Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (1): 51-61.DOI: 10.17521/cjpe.2020.0239
• Research Articles • Previous Articles Next Articles
Min FAN, Yi-Tong LU, Zhao-Hua WANG, Ying-Qi HUANG, Yu PENG(), Jia-Xin SHANG, Yang ZHANG
Received:
2020-07-17
Accepted:
2021-05-08
Online:
2022-01-20
Published:
2022-04-13
Contact:
Yu PENG
Min FAN, Yi-Tong LU, Zhao-Hua WANG, Ying-Qi HUANG, Yu PENG, Jia-Xin SHANG, Yang ZHANG. Effects of patch pattern on plant diversity and functional traits in center Hunshandak Sandland[J]. Chin J Plant Ecol, 2022, 46(1): 51-61.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0239
Fig. 1 Diagrams point out four types of patches with dissimilar probable edge effects: inward, outward, inward nucleating and outward nucleating in center Hunshandak Sandland (based on the criterion of Porensky & Young (2013)).
边缘类型 Edge type | 优势物种 Dominant plant | 重要值 IV |
---|---|---|
向内 Inward | 百里香 Thymus mongolicus | 0.96 ± 0.09 |
鹤虱 Lappula myosotis | 0.66 ± 0.13 | |
柠条锦鸡儿 Caragana korshinskii | 0.61 ± 0.15 | |
向外 Outward | 披碱草 Elymus dahuricus | 0.67 ± 0.13 |
寸草 Carex duriuscula | 0.59 ± 0.09 | |
沙芦草 Agropyron mongolicum | 0.53 ± 0.11 | |
向内成核 Inward nucleating | 猪毛菜 Salsola collina | 0.79 ± 0.25 |
黑沙蒿 Artemisia ordosica | 0.72 ± 0.18 | |
沙芦草 Agropyron mongolicum | 0.55 ± 0.09 | |
向外成核 Outward nucleating | 硬阿魏 Ferula bungeana | 0.83 ± 0.20 |
黑沙蒿 Artemisia ordosica | 0.72 ± 0.21 | |
榆树(幼苗) Ulmus pumila (seedling) | 0.61 ± 0.15 |
Table 1 Dominant species in the patches of four edge types (mean ± SD)
边缘类型 Edge type | 优势物种 Dominant plant | 重要值 IV |
---|---|---|
向内 Inward | 百里香 Thymus mongolicus | 0.96 ± 0.09 |
鹤虱 Lappula myosotis | 0.66 ± 0.13 | |
柠条锦鸡儿 Caragana korshinskii | 0.61 ± 0.15 | |
向外 Outward | 披碱草 Elymus dahuricus | 0.67 ± 0.13 |
寸草 Carex duriuscula | 0.59 ± 0.09 | |
沙芦草 Agropyron mongolicum | 0.53 ± 0.11 | |
向内成核 Inward nucleating | 猪毛菜 Salsola collina | 0.79 ± 0.25 |
黑沙蒿 Artemisia ordosica | 0.72 ± 0.18 | |
沙芦草 Agropyron mongolicum | 0.55 ± 0.09 | |
向外成核 Outward nucleating | 硬阿魏 Ferula bungeana | 0.83 ± 0.20 |
黑沙蒿 Artemisia ordosica | 0.72 ± 0.21 | |
榆树(幼苗) Ulmus pumila (seedling) | 0.61 ± 0.15 |
边缘类型 Edge type | 向内 Inward | 向外 Outward | 向内成核 Inward nucleating | 向外成核 Outward nucleating |
---|---|---|---|---|
Shannon-Wiener指数 Shannon-Wiener index (H′) | 1.69 ± 0.36Ba | 1.89 ± 0.49ABa | 2.07 ± 0.53Aa | 2.10 ± 0.45Aa |
Simpson指数 Simpson index (D) | 0.71 ± 0.10Aa | 0.64 ± 0.07Aa | 0.66 ± 0.08Aa | 0.68 ± 0.07Aa |
Pielou指数 Pielou index (J′) | 0.68 ± 0.10Ba | 0.70 ± 0.11Ba | 0.77 ± 0.07Aa | 0.78 ± 0.06Aa |
β多样性指数 β diversity index (βw) | 2.39 ± 1.01Ba | 3.81 ± 1.20Aa | 3.81 ± 1.39Aa | 4.15 ± 2.23Aa |
物种丰富度 Species richness | 12.25 ± 5.40Ba | 18.30 ± 7.53Aa | 20.00 ± 8.03Aa | 18.08 ± 6.20Aa |
盖度 Coverage (%) | 18.68 ± 9.76Aa | 23.09 ± 10.76Aa | 21.42 ± 10.34Aa | 24.20 ± 9.88Aa |
一年生植物比例 Annual proportion (%) | 28.57 ± 2.21Aa | 8.78 ± 1.34Ba | 20.21 ± 2.22ABa | 17.47 ± 1.47ABa |
两年生植物比例 Biennial proportion (%). | 5.24 ± 9.52Ba | 1.78 ± 2.77ABa | 3.14 ± 5.47Aa | 9.81 ± 1.46ABa |
多年生植物比例 Perennial proportion (%) | 5.67 ± 1.98Aa | 6.52 ± 2.17Aa | 6.17 ± 2.65Aa | 5.78 ± 2.24Aa |
灌木植物比例 Shrub proportion (%) | 1.33 ± 1.02Aa | 2.17 ± 1.94Aa | 1.57 ± 1.62Aa | 1.88 ± 1.29Aa |
乔木植物比例 Tree proportion (%) | 0.06 ± 0.14Aa | 0.07 ± 0.18Aa | 0.13 ± 0.37Aa | 0.22 ± 0.41Aa |
CAM植物比例 CAM plant proportion (%) | 3.12 ± 4.33Aa | 1.24 ± 2.76ABa | 0.85 ± 1.61ABa | 0.15 ± 0.42Ba |
C3植物比例 C3 plant proportion (%) | 3.67 ± 2.03Ba | 4.57 ± 2.73ABa | 5.60 ± 2.17Aa | 5.14 ± 1.37ABa |
C4植物比例 C4 plant proportion (%) | 54.28 ± 27.22Aa | 51.35 ± 28.47Aa | 43.19 ± 21.88Aa | 48.05 ± 13.46Aa |
风传种植物比例 Wind-dispersed proportion (%) | 1.33 ± 9.61Ba | 2.48 ± 1.87ABa | 2.44 ± 1.65ABa | 2.84 ± 1.78Aa |
自动传种植物比例 Auto-dispersed proportion (%) | 3.20 ± 2.01Aa | 1.60 ± 1.58Bab | 1.38 ± 8.63Bb | 1.35 ± 1.23Bb |
重力传种植物比例 Gravity-dispersed proportion (%) | 4.34 ± 1.90Aa | 3.21 ± 2.09Aa | 4.40 ± 1.85Aa | 4.29 ± 1.85Aa |
动物传种植物比例 Animal dispersion proportion (%) | 12.78 ± 17.58Aa | 21.63 ± 17.69Aa | 12.61 ± 13.43Aa | 14.02 ± 14.77Aa |
风媒花植物比例 Wind-pollinated proportion (%) | 6.71 ± 2.55Aa | 3.72 ± 2.20Bb | 5.34 ± 1.88ABab | 5.41 ± 1.81ABab |
虫媒花植物比例 Insect-pollinated proportion (%) | 3.21 ± 2.55Ba | 6.29 ± 2.33Ab | 4.39 ± 1.74ABa | 4.44 ± 1.92ABa |
非固氮植物比例 Non nitrogen-fixing proportion (%) | 72.81 ± 25.62ABa | 60.06 ± 19.98Ba | 76.50 ± 16.05ABa | 80.08 ± 16.06Aa |
固氮植物比例 Nitrogen-fixing proportion (%) | 21.64 ± 22.84Ba | 39.88 ± 20.02Aa | 26.27 ± 19.02ABa | 20.02 ± 16.00Ba |
Table 2 Differences of plant diversity indices, coverage and functional traits across four edge types in center Hunshandak Sandland (mean ± SD)
边缘类型 Edge type | 向内 Inward | 向外 Outward | 向内成核 Inward nucleating | 向外成核 Outward nucleating |
---|---|---|---|---|
Shannon-Wiener指数 Shannon-Wiener index (H′) | 1.69 ± 0.36Ba | 1.89 ± 0.49ABa | 2.07 ± 0.53Aa | 2.10 ± 0.45Aa |
Simpson指数 Simpson index (D) | 0.71 ± 0.10Aa | 0.64 ± 0.07Aa | 0.66 ± 0.08Aa | 0.68 ± 0.07Aa |
Pielou指数 Pielou index (J′) | 0.68 ± 0.10Ba | 0.70 ± 0.11Ba | 0.77 ± 0.07Aa | 0.78 ± 0.06Aa |
β多样性指数 β diversity index (βw) | 2.39 ± 1.01Ba | 3.81 ± 1.20Aa | 3.81 ± 1.39Aa | 4.15 ± 2.23Aa |
物种丰富度 Species richness | 12.25 ± 5.40Ba | 18.30 ± 7.53Aa | 20.00 ± 8.03Aa | 18.08 ± 6.20Aa |
盖度 Coverage (%) | 18.68 ± 9.76Aa | 23.09 ± 10.76Aa | 21.42 ± 10.34Aa | 24.20 ± 9.88Aa |
一年生植物比例 Annual proportion (%) | 28.57 ± 2.21Aa | 8.78 ± 1.34Ba | 20.21 ± 2.22ABa | 17.47 ± 1.47ABa |
两年生植物比例 Biennial proportion (%). | 5.24 ± 9.52Ba | 1.78 ± 2.77ABa | 3.14 ± 5.47Aa | 9.81 ± 1.46ABa |
多年生植物比例 Perennial proportion (%) | 5.67 ± 1.98Aa | 6.52 ± 2.17Aa | 6.17 ± 2.65Aa | 5.78 ± 2.24Aa |
灌木植物比例 Shrub proportion (%) | 1.33 ± 1.02Aa | 2.17 ± 1.94Aa | 1.57 ± 1.62Aa | 1.88 ± 1.29Aa |
乔木植物比例 Tree proportion (%) | 0.06 ± 0.14Aa | 0.07 ± 0.18Aa | 0.13 ± 0.37Aa | 0.22 ± 0.41Aa |
CAM植物比例 CAM plant proportion (%) | 3.12 ± 4.33Aa | 1.24 ± 2.76ABa | 0.85 ± 1.61ABa | 0.15 ± 0.42Ba |
C3植物比例 C3 plant proportion (%) | 3.67 ± 2.03Ba | 4.57 ± 2.73ABa | 5.60 ± 2.17Aa | 5.14 ± 1.37ABa |
C4植物比例 C4 plant proportion (%) | 54.28 ± 27.22Aa | 51.35 ± 28.47Aa | 43.19 ± 21.88Aa | 48.05 ± 13.46Aa |
风传种植物比例 Wind-dispersed proportion (%) | 1.33 ± 9.61Ba | 2.48 ± 1.87ABa | 2.44 ± 1.65ABa | 2.84 ± 1.78Aa |
自动传种植物比例 Auto-dispersed proportion (%) | 3.20 ± 2.01Aa | 1.60 ± 1.58Bab | 1.38 ± 8.63Bb | 1.35 ± 1.23Bb |
重力传种植物比例 Gravity-dispersed proportion (%) | 4.34 ± 1.90Aa | 3.21 ± 2.09Aa | 4.40 ± 1.85Aa | 4.29 ± 1.85Aa |
动物传种植物比例 Animal dispersion proportion (%) | 12.78 ± 17.58Aa | 21.63 ± 17.69Aa | 12.61 ± 13.43Aa | 14.02 ± 14.77Aa |
风媒花植物比例 Wind-pollinated proportion (%) | 6.71 ± 2.55Aa | 3.72 ± 2.20Bb | 5.34 ± 1.88ABab | 5.41 ± 1.81ABab |
虫媒花植物比例 Insect-pollinated proportion (%) | 3.21 ± 2.55Ba | 6.29 ± 2.33Ab | 4.39 ± 1.74ABa | 4.44 ± 1.92ABa |
非固氮植物比例 Non nitrogen-fixing proportion (%) | 72.81 ± 25.62ABa | 60.06 ± 19.98Ba | 76.50 ± 16.05ABa | 80.08 ± 16.06Aa |
固氮植物比例 Nitrogen-fixing proportion (%) | 21.64 ± 22.84Ba | 39.88 ± 20.02Aa | 26.27 ± 19.02ABa | 20.02 ± 16.00Ba |
Fig. 2 Redundancy analysis (RDA) indicates the relationships between patch metrics and plant diversity indices (A, C), and functional traits (B, D) for inward edge (A, B) and outward edge (C, D) in center Hunshandak Sandland. angle, angle of sample location; depth, distance to edge; ED, edge density; MPAR, mean perimeter-area ratio; MPFD, mean patch fractal dimension; MSI, mean shape index; TE, total edge; TLA, landscape area. βw, β diversity index; D, Simpson index; H′, Shannon-Wiener index; J′, Pielou index. IV, important value.
Fig. 3 Redundancy analysis (RDA) indicate the relationships between patch metrics and plant diversity indices (A, C), and functional traits (B, D) for Inward nucleating edge (A, B) and outward nucleating edge (C, D) in enter Hunshandak Sandland. angle, angle of sample location; depth, distance to edge; ED, edge density; MPAR, mean perimeter-area ratio; MPFD, mean patch fractal dimension; MSI, mean shape index; TE, total edge; TLA, landscape area. βw, β diversity index; D, Simpson index; H′, Shannon-Wiener index; J′, Pielou index; IV, important value.
[1] |
Alverson WS, Waller DM, Solheim SL (1988). Forests too deer: edge effects in Northern Wisconsin. Conservation Biology, 2, 348-358.
DOI URL |
[2] |
Amici V, Rocchini D, Filibeck G, Bacaro G, Santi E, Geri F, Landi S, Scoppola A, Chiarucci A (2015). Landscape structure effects on forest plant diversity at local scale: exploring the role of spatial extent. Ecological Complexity, 21, 44-52.
DOI URL |
[3] |
Andrén H, Delin A, Seiler A (1997). Population response to landscape changes depends on specialization to different landscape elements. Oikos, 80, 193-196.
DOI URL |
[4] |
Cadenasso ML, Pickett STA, Weathers KC, Jones CG (2003). A framework for a theory of ecological boundaries. BioScience, 53, 750-758.
DOI URL |
[5] |
Chi Y, Sun JK, Fu ZY, Xie ZL (2019). Spatial pattern of plant diversity in a group of uninhabited islands from the perspectives of island and site scales. Science of the Total Environment, 664, 334-346.
DOI URL |
[6] |
Collins CD, Banks-Leite C, Brudvig LA, Foster BL, Cook WM, Damschen EI, Andrade A, Austin M, Camargo JL, Driscoll DA, Holt RD, Laurance WF, Nicholls AO, Orrock JL (2017). Fragmentation affects plant community composition over time. Ecography, 40, 119-130.
DOI URL |
[7] |
Deans RA, Chalcraft DR (2017). Matrix context and patch quality jointly determine diversity in a landscape-scale experiment. Oikos, 126, 874-887.
DOI URL |
[8] |
Diamond JM (1975). The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation, 7, 129-146.
DOI URL |
[9] |
Evju M, Blumentrath S, Skarpaas O, Stabbetorp OE,Sverdrup- Thygeson A (2015). Plant species occurrence in a fragmented grassland landscape: the importance of species traits. Biodiversity and Conservation, 24, 547-561.
DOI URL |
[10] |
Ewers RM, Didham RK (2006). Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81, 117-142.
DOI URL |
[11] |
Fan M, Wang QH, Mi K, Peng Y (2017). Scale-dependent effects of landscape pattern on plant diversity in Hunshandak Sandland. Biodiversity and Conservation, 26, 2169- 2185.
DOI URL |
[12] |
Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Turner JRG (2009). Spatial species-richness gradients across scales, a meta-analysis. Journal of Biogeography, 36, 132-147.
DOI URL |
[13] | Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, et al. (2005). Global consequences of land use. Science, 309, 570-574. |
[14] |
Forman RTT, Alexander LE (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29, 207-231.
DOI URL |
[15] |
Gharehaghaji M, Minor ES, Ashley MV, Abraham ST, Koenig WD (2017). Effects of landscape features on gene flow of valley oaks Quercus lobata. Plant Ecology, 218, 487-499.
DOI URL |
[16] |
Hadded NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, et al. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advance, 12, e1500052. DOI: 10.1126/sciadv.1500052.
DOI |
[17] |
Harper KA, MacDonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA (2005). Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768-782.
DOI URL |
[18] | Helm A, Hanski I, Pärtel M (2006). Slow response of plant species richness to habitat loss and fragmentation. Ecology Letters, 9, 72-77. |
[19] | Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004). Predictors of species sensitivity to fragmentation. Biodiversity & Conservation, 13, 207-251. |
[20] |
Higgins SI, Lavorel S, Revilla E (2003). Estimating plant migration rates under habitat loss and fragmentation. Oikos, 101, 354-366.
DOI URL |
[21] |
Huang YY, Han H, Tang C, Liu SJ (2017). Plant community composition and interspecific relationships among dominant species on a post-seismic landslide in Hongchun Gully, China. Journal of Mountain Science, 14, 1985-1994.
DOI URL |
[22] |
Jones NT, Germain RM, Grainger TN, Hall AM, Baldwin L, Gilbert B (2015). Dispersal mode mediates the effect of patch size and patch connectivity on metacommunity diversity. Journal of Ecology, 103, 935-944.
DOI URL |
[23] |
Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Ockinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010). Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels, immediate and time-delayed biodiversity loss. Ecology Letters, 13, 597-605.
DOI URL |
[24] | Krauss J, Klein AM, Steffan-Dewenter I, Tscharntke T (2004). Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodiversity & Conservation, 13, 1427-1439. |
[25] |
Labadessa R, Alignier A, Cassano S, Forte L, Mairota P (2017). Quantifying edge influence on plant community structure and composition in semi-natural dry grasslands. Applied Vegetation Science, 20, 572-581.
DOI URL |
[26] |
Laurance WF, Ferreira LV, Rankin-de Merona JM, Laurance SG (1998). Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology, 79, 2032-2040.
DOI URL |
[27] |
Laurance WF, Laurance SG, Ferreira LV, Rankin-de Merona JM, Gascon C, Lovejoy TE (1997). Biomass collapse in Amazonian forest fragments. Science, 278, 1117-1118.
DOI URL |
[28] |
Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002). Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, 16, 605-618.
DOI URL |
[29] |
Laurance WF, Yensen E (1991). Predicting the impacts of edge effects in fragmented habitats. Biological Conservation, 55, 77-92.
DOI URL |
[30] |
Lima PB, Lima LF, Santos BA, Tabarelli M, Zickel CS (2015). Altered herb assemblages in fragments of the Brazilian Atlantic forest. Biological Conservation, 191, 588-595.
DOI URL |
[31] |
Lindborg R, Helm A, Bommarco R, Heikkinen RK, Kühn I, Pykälä J, Pärtel M (2012). Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography, 35, 356-363.
DOI URL |
[32] |
Ma M, Herzon I (2014). Plant functional diversity in agricultural margins and fallow fields varies with landscape complexity level: conservation implication. Journal of Nature Conservation, 22, 525-531.
DOI URL |
[33] | Magurran AE (2004). Measuring Biological Diversity. Blackwell Publishing, Oxford. |
[34] |
Malavasi M, Conti L, Carboni M, Cutini M, Acosta ATR (2016). Multifaceted analysis of patch-level plant diversity in response to landscape spatial pattern and history on Mediterranean dunes. Ecosystems, 19, 850-864.
DOI URL |
[35] | McGarigal K, Cushman SA, Ene E (2012). FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst.2020-03-10]. http://www.umass.edu/landeco/research/fragstats/fragstats.html. |
[36] |
Michels KK, Hotchkiss SC, Jonaitis E, Thurman AL (2017). A new application of change point analysis reveals extensive edge effects on a temperate mixed forest. Applied Vegetation Science, 20, 651-661.
DOI URL |
[37] |
Murcia C (1995). Edge effects in fragmented forests, implications for conservation. Trends in Ecology & Evolution, 10, 58-62.
DOI URL |
[38] |
Peng Y, Jiang G, Liu M, Niu S, Yu S, Biswas DK, Zhang Q, Shi X, Yang Q (2005). Potentials for combating desertification in Hunshandak Sandland through nature reserve. Environmental Management, 35, 453-460.
PMID |
[39] |
Porensky LM, Young TP (2013). Edge-effect interactions in fragmented and patchy landscapes. Conservation Biology, 27, 509-519.
DOI PMID |
[40] |
Qiu Q, Pan X, Li JY, Wang JH, Ma JW, Du K (2014). Morphological traits and physiological characteristics in drought tolerance in 20 shrub species on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 562-575.
DOI URL |
[ 邱权, 潘昕, 李吉跃, 王军辉, 马建伟, 杜坤 (2014). 青藏高原20种灌木抗旱形态和生理特征. 植物生态学报, 38, 562- 575.]
DOI |
|
[41] |
Rockström J, Steffen W, Noone K, Persson Å, Chapin III FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, et al. (2009). A safe operating space for humanity. Nature, 461, 472-475.
DOI URL |
[42] |
Saar L, de Bello F, Pärtel M, Helm A (2017). Trait assembly in grasslands depends on habitat history and spatial scale. Oecologia, 184, 1-12.
DOI URL |
[43] |
Saavedra F, Hensen I, Quevedo AA, Neuschulz EL, Schleuning M (2017). Seed-deposition and recruitment patterns of Clusia species in a disturbed tropical montane forest in Bolivia. Acta Oecologica, 85, 85-92.
DOI URL |
[44] |
Saunders DA, Hobbs RJ, Margules CR (1991). Biological consequences of ecosystem fragmentation, a review. Conservation Biology, 5, 18-32.
DOI URL |
[45] |
Schindler S, von Wehrden H, Poirazidis K, Wrbka T, Kati V (2013). Multiscale performance of landscape metrics as indicators of species richness of plants, insects and vertebrates. Ecological Indicators, 31, 41-48.
DOI URL |
[46] |
Seahra SE, Yurkonis KA, Newman JA (2016). Species patch size at seeding affects diversity and productivity responses in establishing grasslands. Journal of Ecology, 104, 479- 486.
DOI URL |
[47] | Šmilauer P, Lepš J (2003). Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge University Press, Cambridge, UK. |
[48] |
Sun SL, Wang GJ, Huang J, Mu MY, Yan GX, Liu CW, Gao CJ, Li X, Yin YX, Zhang FM, Zhu SG, Hua WJ (2017). Spatial pattern of reference evapotranspiration change and its temporal evolution over Southwest China. Theoretical and Applied Climatology, 130, 979-992.
DOI URL |
[49] |
Torras O, Gil-Tena A, Saura S (2008). How does forest landscape structure explain tree species richness in a Mediterranean context? Biodiversity and Conservation, 17, 1227- 1240.
DOI URL |
[50] | Varela E, Verheyen K, Valdés A, Soliño M, Jacobsen JB, De Smedt P, Ehrmann S, Gärtner S, Górriz E, Decocq G (2018). Promoting biodiversity values of small forest patches in agricultural landscapes: ecological drivers and social demand. Science of the Total Environment, 619- 620, 1319-1329. |
[51] |
Veselkin DV, Shavnin SA, Vorobeichik EL, Galako VA, Vlasenko VE (2017). Edge effects on pine stands in a large city. Russian Journal of Ecology, 48, 499-506.
DOI URL |
[52] |
Xu H, Su H, Su B, Han X, Biswas DK, Li Y (2014). Restoring the degraded grassland and improving sustainability of grassland ecosystem through chicken farming: a case study in northern China. Agriculture, Ecosystem & Environment, 186, 115-123.
DOI URL |
[53] | Zha T, Qian D, Jia X, Bai Y, Tian Y, Bourque CPA, Ma J, Feng W, Wu B, Peltola H (2017). Soil moisture control of sap-flow response to biophysical factors in a desert-shrub species, Artemisia ordosica. Biogeosciences, 14, 4533-4544. |
[54] |
Zhang HC, Liu SG, Regnier P, Yuan WP (2018). New insights on plant phenological response to temperature revealed from long-term widespread observations in China. Global Change Biology, 24, 2066-2078.
DOI URL |
[55] |
Zuo X, Zhang J, Lv P, Zhou X, Li Y, Luo YY, Luo Y, Lian J, Yue X (2016). Plant functional diversity mediates the effects of vegetation and soil properties on community-level plant nitrogen use in the restoration of semiarid sandy grassland. Ecological Indicators, 64, 272-280.
DOI URL |
[1] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[2] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[3] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[4] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[5] | WANG Shu-Wen, LI Wen-Huai, LI Yan-Long, YAN Hui, LI Yong-Hong. Effects of different livestock types on plant diversity and community structure of a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(8): 941-950. |
[6] | ZENG Kai-Na, SUN Hao-Ran, SHEN Yi-Chun, REN Ming-Xun. Pollination network and seasonal dynamics of Yangshan Wetland in Hainan Island, China [J]. Chin J Plant Ecol, 2022, 46(7): 775-784. |
[7] | ZHOU Kai-Ling, ZHAO Yu-Jin, BAI Yong-Fei. Study on forest plant diversity monitoring based on Sentinel-2A satellite data in northeast China [J]. Chin J Plant Ecol, 2022, 46(10): 1251-1267. |
[8] | ZHANG Jing-Hui, WANG Zheng, HUANG Yong-Mei, CHEN Hui-Ying, LI Zhi-Yong, LIANG Cun-Zhu. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical steppe [J]. Chin J Plant Ecol, 2021, 45(8): 818-833. |
[9] | SUN Hao-Zhe, WANG Xiang-Ping, ZHANG Shu-Bin, WU Peng, YANG Lei. Abiotic and biotic modulators of litterfall production and its temporal stability during the succession of broad-leaf and Korean pine mixed forest [J]. Chin J Plant Ecol, 2021, 45(6): 594-605. |
[10] | JIANG Xin, NIU Ke-Chang. Effects of grass mixed-sowing on soil microbial diversity on the Qingzang (Tibetan) Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 539-551. |
[11] | WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 2021, 45(3): 242-252. |
[12] | DAI Jing-Zhong, BAI Yu-Ting, WEI Zhi-Jun, ZHANG Chu, YAN Rui-Rui. Effects of root-cutting in the vegetative phase on plant functional traits of Leymus chinensis [J]. Chin J Plant Ecol, 2021, 45(12): 1292-1302. |
[13] | ZHONG Zhi-Wei, LI Xiao-Fei, WANG De-Li. Research progresses of plant-herbivore interactions [J]. Chin J Plant Ecol, 2021, 45(10): 1036-1048. |
[14] | LIU Run-Hong, BAI Jin-Lian, BAO Han, NONG Juan-Li, ZHAO Jia-Jia, JIANG Yong, LIANG Shi-Chu, LI Yue-Juan. Variation and correlation in functional traits of main woody plants in the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China [J]. Chin J Plant Ecol, 2020, 44(8): 828-841. |
[15] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn