Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (5): 539-551.DOI: 10.17521/cjpe.2020.0330
Special Issue: 青藏高原植物生态学:群落生态学; 微生物生态学; 生物多样性
• Research Articles • Previous Articles Next Articles
Received:
2020-10-10
Accepted:
2021-02-04
Online:
2021-05-20
Published:
2021-03-09
Contact:
NIU Ke-Chang
Supported by:
JIANG Xin, NIU Ke-Chang. Effects of grass mixed-sowing on soil microbial diversity on the Qingzang (Tibetan) Plateau[J]. Chin J Plant Ecol, 2021, 45(5): 539-551.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0330
变量 Variable | 变异度 Variability (%) | F | 混播 Mixed- Sowing | 施肥 Fertilized | ||
---|---|---|---|---|---|
单播/混播 Single-sowing/Mixed-sowing (df = 1) | 施肥/不施肥 Fertilized/Unfertilized (df = 2) | 单播 Single-sowing | 混播 Mixed-sowing | ||
土壤微生物多样性 Soil microbial diversity | |||||
细菌丰富度(Chao1) Bacterial richness (Chao1) | 38.33 | 37.87* | 2.72 | 0.69 | -96.92* | -30.44 | -13.61 |
细菌Shannon多样性 Bacterial Shannon diversity | 44.35 | 41.51* | 0.15 | 0.04 | -0.60* | -0.02 | -0.05 |
真菌丰富度(Chao1) Fungal richness (Chao1) | 16.03 | 3.10 | 2.18 | 0.50 | -28.22 | 19.30 | -12.65 |
真菌Shannon多样性 Fungal Shannon diversity | 8.16 | 3.36 | 7.14 | 1.33 | -0.15 | -0.04 | -0.50 |
土壤理化因子 Soil edaphic factor | |||||
土壤pH Soil pH | 18.17 | 55.48* | 27.47 | 7.25* | -0.22* | -0.24* | -0.12* |
土壤湿度 Soil humidity | 10.95 | 3.49 | 9.01 | 1.87 | 0.02 | -0.01 | -0.02 |
土壤全氮含量 Soil total nitrogen content | 68.81 | 51.36* | 2.46 | 1.47 | -0.21* | 0.06 | 0.00 |
土壤全磷含量 Soil total phosphorus content | 41.15 | 16.46* | 5.23 | 1.68 | 1.23* | 0.18 | 0.46 |
土壤有效氮含量 Soil available nitrogen content | 0.38 | 0.77 | 0.80 | 0.12 | -0.00 | -0.18 | 0.00 |
土壤速效磷含量 Soil available phosphorus content | 8.25 | 4.43 | 31.78 | 8.47* | 0.04 | 0.08* | 0.05* |
土壤有机碳含量 Soil organic carbon content | 0.52 | 0.26 | 9.07 | 1.54 | 1.20 | 3.01 | -0.42 |
植物群落 Plant community | |||||
植物地上生物量 Plant aboveground biomass | 1.45 | 0.44 | 27.98 | 6.83* | -11.20 | 14.36 | 26.93* |
植物物种丰富度 Plant species richness | 0.84 | 1.01 | 34.08 | 7.69* | 1.33 | -1.11 | -4.89* |
Table 1 Summary of the effect of mix-sowing and fertilization on variation in soil microbial diversity tested by generalized linear mixed effect model
变量 Variable | 变异度 Variability (%) | F | 混播 Mixed- Sowing | 施肥 Fertilized | ||
---|---|---|---|---|---|
单播/混播 Single-sowing/Mixed-sowing (df = 1) | 施肥/不施肥 Fertilized/Unfertilized (df = 2) | 单播 Single-sowing | 混播 Mixed-sowing | ||
土壤微生物多样性 Soil microbial diversity | |||||
细菌丰富度(Chao1) Bacterial richness (Chao1) | 38.33 | 37.87* | 2.72 | 0.69 | -96.92* | -30.44 | -13.61 |
细菌Shannon多样性 Bacterial Shannon diversity | 44.35 | 41.51* | 0.15 | 0.04 | -0.60* | -0.02 | -0.05 |
真菌丰富度(Chao1) Fungal richness (Chao1) | 16.03 | 3.10 | 2.18 | 0.50 | -28.22 | 19.30 | -12.65 |
真菌Shannon多样性 Fungal Shannon diversity | 8.16 | 3.36 | 7.14 | 1.33 | -0.15 | -0.04 | -0.50 |
土壤理化因子 Soil edaphic factor | |||||
土壤pH Soil pH | 18.17 | 55.48* | 27.47 | 7.25* | -0.22* | -0.24* | -0.12* |
土壤湿度 Soil humidity | 10.95 | 3.49 | 9.01 | 1.87 | 0.02 | -0.01 | -0.02 |
土壤全氮含量 Soil total nitrogen content | 68.81 | 51.36* | 2.46 | 1.47 | -0.21* | 0.06 | 0.00 |
土壤全磷含量 Soil total phosphorus content | 41.15 | 16.46* | 5.23 | 1.68 | 1.23* | 0.18 | 0.46 |
土壤有效氮含量 Soil available nitrogen content | 0.38 | 0.77 | 0.80 | 0.12 | -0.00 | -0.18 | 0.00 |
土壤速效磷含量 Soil available phosphorus content | 8.25 | 4.43 | 31.78 | 8.47* | 0.04 | 0.08* | 0.05* |
土壤有机碳含量 Soil organic carbon content | 0.52 | 0.26 | 9.07 | 1.54 | 1.20 | 3.01 | -0.42 |
植物群落 Plant community | |||||
植物地上生物量 Plant aboveground biomass | 1.45 | 0.44 | 27.98 | 6.83* | -11.20 | 14.36 | 26.93* |
植物物种丰富度 Plant species richness | 0.84 | 1.01 | 34.08 | 7.69* | 1.33 | -1.11 | -4.89* |
Fig. 1 Effect of mixed-sowing and fertilization on variation in soil bacterial and fungal diversities relative to single-sowing and unfertilized treatment (mean ± SE). A, bacterial richness (Chao 1). B, bacterial Shannon diversity. C, fungal richness (Chao 1). D, fungal Shannon diversity. En, Elymus nutans; Fo, Festuca ovina; Fs, F. sinensis.
Fig. 2 Relative abundance of dominant phyla of soil bacteria and fungi in single- and mixed-sowing plots, with significant difference between them (p < 0.05) indicated by *. A, Dominant phyla of bacteria. B, Dominant phyla of fungi. En, Elymus nutans; Fo, Festuca ovina; Fs, F. sinensis. Others of bacteria include Armatimonadetes, BRC1, Candidatus_Saccharibacteria, Chlamydiae, Chloroflexi, Cyanobacteria, Elusimicrobia, Firmicutes, Gemmatimonadetes, Ignavibacteriae, Latescibacteria, Nitrospirae, Parcubacteria, Unclassified_Bacteria, candidate_division_WPS-1 and candidate_division_WPS-2. Others of fungi include Chytridiomycota, Glomeromycota and three uclassified fungi phyla.
微生物类群 Microbes taxon | 变异度 Variability (%) | F | 混播 Mixed- Sowing | 施肥 Fertilized | ||
---|---|---|---|---|---|
单播/混播 Single-sowing/Mixed-sowing (df = 1) | 施肥/不施肥 Fertilized/Unfertilized (df = 2) | 单播 Single- sowing | 混播 Mixed- sowing | ||
细菌门水平优势类群 Dominant phylum of bacteria | |||||
酸杆菌门 Acidobacteria | 32.84 | 11.81* | 2.48 | 0.65 | -0.05* | 0.00 | 0.02 |
放线菌门 Actinobacteria | 12.42 | 9.13* | 13.84 | 2.83 | 0.01* | 0.00 | -0.01* |
拟杆菌门 Bacteroidetes | 34.68 | 13.62* | 0.93 | 0.24 | -0.03* | 0.01 | 0.00 |
浮霉菌门 Planctomycetes | 21.33 | 5.59 | 0.73 | 0.16 | -0.02 | 0.00 | 0.00 |
变形菌门 Proteobacteria | 32.67 | 28.11* | 0.47 | 0.11 | 0.08* | -0.01 | -0.01 |
疣微菌门 Verrucomicrobia | 0.23 | 0.04 | 8.19 | 1.77 | 0.00 | 0.01 | 0.01 |
真菌门水平优势菌群 Dominant phylum of fungi | |||||
子囊菌门 Ascomycota | 1.07 | 0.85 | 1.25 | 0.19 | -0.05 | 0.01 | 0.05 |
担子菌门 Basidiomycota | 2.03 | 1.82 | 1.14 | 0.18 | 0.02 | -0.04 | -0.01 |
接合菌门 Zygomycota | 1.51 | 0.82 | 4.47 | 0.72 | 0.04 | 0.04 | 0.06 |
Table 2 Summary of the effect of mix-sowing and fertilization on variation in dominant phyla of soil microbes tested by generalized linear mixed effect model
微生物类群 Microbes taxon | 变异度 Variability (%) | F | 混播 Mixed- Sowing | 施肥 Fertilized | ||
---|---|---|---|---|---|
单播/混播 Single-sowing/Mixed-sowing (df = 1) | 施肥/不施肥 Fertilized/Unfertilized (df = 2) | 单播 Single- sowing | 混播 Mixed- sowing | ||
细菌门水平优势类群 Dominant phylum of bacteria | |||||
酸杆菌门 Acidobacteria | 32.84 | 11.81* | 2.48 | 0.65 | -0.05* | 0.00 | 0.02 |
放线菌门 Actinobacteria | 12.42 | 9.13* | 13.84 | 2.83 | 0.01* | 0.00 | -0.01* |
拟杆菌门 Bacteroidetes | 34.68 | 13.62* | 0.93 | 0.24 | -0.03* | 0.01 | 0.00 |
浮霉菌门 Planctomycetes | 21.33 | 5.59 | 0.73 | 0.16 | -0.02 | 0.00 | 0.00 |
变形菌门 Proteobacteria | 32.67 | 28.11* | 0.47 | 0.11 | 0.08* | -0.01 | -0.01 |
疣微菌门 Verrucomicrobia | 0.23 | 0.04 | 8.19 | 1.77 | 0.00 | 0.01 | 0.01 |
真菌门水平优势菌群 Dominant phylum of fungi | |||||
子囊菌门 Ascomycota | 1.07 | 0.85 | 1.25 | 0.19 | -0.05 | 0.01 | 0.05 |
担子菌门 Basidiomycota | 2.03 | 1.82 | 1.14 | 0.18 | 0.02 | -0.04 | -0.01 |
接合菌门 Zygomycota | 1.51 | 0.82 | 4.47 | 0.72 | 0.04 | 0.04 | 0.06 |
Fig. 3 Difference in soil microbial community compositions in single- and mixed-sowing plots. A, Soil bacterial community composition. B, Soil fungal community composition. En, Elymus nutans; Fo, Festuca ovina; Fs, F. sinensis. PAB, plant aboveground biomass; PSR, plant species richness; SAN, soil available nitrogen; SAP, soil available phosphorus; SOC, soil organic carbon; STN, soil total nitrogen; STP, soil total phosphorus.
Fig. 4 Generalized canonical discriminant analysis for links among soil bacterial and fungal diversities, edaphic factors and plant community. A, Bacteria. B, Fungal. En, Elymus nutans; Fo, Festuca ovina; Fs, F. sinensis. There are significant difference between single- and mixed-sowing plots tested by a Wilks’ lambda multivariate test. PAB, plant aboveground biomass; PSR, plant species richness; SAN, soil available nitrogen; SAP, soil available phosphorus; SOC, soil organic carbon; STN, soil total nitrogen; STP, soil total phosphorus.
固定因子 Fixed factor | 细菌丰富度(Chao1) Bacterial richness (Chao1) R2 = 0.57* | 细菌Shannon多样性 Bacterial Shannon diversity R2 = 0.57* | 真菌丰富度(Chao1) Fungal richness (Chao1) R2 = 0.35 | 真菌Shannon多样性 Fungal Shannon diversity R2 = 0.19 |
---|---|---|---|---|
土壤理化因子 soil edaphic factor | ||||
土壤pH Soil pH | -15.24 ± 13.55 | -0.10 ± 0.09 | -9.79 ± 12.88 | 0.05 ± 0.18 |
土壤湿度 Soil humidity | -25.96 ± 11.78* | -0.09 ± 0.08 | -21.80 ± 11.20 | -0.13 ± 0.16 |
土壤全氮含量 Soil total nitrogen content | 5.62 ± 19.72 | 0.13 ± 0.13 | 23.13 ± 19.02 | 0.04 ± 0.27 |
土壤全磷含量 Soil total phosphorus content | -3.28 ± 13.36 | -0.04 ± 0.08 | -16.29 ± 12.92 | -0.11 ± 0.18 |
土壤有效氮含量 Soil available nitrogen content | -13.50 ± 9.53 | -0.09 ± 0.06 | 3.67 ± 9.01 | 0.12 ± 0.13 |
土壤速效磷含量 Soil available phosphorus content | 28.74 ± 11.99* | 0.11 ± 0.08 | 1.07 ± 11.48 | 0.03 ± 0.17 |
土壤有机碳含量 Soil organic carbon content | -0.25 ± 9.82 | 0.01 ± 0.06 | -24.04 ± 9.38* | -0.05 ± 0.14 |
植物群落 Plant community | ||||
植物地上生物量 Plant aboveground biomass | -4.35 ± 10.83 | -0.10 ± 0.07 | -14.30 ± 10.47 | -0.13 ± 0.15 |
植物物种丰富度 Plant species richness | -23.85 ± 10.77* | -0.14 ± 0.07 | 5.89 ± 10.18 | -0.07 ± 0.15 |
处理影响 Treatment effect | ||||
混播 Mixed-sowing | -91.07 ± 38.55* | -0.47 ± 0.24 | 13.46 ± 38.35 | -0.13 ± 0.53 |
施肥 Fertilized | -103.52 ± 34.32* | -0.37 ± 0.22 | 10.27 ± 32.62 | -0.20 ± 0.48 |
Table 3 Association of soil microbial diversity with edaphic factors and plant community tested by generalized linear mixed effect model (mean ± SE)
固定因子 Fixed factor | 细菌丰富度(Chao1) Bacterial richness (Chao1) R2 = 0.57* | 细菌Shannon多样性 Bacterial Shannon diversity R2 = 0.57* | 真菌丰富度(Chao1) Fungal richness (Chao1) R2 = 0.35 | 真菌Shannon多样性 Fungal Shannon diversity R2 = 0.19 |
---|---|---|---|---|
土壤理化因子 soil edaphic factor | ||||
土壤pH Soil pH | -15.24 ± 13.55 | -0.10 ± 0.09 | -9.79 ± 12.88 | 0.05 ± 0.18 |
土壤湿度 Soil humidity | -25.96 ± 11.78* | -0.09 ± 0.08 | -21.80 ± 11.20 | -0.13 ± 0.16 |
土壤全氮含量 Soil total nitrogen content | 5.62 ± 19.72 | 0.13 ± 0.13 | 23.13 ± 19.02 | 0.04 ± 0.27 |
土壤全磷含量 Soil total phosphorus content | -3.28 ± 13.36 | -0.04 ± 0.08 | -16.29 ± 12.92 | -0.11 ± 0.18 |
土壤有效氮含量 Soil available nitrogen content | -13.50 ± 9.53 | -0.09 ± 0.06 | 3.67 ± 9.01 | 0.12 ± 0.13 |
土壤速效磷含量 Soil available phosphorus content | 28.74 ± 11.99* | 0.11 ± 0.08 | 1.07 ± 11.48 | 0.03 ± 0.17 |
土壤有机碳含量 Soil organic carbon content | -0.25 ± 9.82 | 0.01 ± 0.06 | -24.04 ± 9.38* | -0.05 ± 0.14 |
植物群落 Plant community | ||||
植物地上生物量 Plant aboveground biomass | -4.35 ± 10.83 | -0.10 ± 0.07 | -14.30 ± 10.47 | -0.13 ± 0.15 |
植物物种丰富度 Plant species richness | -23.85 ± 10.77* | -0.14 ± 0.07 | 5.89 ± 10.18 | -0.07 ± 0.15 |
处理影响 Treatment effect | ||||
混播 Mixed-sowing | -91.07 ± 38.55* | -0.47 ± 0.24 | 13.46 ± 38.35 | -0.13 ± 0.53 |
施肥 Fertilized | -103.52 ± 34.32* | -0.37 ± 0.22 | 10.27 ± 32.62 | -0.20 ± 0.48 |
[1] |
Bahram M,Hildebrand F,Forslund SK,Anderson JL,Soudzilovskaia NA,Bodegom PM,Bengtsson-Palme J,Anslan S,Coelho LP,Harend H,Huerta-Cepas J,Medema MH,Maltz MR,Mundra S,Olsson PA,Pent M,Põlme S,Sunagawa S,Ryberg M,Tedersoo L,Bork P(2018).Structure and function of the global topsoil microbiome.Nature,560, 233-237.
DOI URL |
[2] |
Bardgett RD,van der Putten WH(2014).Belowground biodiversity and ecosystem functioning.Nature,515, 505-511.
DOI URL |
[3] |
Boyer AG,Jetz W(2014).Extinctions and the loss of ecological function in island bird communities.Global Ecology and Biogeography,23, 679-688.
DOI URL |
[4] | Callaghan TV,Jonasson S,Nichols H,Heywood RB,Wookey PA,Wadhams P,Dowdeswell JA,Schofield AN(1995).Arctic terrestrial ecosystems and environmental change.Philosophical Transactions: Physical and Engineering Sciences,352, 259-276. |
[5] |
Chen C,Chen HYH,Chen XL,Huang ZQ(2019).Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration.Nature Communications,10, 1332. DOI:10.1038/s41467-019-09258-y.
DOI URL |
[6] | Chen Y,Lü GH,Li Y(2018).Soil microbial functional diversity of rhizosphere and non-rhizosphere of three dominant herbaceous plants in the Dushanzi District.Acta Ecologica Sinica,38, 3110-3117. |
[陈悦,吕光辉,李岩(2018).独山子区优势草本植物根际与非根际土壤微生物功能多样性.生态学报,38, 3110-3117.] | |
[7] |
Civitello DJ,Cohen J,Fatima H,Halstead NT,Liriano J,McMahon TA,Ortega CN,Sauer EL,Sehgal T,Young S,Rohr JR(2015).Biodiversity inhibits parasites: broad evidence for the dilution effect.Proceedings of the National Academy of Sciences of the United States of America,112, 8667-8671.
DOI PMID |
[8] |
de Vries FT,Hoffland E,van Eekeren N,Brussaard L,Bloem J(2006).Fungal/bacterial ratios in grasslands with contrasting nitrogen management.Soil Biology & Biochemistry,38, 2092-2103.
DOI URL |
[9] | Delegado-Baquerizo M,Bardgett RD,Vitousek PM,Maestre FT,Williams MA,Eldridge DJ,Lambers H,Neuhauser S,Gallardo A,Garcia-Velázquez L,Sala OE,Abades SR,Alfaro FD,Berhe AA,Bowker MA,et al.(2019).Changes in belowground biodiversity during ecosystem development.Proceedings of the National Academy of Sciences of the United States of America,116, 6891-6896. |
[10] |
Delgado-Baquerizo M,Reich PB,Khachane AN,Campbell CD,Thomas N,Freitag TE,Abu Al-Soud W,Sørensen S,Bardgett RD,Singh BK(2017).It is elemental: soil nutrient stoichiometry drives bacterial diversity.Environmental Microbiology,19, 1176-1188.
DOI PMID |
[11] | Fang JY,Jing HC,Zhang WH,Gao SQ,Duan ZY,Wang HS,Zhong J,Pan QM,Zhao K,Bai WM,Li LH,Bai YF,Jiang GM,Huang JH,Huang ZY(2018).The concept of “grass-based livestock husbandry” and its practice in Hulun Buir, Inner Mongolia.Chinese Science Bulletin,63, 1619-1631. |
[方精云,景海春,张文浩,高树琴,段子渊,王竑晟,钟瑾,潘庆民,赵凯,白文明,李凌浩,白永飞,蒋高明,黄建辉,黄振英(2018).论草牧业的理论体系及其实践.科学通报,63, 1619-1631.] | |
[12] |
Field E,Castagneyrol B,Gibbs M,Jactel H,Barsoum N,Schönrogge K,Hector A(2020).Associational resistance to both insect and pathogen damage in mixed forests is modulated by tree neighbour identity and drought.Journal of Ecology,108, 1511-1522.
DOI URL |
[13] |
Fierer N,Jackson RB(2006).The diversity and biogeography of soil bacterial communities.Proceedings of the National Academy of Sciences of the United States of America,103, 626-631.
PMID |
[14] | Friendly M,Fox J(2017).Candisc: Visualizing Generalized Canonical Discriminant and Canonical correlation analysis.R package version 0.8-0. [2017-09-19]. https://CRAN.R-project.org/package=candisc. |
[15] |
Hacker N,Ebeling A,Gessler A,Gleixner G,González Macé O,de Kroon H,Lange M,Mommer L,Eisenhauer N,Ravenek J,Scheu S,Weigelt A,Wagg C,Wilcke W,Oelmann Y(2015).Plant diversity shapes microbe- rhizosphere effects on P mobilisation from organic matter in soil.Ecology Letters,18, 1356-1365.
DOI PMID |
[16] |
Hao YQ,Zhao XF,Zhang DY(2016).Field experimental evidence that stochastic processes predominate in the initial assembly of bacterial communities.Environmental Microbiology,18, 1730-1739.
DOI URL |
[17] |
Hector A,Schmid B,Beierkuhnlein C,Caldeira MC,Diemer M,Dimitrakopoulos PG,Finn JA,Freitas H,Giller PS,Good J,Harris R,Hogberg P,Huss-Danell K,Joshi J,Jumpponen A,et al.(1999).Plant diversity and productivity experiments in European grasslands.Science,286, 1123-1127.
PMID |
[18] |
Johnson D,Campbell CD,Lee JA,Callaghan TV,Gwynn-Jones D(2002).Arctic microorganisms respond more to elevated UV-B radiation than CO2.Nature,416, 82-83.
DOI URL |
[19] | Kong WD(2013).A review of microbial diversity in polar terrestrial environments.Biodiversity Science,21, 457-468. |
[孔维栋(2013).极地陆域微生物多样性研究进展.生物多样性,21, 457-468.] | |
[20] |
Lange M,Eisenhauer N,Sierra CA,Bessler H,Engels C,Griffiths RI,Mellado-Vázquez PG,Malik AA,Roy J,Scheu S,Steinbeiss S,Thomson BC,Trumbore SE,Gleixner G(2015).Plant diversity increases soil microbial activity and soil carbon storage.Nature Communications,6, 6707. DOI:10.1038/ncomms7707.
DOI URL |
[21] |
Leff JW,Bardgett RD,Wilkinson A,Jackson BG,Pritchard WJ,de Long JR,Oakley S,Mason KE,Ostle NJ,Johnson D,Baggs EM,Fierer N(2018).Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits.The ISME Journal,12, 1794-1805.
DOI URL |
[22] |
Li A,Niu KC,Du GZ(2011).Resource availability, species composition and sown density effects on productivity of experimental plant communities.Plant and Soil,344, 177-186.
DOI URL |
[23] | Li L(2016).Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives.Chinese Journal of Eco-Agriculture,24, 403-415. |
[李隆(2016).间套作强化农田生态系统服务功能的研究进展与应用展望.中国生态农业学报,24, 403-415.] | |
[24] |
Li SX,Wang YL,Wang YQ,Yin YL(2021).Response of soil bacterial community characteristics to alpine meadow degradation.Biodiversity Science,29, 53-64.
DOI URL |
[李世雄,王彦龙,王玉琴,尹亚丽(2020).土壤细菌群落特征对高寒草甸退化的响应.生物多样性,29, 53-64.] | |
[25] |
Liu L,Zhu K,Wurzburger N,Zhang J(2020).Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales.Ecosphere,11, e02999. DOI:10.1016/j.soilbio.2021.108143.
DOI |
[26] |
Mulder C,van Wijnen HJ,van Wezel AP(2005).Numerical abundance and biodiversity of below-ground taxocenes along a pH gradient across the Netherlands.Journal of Biogeography,32, 1775-1790.
DOI URL |
[27] | Nelson DW,Sommers LE(1983).Total carbon, organic carbon, and organic matter//Page A, Miller R, Keeney D. Methods of Soil Analysis. American Society of Agronomy,Madison. 539-579. |
[28] |
Niu KC,He JS,Lechowicz MJ(2016a).Grazing-induced shifts in community functional composition and soil nutrient availability in Tibetan alpine meadows.Journal of Applied Ecology,53, 1554-1564.
DOI URL |
[29] |
Niu KC,He JS,Zhang ST,Lechowicz MJ(2016b).Tradeoffs between forage quality and soil fertility: lessons from Himalayan rangelands.Agriculture, Ecosystems & Environment,234, 31-39.
DOI URL |
[30] |
Niu KC,Liu YN,Shen ZH,He FL,Fang JY(2009).Community assembly: the relative importance of neutral theory and niche theory.Biodiversity Science,17, 579-593.
DOI URL |
[牛克昌,刘怿宁,沈泽昊,何芳良,方精云(2009).群落构建的中性理论和生态位理论.生物多样性,17, 579-593.] | |
[31] |
Pardo LH,Fenn ME,Goodale CL,Geiser LH,Driscoll CT,Allen EB,Baron JS,Bobbink R,Bowman WD,Clark CM,Emmett B,Gilliam FS,Greaver TL,Hall SJ,Lilleskov EA,et al.(2011).Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States.Ecological Applications,21, 3049-3082.
DOI URL |
[32] | Pinheiro J,Bates D,DebRoy S,Sarkar D,R Core Team(2017).nlme: Linear and nonlinear mixed effects models R package version3.1-131. [2021-02-03]. https://CRAN.R-project.org/package=nlme. |
[33] |
Porazinska DL,Farrer EC,Spasojevic MJ,Bueno de Mesquita CP,Sartwell SA,Smith JG,White CT,King AJ,Suding KN,Schmidt SK(2018).Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem.Ecology,99, 1942-1952.
DOI PMID |
[34] |
Prober SM,Leff JW,Bates ST,Borer ET,Firn J,Harpole WS,Lind EM,Seabloom EW,Adler PB,Bakker JD,Cleland EE,DeCrappeo NM,DeLorenze E,Hagenah N,Hautier Y,et al.(2015).Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide.Ecology Letters,18, 85-95.
DOI URL |
[35] |
Rakowski C,Cardinale BJ(2016).Herbivores control effects of algal species richness on community biomass and stability in a laboratory microcosm experiment.Oikos,125, 1627-1635.
DOI URL |
[36] |
Ramus AP,Long ZT(2016).Producer diversity enhances consumer stability in a benthic marine community.Journal of Ecology,104, 572-579.
DOI URL |
[37] |
Soliveres S,van der Plas F,Manning P,Prati D,Gossner MM,Renner SC,Alt F,Arndt H,Baumgartner V,Binkenstein J,Birkhofer K,Blaser S,Blüthgen N,Boch S,Böhm S,Börschig C,Buscot F,Diekötter T,Heinze J,Hölzel N,Jung K,Klaus VH,Kleinebecker T,Klemmer S,et al.(2016).Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality.Nature,536, 456-459.
DOI URL |
[38] |
Sommers LE,Nelson DW(1972).Determination of total phosphorus in soils: a rapid perchloric acid digestion procedure.Soil Science Society of America Journal,36, 902-904.
DOI URL |
[39] |
Tilman D,Isbell F,Cowles JM(2014).Biodiversity and ecosystem functioning.Annual Review of Ecology, Evolution, and Systematics,45, 471-493.
DOI URL |
[40] | Wagg C,Bender SF,Widmer F,van der Heijden MGA(2014).Soil biodiversity and soil community composition determine ecosystem multifunctionality.Proceedings of the National Academy of Sciences of the United States of America,111, 5266-5270. |
[41] |
Wall DH,Moore JC(1999).Interactions underground: soil biodiversity, mutualism, and ecosystem processes.Bioscience,49, 109-117.
DOI URL |
[42] | Wang X,Zeng ZH,Hu YG,Zhu B(2007).Progress and prospect on mixture of Gramineae herbage and Leguminosae herbage.Chinese Journal of Grassland,29, 92-98. |
[王旭,曾昭海,胡跃高,朱波(2007).豆科与禾本科牧草混播效应研究进展.中国草地学报,29, 92-98.] | |
[43] |
Wang XB,Lü XT,Yao J,Wang ZW,Deng Y,Cheng WX,Zhou JZ,Han XG(2017).Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands.The ISME Journal,11, 1345-1358.
DOI URL |
[44] |
Wang YT,Niu KC(2020).Effect of soil environment on functional diversity of soil nematodes in Tibetan alpine meadows.Biodiversity Science,28, 707-717.
DOI URL |
[王宇彤,牛克昌(2020).青藏高原高寒草甸土壤环境对线虫功能多样性的影响.生物多样性,28, 707-717.] | |
[45] |
Wardle DA(2016).Do experiments exploring plant diversity- ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems?Journal of Vegetation Science,27, 646-653.
DOI URL |
[46] | Wardle DA,Bardgett RD(2010).Aboveground-Belowground Linkages. Biotic Interactions, Ecosystem Processes, and Global Change.Biotic Interactions, Ecosystem Processes, and Global Change. Oxford University Press, Oxford,UK. |
[47] |
Wardle DA,Bardgett RD,Klironomos JN,Setälä H,van der Putten WH,Wall DH(2004).Ecological linkages between aboveground and belowground biota.Science,304, 1629-1633.
PMID |
[48] |
Wardle DA,Jonsson M,Bansal S,Bardgett RD,Gundale MJ,Metcalfe DB(2012).Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment.Journal of Ecology,100, 16-30.
DOI URL |
[49] |
Weisser WW,Roscher C,Meyer ST,Ebeling A,Luo GJ,Allan E,Beβler H,Barnard RL,Buchmann N,Buscot F,Engels C,Fischer C,Fischer M,Gessler A,Gleixner G,et al.(2017).Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions.Basic and Applied Ecology,23, 1-73.
DOI URL |
[50] |
Yang F,Niu KC,Collins CG,Yan XB,Ji YG,Ling N,Zhou XH,Du GZ,Guo H,Hu SJ(2019a).Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow.Land Degradation & Development,30, 49-59.
DOI URL |
[51] |
Yang LN,Pan ZC,Zhu W,Wu EJ,He DC,Yuan X,Qin YY,Wang Y,Chen RS,Thrall PH,Burdon JJ,Shang LP,Sui QJ,Zhan JS(2019b).Enhanced agricultural sustainability through within-species diversification.Nature Sustainability,2, 46-52.
DOI URL |
[52] |
Yang W,Jeelani N,Zhu ZH,Luo YQ,Cheng XL,An SQ(2019c).Alterations in soil bacterial community in relation to Spartina alterniflora Loisel. invasion chronosequence in the eastern Chinese coastal wetlands.Applied Soil Ecology,135, 38-43.
DOI |
[53] |
Zhang ST,Liu JP,Bao XH,Niu KC(2011).Seed-to-seed potential allelopathic effects between Ligularia virgaurea and native grass species of Tibetan alpine grasslands.Ecological Research,26, 47-52.
DOI URL |
[54] |
Zhang XM,Han XG(2012).Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland.Journal of Environmental Sciences,24, 1483-1491.
DOI URL |
[55] |
Zhang XM,Johnston ER,Barberán A,Ren Y,Lü XT,Han XG(2017).Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity.Global Change Biology,23, 4318-4332.
DOI URL |
[56] | Zhao XG,Zhang ST,Niu KC(2020a).Association of soil bacterial diversity with plant community functional attributes in alpine meadows. Scientia Sinica (Vitae),50, 70-80. |
[赵兴鸽,张世挺,牛克昌(2020a).高寒草甸植物群落功能属性与土壤细菌多样性关系.中国科学: 生命科学,50, 70-80.] | |
[57] | Zhao XG,Zhang ST,Niu KC(2020b).Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadows.Chinese Journal of Applied and Environmental Biology,26, 1-9. |
[赵兴鸽,张世挺,牛克昌(2020b).青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系.应用与环境生物学报,26, 1-9.] | |
[58] |
Zhou ZH,Wang CK(2016).Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession.Chinese Journal of Plant Ecology,40, 1257-1266.
DOI URL |
[周正虎,王传宽(2016).生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化.植物生态学报,40, 1257-1266.] | |
[59] |
Zhou ZH,Wang CK,Zheng MH,Jiang LF,Luo YQ(2017).Patterns and mechanisms of responses by soil microbial communities to nitrogen addition.Soil Biology & Biochemistry,115, 433-441.
DOI URL |
[1] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[2] | WANG Shu-Wen, LI Wen-Huai, LI Yan-Long, YAN Hui, LI Yong-Hong. Effects of different livestock types on plant diversity and community structure of a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(8): 941-950. |
[3] | ZHOU Kai-Ling, ZHAO Yu-Jin, BAI Yong-Fei. Study on forest plant diversity monitoring based on Sentinel-2A satellite data in northeast China [J]. Chin J Plant Ecol, 2022, 46(10): 1251-1267. |
[4] | Min FAN, Yi-Tong LU, Zhao-Hua WANG, Ying-Qi HUANG, Yu PENG, Jia-Xin SHANG, Yang ZHANG. Effects of patch pattern on plant diversity and functional traits in center Hunshandak Sandland [J]. Chin J Plant Ecol, 2022, 46(1): 51-61. |
[5] | ZHONG Zhi-Wei, LI Xiao-Fei, WANG De-Li. Research progresses of plant-herbivore interactions [J]. Chin J Plant Ecol, 2021, 45(10): 1036-1048. |
[6] | Dong-Ting ZOU, Qing-Gang WANG, Ao LUO, Zhi-Heng WANG. Species richness patterns and resource plant conservation assessments of Rosaceae in China [J]. Chin J Plant Ecol, 2019, 43(1): 1-15. |
[7] | Wen-Ting LIU, Zhi-Jun WEI, Shi-Jie LÜ, Shi-Xian SUN, Li-Juan JIA, Shuang ZHANG, Tian-Le WANG, Jing-Zhong DAI, Zhi-Hong LU. Response mechanism of plant diversity to herbivore foraging in desert grassland [J]. Chin J Plant Ecol, 2016, 40(6): 564-573. |
[8] | CUI Ning-Jie,ZHANG Dan-Ju,LIU Yang,ZHANG Jian,YANG Wan-Qin,OU Jiang,ZHANG Jie,SONG Xiao-Yan,YIN Rui. Plant diversity and seasonal dynamics in forest gaps of varying sizes in Pinus massoniana plantations [J]. Chin J Plant Ecol, 2014, 38(5): 477-490. |
[9] | ZHANG Min,PAN Yan-Xia,YANG Hong-Xiao. Species abundance patterns of supratidal sandy grassland along China’s Shandong Peninsula and their responses to human disturbances [J]. Chin J Plant Ecol, 2013, 37(6): 542-550. |
[10] | LIU Cong, XIANG Wen-Hua, TIAN Da-Lun, FANG Xi, PENG Chang-Hui. Overyielding of fine root biomass as increasing plant species richness in subtropical forests in central southern China [J]. Chin J Plant Ecol, 2011, 35(5): 539-550. |
[11] | ZHANG Liang, XING Fu, YU Li-Li, XU Kun, SUN Zhong-Lin, LÁ Xian-Guo. PLANT SPECIES DIVERSITY OF THE ISLAND FOREST IN A MARSH IN THE SANJIANG PLAIN, CHINA [J]. Chin J Plant Ecol, 2008, 32(3): 582-590. |
[12] | ZHU Hua. A DISCUSSION ON PLANT DIVERSITY OF TROPICAL MONTANE RAIN FORESTS IN XISHUANGBANNA, YUNNAN [J]. Chin J Plant Ecol, 2006, 30(1): 184-186. |
[13] | LIU Qi-Jing, HU Li-Le, LI Xuan-Ran. PLANT DIVERSITY IN QIANYANZHOU AFTER 20 YEARS OF SMALL WATERSHED TREATMENT [J]. Chin J Plant Ecol, 2005, 29(5): 766-774. |
[14] | LI Zong-Shan, TANG Jian-Wei, ZHENG Zheng, LI Qing-Jun, LUO Cheng-Kun, LIU Zheng-An, LI Zi-Neng, DUAN Wen-Yong, GUO Xian-Ming. A STUDY ON PLANT DIVERSITY OF TROPICAL MONTANE RAIN FORESTS IN XISHUANGBANNA, YUNNAN [J]. Chin J Plan Ecolo, 2004, 28(6): 833-843. |
[15] | MA Ke-Ming, ZHANG Jie-Yu, GUO Xu-Dong, FU Bo-Jie. Plant Diversity Distribution of Mountains in Rural Landscapes£othe Combined Influences of Topography and Land Use [J]. Chin J Plan Ecolo, 2002, 26(5): 575-588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn