Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (5): 539-550.DOI: 10.3724/SP.J.1258.2011.00539
Special Issue: 生物多样性
• Research Articles • Previous Articles Next Articles
LIU Cong1,2, XIANG Wen-Hua1,2,*(), TIAN Da-Lun1,2,3, FANG Xi1,2,3, PENG Chang-Hui1,4
Received:
2010-11-08
Accepted:
2011-01-28
Online:
2011-11-08
Published:
2011-06-07
Contact:
XIANG Wen-Hua
LIU Cong, XIANG Wen-Hua, TIAN Da-Lun, FANG Xi, PENG Chang-Hui. Overyielding of fine root biomass as increasing plant species richness in subtropical forests in central southern China[J]. Chin J Plant Ecol, 2011, 35(5): 539-550.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00539
森林类型 Forest type | 优势树种 Dominant species | 林分密度 Stand density (stem·hm-2) | 林龄 Stand age (a) | 平均胸径Average DBH (cm) | 平均树高Average tree height (m) | 海拔Elevation (m) | 坡向Slope aspect | 坡度 Slope |
---|---|---|---|---|---|---|---|---|
CL | 杉木 Cunninghamia lanceolata | 625 | 51 | 23.54 (5-35) | 19.51 (4.5-27) | 223-258 | SE | 24° |
PM | 马尾松 Pinus massoniana 石栎 Lithocarpus glaber | 1 975 | 47 | 9.33 (5-26) | 8.37 (4-15.4) | 220-262 | SW | 15° |
CA | 南酸枣 Choerospondias axillaris 豹皮樟 Litsea coreana var. sinensis 四川山矾 Symplocos setchuensis 台湾冬青 Ilex formosana 千年桐 Aleurites montana | 1 075 | 58 | 12.68 (5-53.7) | 6.6 (2.5-12.5) | 245-321 | W | 35° |
CG | 青冈 Cyclobalanopsis glauca 石栎 Lithocarpus glaber 马尾松 Pinus massomiana 南酸枣 Choerospondias axillaris | 1 474 | 58 | 11.91 (5-42) | 9.30 (1-26.1) | 225-254 | NW | 22° |
Table 1 Stand characteristics of sampled forests
森林类型 Forest type | 优势树种 Dominant species | 林分密度 Stand density (stem·hm-2) | 林龄 Stand age (a) | 平均胸径Average DBH (cm) | 平均树高Average tree height (m) | 海拔Elevation (m) | 坡向Slope aspect | 坡度 Slope |
---|---|---|---|---|---|---|---|---|
CL | 杉木 Cunninghamia lanceolata | 625 | 51 | 23.54 (5-35) | 19.51 (4.5-27) | 223-258 | SE | 24° |
PM | 马尾松 Pinus massoniana 石栎 Lithocarpus glaber | 1 975 | 47 | 9.33 (5-26) | 8.37 (4-15.4) | 220-262 | SW | 15° |
CA | 南酸枣 Choerospondias axillaris 豹皮樟 Litsea coreana var. sinensis 四川山矾 Symplocos setchuensis 台湾冬青 Ilex formosana 千年桐 Aleurites montana | 1 075 | 58 | 12.68 (5-53.7) | 6.6 (2.5-12.5) | 245-321 | W | 35° |
CG | 青冈 Cyclobalanopsis glauca 石栎 Lithocarpus glaber 马尾松 Pinus massomiana 南酸枣 Choerospondias axillaris | 1 474 | 58 | 11.91 (5-42) | 9.30 (1-26.1) | 225-254 | NW | 22° |
参数 Parameter | 变异来源 Source of variation | ||
---|---|---|---|
森林类型 Forest type | 土壤层次 Soil layer | 森林类型×土壤层次 Forest type × Soil layer | |
活生物量 Live biomass (g·m-2) | 0.075 6 | 0.002 2** | 0.662 6 |
死生物量 Necromass (g·m-2) | 0.034 2* | 0.021 0* | 0.092 1 |
总生物量 Total biomass (g·m-2) | 0.043 9* | 0.000 7** | 0.672 1 |
活根死根比 Live biomass/necromass | 0.031 1* | 0.608 1 | 0.666 2 |
根长密度 Root length density (RLD) (m·m-3) | 0.073 7 | <0.000 1** | 0.022 9* |
比根长 Specific root length (SRL) (m·g-1) | 0.000 8** | 0.875 2 | 0.791 1 |
比表面积 Specific root area (SRA) (cm2·g-1) | 0.000 1** | 0.331 2 | 0.650 5 |
比根尖密度 Specific root tips density (SRT) (no·g-1) | 0.004 0** | 0.927 2 | 0.732 6 |
比分叉密度 Specific root forks density (SRF) (no·g-1) | 0.031 4* | 0.244 5 | 0.656 8 |
根面积指数 Root ares index (RAI) (m2·m-2) | 0.214 7 | <0.000 1** | 0.011 6* |
Table 2 Variance analysis of effects of forest type and soil layer on fine root biomass and morphology
参数 Parameter | 变异来源 Source of variation | ||
---|---|---|---|
森林类型 Forest type | 土壤层次 Soil layer | 森林类型×土壤层次 Forest type × Soil layer | |
活生物量 Live biomass (g·m-2) | 0.075 6 | 0.002 2** | 0.662 6 |
死生物量 Necromass (g·m-2) | 0.034 2* | 0.021 0* | 0.092 1 |
总生物量 Total biomass (g·m-2) | 0.043 9* | 0.000 7** | 0.672 1 |
活根死根比 Live biomass/necromass | 0.031 1* | 0.608 1 | 0.666 2 |
根长密度 Root length density (RLD) (m·m-3) | 0.073 7 | <0.000 1** | 0.022 9* |
比根长 Specific root length (SRL) (m·g-1) | 0.000 8** | 0.875 2 | 0.791 1 |
比表面积 Specific root area (SRA) (cm2·g-1) | 0.000 1** | 0.331 2 | 0.650 5 |
比根尖密度 Specific root tips density (SRT) (no·g-1) | 0.004 0** | 0.927 2 | 0.732 6 |
比分叉密度 Specific root forks density (SRF) (no·g-1) | 0.031 4* | 0.244 5 | 0.656 8 |
根面积指数 Root ares index (RAI) (m2·m-2) | 0.214 7 | <0.000 1** | 0.011 6* |
Fig. 1 Fine root live biomass (A), necromass (B), total biomass (C) and live biomass/necromass (D) at different soil layer of four forest types (mean ± SE, n = 9). Different letters represent signi?cant differences among different forest types for the 0-30 cm soil layer (p < 0.05). CA, Choerospondias axillaris forest; CG, Cyclobalanopsis glauca-Lithocarpus glaber forest; CL, Cunninghamia lanceolata forest; PM, Pinus massoniana-Lithocarpus glaber forest.
森林类型 Forest type | 土层 Soil layer (cm) | 活生物量 Live biomass (g·m-2) | 死生物量 Necromass (g·m-2) | 总生物量 Total biomass (g·m-2) | 活根死根比 Live biomass/necromass |
---|---|---|---|---|---|
CL | 0-10 | 106.14 (17.68)a NS | 14.10 (1.70)a NS | 120.24 (18.59)a NS | 7.92 (0.99)a NS |
10-20 | 81.11 (23.54)a | 13.47 (2.87)a | 94.58 (24.12)a | 8.77 (2.70)a | |
20-30 | 81.50 (10.34)a | 8.89 (1.81)a | 90.39 (10.21)a | 14.20 (4.80)a | |
PM | 0-10 | 179.75 (32.60)a §** | 43.03 (8.73)b §** | 222.78 (40.11)ab §** | 4.50 (0.54)a NS |
10-20 | 65.30 (6.15)a | 16.29 (2.69)ab | 81.59 (7.12)a | 4.77 (0.84)a | |
20-30 | 54.11 (10.10)a | 15.77 (2.76)a | 69.87 (12.16)a | 3.94 (0.74)a | |
CA | 0-10 | 246.23 (55.84)a § | 23.75 (5.88)ab NS | 269.98 (54.28)b § | 16.60 (5.63)a NS |
10-20 | 112.41 (58.94)a | 34.88 (9.43)b | 147.29 (63.03)a | 5.90 (2.83)a | |
20-30 | 98.67 (59.72)a | 21.48 (6.57)a | 120.16 (57.86)a | 13.02 (9.94)a | |
CG | 0-10 | 229.70 (45.22)a § | 35.95 (9.57)ab § | 265.65 (48.32)b § | 11.21 (3.79)a NS |
10-20 | 186.76 (86.11)a | 15.66 (4.30)ab | 202.41 (85.45)a | 20.11 (7.51)a | |
20-30 | 92.01 (38.69)a | 19.26 (11.85)a | 111.27 (39.29)a | 22.01 (10.52)a |
Table 3 Fine root live biomass, necromass and their ratio at different soil layer under four forest types (mean (SE))
森林类型 Forest type | 土层 Soil layer (cm) | 活生物量 Live biomass (g·m-2) | 死生物量 Necromass (g·m-2) | 总生物量 Total biomass (g·m-2) | 活根死根比 Live biomass/necromass |
---|---|---|---|---|---|
CL | 0-10 | 106.14 (17.68)a NS | 14.10 (1.70)a NS | 120.24 (18.59)a NS | 7.92 (0.99)a NS |
10-20 | 81.11 (23.54)a | 13.47 (2.87)a | 94.58 (24.12)a | 8.77 (2.70)a | |
20-30 | 81.50 (10.34)a | 8.89 (1.81)a | 90.39 (10.21)a | 14.20 (4.80)a | |
PM | 0-10 | 179.75 (32.60)a §** | 43.03 (8.73)b §** | 222.78 (40.11)ab §** | 4.50 (0.54)a NS |
10-20 | 65.30 (6.15)a | 16.29 (2.69)ab | 81.59 (7.12)a | 4.77 (0.84)a | |
20-30 | 54.11 (10.10)a | 15.77 (2.76)a | 69.87 (12.16)a | 3.94 (0.74)a | |
CA | 0-10 | 246.23 (55.84)a § | 23.75 (5.88)ab NS | 269.98 (54.28)b § | 16.60 (5.63)a NS |
10-20 | 112.41 (58.94)a | 34.88 (9.43)b | 147.29 (63.03)a | 5.90 (2.83)a | |
20-30 | 98.67 (59.72)a | 21.48 (6.57)a | 120.16 (57.86)a | 13.02 (9.94)a | |
CG | 0-10 | 229.70 (45.22)a § | 35.95 (9.57)ab § | 265.65 (48.32)b § | 11.21 (3.79)a NS |
10-20 | 186.76 (86.11)a | 15.66 (4.30)ab | 202.41 (85.45)a | 20.11 (7.51)a | |
20-30 | 92.01 (38.69)a | 19.26 (11.85)a | 111.27 (39.29)a | 22.01 (10.52)a |
Fig. 2 Comparison of fine root morphological parameters among different soil layers of different forest types. CA, CG, CL and PM see Table 1, RAI, RLD, SRA, SRF, SRL and SRT see Table 2. Values with same letter indicate no significant differences among the soil layers (capital letters) or forest type (small letters). *, p < 0.05; **, p < 0.01; I, 0-10 cm; II, 10-20 cm; III, 20-30 cm.
[1] |
Bakker MR, George E, Turpault MP, Zhang JL, Zeller B (2004). Impact of Douglas-fir and Scots pine seedlings on plagioclase weathering under acidic conditions. Plant and Soil, 266, 247-259.
DOI URL |
[2] |
Bauhus J, Khanna PK, Menden N (2000). Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Canadian Journal of Forest Research, 30, 1886-1894.
DOI URL |
[3] |
Bayala J, Teklehaimanot Z, Ouedrango SJ (2004). Fine root distribution of pruned trees and associated crops in a parkland system in Burkina Faso. Agroforestry Systems, 60, 13-26.
DOI URL |
[4] | Caldwell MM, Pearcy RW (1994). Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above- and Belowground. Academic Press, San Diego, USA. |
[5] | Chen W (陈伟), Xue L (薛立) (2004). Root interactions: competition and facilitation. Acta Ecologica Sinica (生态学报), 24, 1243-1251. (in Chinese with English abstract) |
[6] |
Craine JM (2006). Competition for nutrients and optimal root allocation. Plant and Soil, 285, 171-185.
DOI URL |
[7] |
Cronan CS (2003). Belowground biomass, production, and carbon cycling in mature Norway spruce, Maine, U.S.A. Canadian Journal of Forest Research, 33, 339-350.
DOI URL |
[8] |
Cuevas E, Brown S, Lugo AE (1991). Above- and below ground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant and Soil, 135, 257-268.
DOI URL |
[9] |
Curt T, Prévosto B (2003). Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant and Soil, 255, 265-279.
DOI URL |
[10] |
Erskine PD, Lamb D, Bristow M (2006). Tree species diversity and ecosystem function: Can tropical multi-species plantations generate greater productivity? Forest Ecology and Management, 233, 205-210.
DOI URL |
[11] |
Ewel JJ, Mazzarino MJ (2008). Competition from below for light and nutrients shifts productivity among tropical species. Proceedings of the National Academy of Sciences of the United States of America, 105, 18836-18841.
DOI URL PMID |
[12] |
Fransen B, de Kroon H, Berendse F (1998). Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability. Oecologia, 115, 351-358.
URL PMID |
[13] |
Gamfeldt L, Hillebrand H, Jonsson PR (2008). Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231.
DOI URL PMID |
[14] |
Grier CC, Vogt KA, Keyes MR, Edmonds RL (1981). Biomass distribution and above- and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Canadian Journal of Forest Research, 11, 155-167.
DOI URL |
[15] |
Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
DOI URL PMID |
[16] | Hector A (2001). Biodiversity and functioning of grassland ecosystems: multi-site comparison. In: Kinzig AP, Tilman D, Pacala SW eds. The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions. Princeton University Press, Princeton. 71-95. |
[17] |
Hector A (2006). Overyielding and stable species coexistence. New Phytologist, 172, 1-3.
DOI URL PMID |
[18] | Hendrick RL, Pregitzer KS (1996). Temporal and depth-related patterns of fine root dynamics in northern hardwood forests. Ecology, 84, 167-176. |
[19] |
Hendriks CMA, Bianchi FJJA (1995). Root density and root biomass in pure and mixed forest stands of Douglas-fir and beech. Netherlands Journal of Agricultural Science, 43, 321-331.
DOI URL |
[20] |
Hodge A (2004). The plastic plant: root responses to heterog- eneous supplies of nutrients. New Phytologist, 162, 9-24.
DOI URL |
[21] |
Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3-35.
DOI URL |
[22] |
Hooper DU, Dukes JS (2004). Overyielding among plant functional groups in a long-term experiment. Ecology Letters, 7, 95-105.
DOI URL |
[23] |
Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). A global analysis of root distribution for terrestrial biomes. Oecologia, 108, 389-411.
URL PMID |
[24] |
Jose S, Williams R, Zamora D (2006). Belowground ecological interactions in mixed-species forest plantations. Forest Ecology and Management, 233, 231-239.
DOI URL |
[25] |
Légaré S, Bergeron Y, Paré D (2005). Effect of aspen (Populus tremuloides) as a companion species on the growth of black spruce (Picea mariana) in the southwestern boreal forest of Quebec. Forest Ecology and Management, 208, 211-222.
DOI URL |
[26] |
Lehmann J (2003). Subsoil root activity in tree-based cropping systems. Plant and Soil, 255, 319-331.
DOI URL |
[27] |
Lehmann J, Zech W (1998). Fine root turnover of irrigated hedgerow intercropping in Northern Kenya. Plant and Soil, 198, 19-31.
DOI URL |
[28] | Leuschner C, Hertel D (2002). Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. Progress in Botany, 64, 405-438. |
[29] |
Leuschner C, Hertel D, Coners H, Büttner V (2001). Root competition between beech and oak: a hypothesis. Oecologia, 126, 276-284.
DOI URL PMID |
[30] |
Leuschner C, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D (2004). Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant and Soil, 258, 43-56.
DOI URL |
[31] |
Leuschner C, Jungkunst HF, Fleck S (2009). Functional role of forest diversity: pros and cons of synthetic stands and across-site comparisons in established forests. Basic and Applied Ecology, 10, 1-9.
DOI URL |
[32] | Liao LP (廖利平), Chen CY (陈楚莹), Zhang JW (张家武), Gao H (高洪) (1995). Turnover of fine roots in pure and mixed Cunninghamia lanceolata and Michelia macclurei forests. Chinese Journal of Applied Ecology (应用生态学报), 6, 7-10. (in Chinese with English abstract) |
[33] | Liu J (刘佳), Xiang WH (项文化), Xu X (徐晓), Chen R (陈瑞), Tian DL (田大伦), Peng CH (彭长辉), Fang X (方晰) (2010). Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong. Chinese Journal of Plant Ecology (植物生态学报), 34, 938-945. (in Chinese with English abstract ) |
[34] |
Loreau M (1998). Biodiversity and ecosystem functioning: a mechanistic model. Proceedings of the National Academy of Sciences of the United States of America, 95, 5632-5636.
URL PMID |
[35] | Mei L (梅莉), Wang ZQ (王政权), Han YZ (韩有志), Gu JC (谷加存), Wang XR (王向荣), Cheng YH (程云环), Zhang XJ (张秀娟) (2006). Distribution patterns of Fraxinus mandshurica root biomass, specific root length and root length density. Chinese Journal of Applied Ecology (应用生态学报), 17, 1-4. (in Chinese with English abstract) |
[36] |
Meinen C, Hertel D, Leuschner C (2009). Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity is there evidence of below-ground overyielding? Oecologia, 161, 99-111.
URL PMID |
[37] | Morgan JL, Campbell JM, Malcolm DC (1992). Nitrogen relations of mixed-species stands on oligotrophic soils. In: Cannell MGR, Malcolm DC, Robertson PA eds. The Ecology of Mixed-species Stands of Trees. Blackwell, London. 65-85. |
[38] |
Ostonen I, Lõhmus K, Helmisaari HS, Truu J, Meel S (2007). Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiology, 27, 1627-1634.
URL PMID |
[39] |
Pate JS, Bell TL (1999). Application of the ecosystem mimic concept to the species-rich Banksia Woodlands of Western Australia. Agroforestry Systems, 45, 303-341.
DOI URL |
[40] |
Persson H, Ahlström K (2002). Fine root response to nitrogen supply in nitrogen manipulated Norway spruce catchment areas. Forest Ecology and Management, 168, 29-41.
DOI URL |
[41] |
Persson H, von Fircks Y, Majdi H, Nilsson LO (1995). Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulfate application. Plant and Soil, 168-169, 161-165.
DOI URL |
[42] |
Pregitzer KS (2002). Fine roots of trees―a new perspective. New Phytologist, 154, 267-270.
DOI URL |
[43] |
Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998). Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18, 665-670.
URL PMID |
[44] |
Roscher C, Temperton VM, Scherer-Lorenzen M, Schmitz M, Schumacher J, Schmid B, Buchmann N, Weisser WW, Schulze ED (2005). Overyielding in experimental grassland communities: irrespective of species pool or spatial scale. Ecology Letters, 8, 419-429.
DOI URL |
[45] |
Scherer-Lorenzen M, Schulze ED, Don A, Schumacher J, Weller E (2007). Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspectives in Plant Ecology, Evolution and Systematics, 9, 53-70.
DOI URL |
[46] | Schmid B, Joshi J, Schläpfer F (2001). Empirical evidence for biodiversity ecosystem functioning relationships. In: Kinzig AP, Pacala SW, Tilman D eds. The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions. Princeton University Press, Princeton. 120-150. |
[47] |
Schmid I, Kazda M (2002). Root distribution of Norway spruce in monospecific and mixed stands on different soils. Forest Ecology and Management, 159, 37-47.
DOI URL |
[48] | Wang ST (王树堂), Han SJ (韩士杰), Zhang JH (张军辉), Wang CG (王存国), Xu Y (徐媛), Li XF (李雪峰), Wang SQ (王树起) (2010). Woody plant fine root biomass and its spatial distribution in top soil of broad-leaved Korean pine forest in Changbai Mountain. Chinese Journal of Applied Ecology (应用生态学报), 21, 583-589. (in Chinese with English abstract) |
[49] | Wen DZ (温达志), Wei P (魏平), Kong GH (孔国辉), Ye WH (叶万辉) (1999). Production and turnover rate of fine roots in two lower subtropical forest sites at Dinghushan. Acta Phytoecologica Sinica (植物生态学报), 23, 361-369. (in Chinese with English abstract) |
[50] | Yang YS (杨玉盛), Chen GS (陈光水), Lin P (林鹏), Huang RZ (黄荣珍), Chen YX (陈银秀), He ZM (何宗明) (2003). Fine root distribution, seasonal pattern and production in a native forest and monoculture plantations in subtropical China. Acta Ecologica Sinica (生态学报), 29, 229-232. (in Chinese with English abstract) |
[51] | Zhou Y (周毅), Deng XJ (邓学建), Mi XQ (米小其), Niu YD (牛艳东) (2007). Investigation of avifauna community construction and diversity of Dashanchong of Changsha in Hunan Province. Hunan Forestry Science & Technology (湖南林业科技), 34(2), 35-37. (in Chinese with English abstract) |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[3] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | QU Ze-Kun, ZHU Li-Qin, JIANG Qi, WANG Xiao-Hong, YAO Xiao-Dong, CAI Shi-Feng, LUO Su-Zhen, sCHEN Guang-Shui. Nutrient foraging strategies of arbuscular mycorrhizal tree species in a subtropical evergreen broadleaf forest and their relationship with fine root morphology [J]. Chin J Plant Ecol, 2024, 48(4): 416-427. |
[6] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[7] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[8] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[9] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[10] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[11] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[12] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[13] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[14] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[15] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn