( 2017). Relationships between below-ground biomass and foliar N:P stoichiometry along climatic and altitudinal gradients of the Chinese grassland transect. Plant Ecology, 218, 661-671.
DOI URL |
[50] |
Yu HY, Luedeling E, Xu JC ( 2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156.
DOI URL PMID |
[51] |
Yuan ZY, Li LH, Han XG, Chen SP, Wang ZW, Chen QS, Bai WM ( 2006). Nitrogen response efficiency increased monotonically with decreasing soil resource availability: A case study from a semiarid grassland in northern China. Oecologia, 148, 564-572.
DOI URL PMID |
[52] |
Zhang Y, Chen HYH ( 2015). Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252.
DOI URL |
[53] |
Zhang YL, Qi W, Zhou CP, Ding MJ, Liu LS, Gao JG, Bai WQ, Wang ZF, Zheng D ( 2014). Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. Journal of Geographical Sciences, 24, 269-287.
DOI URL |
[54] | Zhu JT, Li XY, Zhang XM, Lin LS, Yang SG ( 2010). Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert. Chinese Journal of Plant Ecology, 34, 1025-1032. |
[ 朱军涛, 李向义, 张希明, 林丽莎, 杨尚功 ( 2010). 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配. 植物生态学报, 34, 1025-1032.] | |
[55] |
Zuo XA, Zhang J, Lv P, Zhou X, Li YL, Luo YY, Luo YQ, Lian J, Yue XY ( 2016). Plant functional diversity mediates the effects of vegetation and soil properties on community-level plant nitrogen use in the restoration of semiarid sandy grassland. Ecological Indicators, 64, 272-280.
DOI URL |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 3892
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1474
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn