Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (3): 242-252.DOI: 10.17521/cjpe.2020.0280
• Research Articles • Previous Articles Next Articles
WANG Zhao-Ying1, CHEN Xiao-Ping1, CHENG Ying2, WANG Man-Tang3, ZHONG Quan-Lin1,4, LI Man1, CHENG Dong-Liang1,4,*()
Received:
2020-08-14
Accepted:
2021-01-26
Online:
2021-03-20
Published:
2021-05-17
Contact:
CHENG Dong-Liang
Supported by:
WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains[J]. Chin J Plant Ecol, 2021, 45(3): 242-252.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0280
群落 Community | 林分密度 Stand density (trees·hm-2) | 平均胸径 Mean DBH (cm) | 平均树高 Mean height (m) | 土壤总碳含量 Soil total C content (mg·g-1) | 土壤总氮含量 Soil total N content (mg·g-1) | 土壤总磷含量 Soil total P content (mg·g-1) |
---|---|---|---|---|---|---|
EF | 3 033.33 ± 200.00 a | 13.77 ± 1.46 b | 7.87 ± 0.07 b | 68.88 ± 0.59 a | 4.84 ± 0.04 a | 0.46 ± 0.01 b |
MF | 1 133.33 ± 164.15 b | 21.39 ± 0.80 a | 10.56 ± 0.21 a | 78.71 ± 4.36 a | 5.25 ± 0.27 a | 0.38 ± 0.02 c |
DF | 2 725.00 ± 163.94 a | 11.47 ± 0.67 b | 6.94 ± 0.24 b | 75.16 ± 5.23 a | 6.05 ± 0.22 a | 0.65 ± 0.01 a |
Table 1 Site status of different forest communities in the Wuyi Mountains (mean ± SE)
群落 Community | 林分密度 Stand density (trees·hm-2) | 平均胸径 Mean DBH (cm) | 平均树高 Mean height (m) | 土壤总碳含量 Soil total C content (mg·g-1) | 土壤总氮含量 Soil total N content (mg·g-1) | 土壤总磷含量 Soil total P content (mg·g-1) |
---|---|---|---|---|---|---|
EF | 3 033.33 ± 200.00 a | 13.77 ± 1.46 b | 7.87 ± 0.07 b | 68.88 ± 0.59 a | 4.84 ± 0.04 a | 0.46 ± 0.01 b |
MF | 1 133.33 ± 164.15 b | 21.39 ± 0.80 a | 10.56 ± 0.21 a | 78.71 ± 4.36 a | 5.25 ± 0.27 a | 0.38 ± 0.02 c |
DF | 2 725.00 ± 163.94 a | 11.47 ± 0.67 b | 6.94 ± 0.24 b | 75.16 ± 5.23 a | 6.05 ± 0.22 a | 0.65 ± 0.01 a |
性状 Trait | 单位 Unit | 平均值(±标准误) Mean (±SE) | 最大值 Max | 最小值 Min | 变异系数 CV |
---|---|---|---|---|---|
ILA | cm2 | 22.98 ± 1.68 | 56.03 | 0.24 | 56.79 |
SLA | cm2·g-1 | 164.54 ± 8.45 | 386.95 | 79.54 | 39.78 |
LCC | mg·g-1 | 477.56 ± 3.32 | 525.14 | 371.38 | 5.39 |
LNC | mg·g-1 | 21.07 ± 0.88 | 38.75 | 9.54 | 32.36 |
LPC | mg·g-1 | 1.34 ± 0.05 | 2.40 | 0.66 | 27.91 |
RTD | g·cm-3 | 0.10 ± 0.003 | 0.18 | 0.05 | 24.23 |
SRL | cm·g-1 | 1 809.01 ± 56.49 | 3 284.93 | 749.73 | 24.19 |
SRA | cm2·g-1 | 477.00 ± 11.31 | 825.78 | 283.10 | 18.37 |
RCC | mg·g-1 | 481.55 ± 3.48 | 526.99 | 374.11 | 5.60 |
RNC | mg·g-1 | 10.19 ± 0.47 | 27.14 | 5.88 | 35.56 |
RPC | mg·g-1 | 0.60 ± 0.02 | 1.34 | 0.27 | 32.31 |
Table 2 Plant leaf and fine root traits measured from sampled 49 woody species in the Wuyi Mountains
性状 Trait | 单位 Unit | 平均值(±标准误) Mean (±SE) | 最大值 Max | 最小值 Min | 变异系数 CV |
---|---|---|---|---|---|
ILA | cm2 | 22.98 ± 1.68 | 56.03 | 0.24 | 56.79 |
SLA | cm2·g-1 | 164.54 ± 8.45 | 386.95 | 79.54 | 39.78 |
LCC | mg·g-1 | 477.56 ± 3.32 | 525.14 | 371.38 | 5.39 |
LNC | mg·g-1 | 21.07 ± 0.88 | 38.75 | 9.54 | 32.36 |
LPC | mg·g-1 | 1.34 ± 0.05 | 2.40 | 0.66 | 27.91 |
RTD | g·cm-3 | 0.10 ± 0.003 | 0.18 | 0.05 | 24.23 |
SRL | cm·g-1 | 1 809.01 ± 56.49 | 3 284.93 | 749.73 | 24.19 |
SRA | cm2·g-1 | 477.00 ± 11.31 | 825.78 | 283.10 | 18.37 |
RCC | mg·g-1 | 481.55 ± 3.48 | 526.99 | 374.11 | 5.60 |
RNC | mg·g-1 | 10.19 ± 0.47 | 27.14 | 5.88 | 35.56 |
RPC | mg·g-1 | 0.60 ± 0.02 | 1.34 | 0.27 | 32.31 |
性状 Trait | lg ILA | lg SLA | lg LCC | lg LNC | lg LPC | lg RTD | lg SRL | lg SRA | lg RCC | lg RNC |
---|---|---|---|---|---|---|---|---|---|---|
lg SLA | 0.107 | |||||||||
lg LCC | -0.075 | -0.367** | ||||||||
lg LNC | 0.140 | 0.708** | -0.253 | |||||||
lg LPC | -0.003 | 0.458** | 0.018 | 0.776** | ||||||
lg RTD | -0.037 | -0.24 | 0.022 | -0.295* | -0.236 | |||||
lg SRL | 0.276* | 0.014 | -0.077 | 0.003 | -0.116 | -0.200 | ||||
lg SRA | 0.202 | 0.163 | -0.074 | 0.199 | 0.081 | -0.777** | 0.768** | |||
lg RCC | -0.049 | -0.114 | 0.596** | -0.094 | 0.036 | 0.078 | -0.119 | -0.163 | ||
lg RNC | -0.006 | 0.147 | -0.113 | 0.413** | 0.310* | -0.462** | 0.192 | 0.435** | -0.224 | |
lg RPC | -0.081 | 0.194 | -0.207 | 0.362** | 0.310* | -0.572** | 0.113 | 0.451** | -0.381** | 0.786** |
Table 3 Correlation coefficients among the measured leaf and fine root traits on log scale
性状 Trait | lg ILA | lg SLA | lg LCC | lg LNC | lg LPC | lg RTD | lg SRL | lg SRA | lg RCC | lg RNC |
---|---|---|---|---|---|---|---|---|---|---|
lg SLA | 0.107 | |||||||||
lg LCC | -0.075 | -0.367** | ||||||||
lg LNC | 0.140 | 0.708** | -0.253 | |||||||
lg LPC | -0.003 | 0.458** | 0.018 | 0.776** | ||||||
lg RTD | -0.037 | -0.24 | 0.022 | -0.295* | -0.236 | |||||
lg SRL | 0.276* | 0.014 | -0.077 | 0.003 | -0.116 | -0.200 | ||||
lg SRA | 0.202 | 0.163 | -0.074 | 0.199 | 0.081 | -0.777** | 0.768** | |||
lg RCC | -0.049 | -0.114 | 0.596** | -0.094 | 0.036 | 0.078 | -0.119 | -0.163 | ||
lg RNC | -0.006 | 0.147 | -0.113 | 0.413** | 0.310* | -0.462** | 0.192 | 0.435** | -0.224 | |
lg RPC | -0.081 | 0.194 | -0.207 | 0.362** | 0.310* | -0.572** | 0.113 | 0.451** | -0.381** | 0.786** |
Fig. 1 Principal components analysis (PCA) of the leaf traits, fine root traits and whole-plant traits. A, PCA of leaf traits. B, PCA of fine root traits. C, PCA of whole-plant traits. ILA, individual leaf area; LCC, leaf carbon content; LNC, leaf nitrogen content; LPC, leaf phosphor content; RCC, root carbon content; RNC, root nitrogen content; RPC, root phosphor content; RTD, root tissue density; SLA, specific leaf area; SRA, specific root surface area; SRL, specific root length.
性状 Trait | 叶片 Leaf | 细根 Fine root | 整株植物 Whole-plant | ||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | ||
叶片 Leaf | lg ILA | -0.094 | 0.283* | -0.039 | -0.003 | ||
lg SLA | -0.843** | -0.159 | -0.550** | 0.535** | |||
lg LCC | 0.382** | 0.797** | 0.385** | -0.124 | |||
lg LNC | -0.931** | 0.132 | -0.679** | 0.593** | |||
lg LPC | -0.776** | 0.433** | -0.502** | 0.608** | |||
细根 Fine root | lg RTD | 0.775** | 0.100 | 0.698** | 0.284* | ||
lg SRL | -0.545** | -0.666** | -0.344** | -0.641** | |||
lg SRA | -0.862** | -0.478** | -0.684** | -0.596** | |||
lg RCC | 0.385** | -0.372** | 0.408** | 0.109 | |||
lg RNC | -0.760** | 0.419** | -0.754** | -0.098 | |||
lg RPC | -0.801** | 0.471** | -0.791** | -0.111 |
Table 4 Correlation coefficients between individual traits and the scores of the first and second principal components in each of the leaf, fine root and whole-plant economics spectrum
性状 Trait | 叶片 Leaf | 细根 Fine root | 整株植物 Whole-plant | ||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | ||
叶片 Leaf | lg ILA | -0.094 | 0.283* | -0.039 | -0.003 | ||
lg SLA | -0.843** | -0.159 | -0.550** | 0.535** | |||
lg LCC | 0.382** | 0.797** | 0.385** | -0.124 | |||
lg LNC | -0.931** | 0.132 | -0.679** | 0.593** | |||
lg LPC | -0.776** | 0.433** | -0.502** | 0.608** | |||
细根 Fine root | lg RTD | 0.775** | 0.100 | 0.698** | 0.284* | ||
lg SRL | -0.545** | -0.666** | -0.344** | -0.641** | |||
lg SRA | -0.862** | -0.478** | -0.684** | -0.596** | |||
lg RCC | 0.385** | -0.372** | 0.408** | 0.109 | |||
lg RNC | -0.760** | 0.419** | -0.754** | -0.098 | |||
lg RPC | -0.801** | 0.471** | -0.791** | -0.111 |
主成分分析 PCA | 轴 Axis | 叶习性 Leaf habit | 显著性检验 Significance test | ||
---|---|---|---|---|---|
常绿 Evergreen | 落叶 Deciduous | t | p | ||
叶片 Leaf | PC1 | 0.93 ± 0.19 a | -1.06 ± 0.24 b | 6.569 | 0 |
PC2 | -0.04 ± 0.23 a | 0.05 ± 0.12 a | -0.364 | 0.717 | |
细根 Fine root | PC1 | 0.27 ± 0.30 a | -0.31 ± 0.32 a | 1.340 | 0.185 |
PC2 | -0.14 ± 0.23 a | 0.16 ± 0.19 a | -0.998 | 0.322 | |
整株植物 Whole-plant | PC1 | 0.76 ± 0.31 a | -0.87 ± 0.31 b | 3.694 | 0 |
PC2 | -0.58 ± 0.23 b | 0.67 ± 0.23 a | -3.833 | 0 |
Table 5 Differences in PC1 and PC2 scores between evergreen and deciduous species (mean ± SE)
主成分分析 PCA | 轴 Axis | 叶习性 Leaf habit | 显著性检验 Significance test | ||
---|---|---|---|---|---|
常绿 Evergreen | 落叶 Deciduous | t | p | ||
叶片 Leaf | PC1 | 0.93 ± 0.19 a | -1.06 ± 0.24 b | 6.569 | 0 |
PC2 | -0.04 ± 0.23 a | 0.05 ± 0.12 a | -0.364 | 0.717 | |
细根 Fine root | PC1 | 0.27 ± 0.30 a | -0.31 ± 0.32 a | 1.340 | 0.185 |
PC2 | -0.14 ± 0.23 a | 0.16 ± 0.19 a | -0.998 | 0.322 | |
整株植物 Whole-plant | PC1 | 0.76 ± 0.31 a | -0.87 ± 0.31 b | 3.694 | 0 |
PC2 | -0.58 ± 0.23 b | 0.67 ± 0.23 a | -3.833 | 0 |
Fig. 2 Regression relationships among leaf PC1, fine root PC1 and whole-plant PC1. A, Regression relationships of leaf PC1 and fine root PC1. B, Regression relationships of leaf PC1 and whole-plant PC1. C, Regression relationships of fine root PC1 and whole-plant PC1.
[1] |
Aerts R (1995). The advantages of being evergreen. Trends in Ecology & Evolution, 10, 402-407.
DOI URL |
[2] |
Aerts R (1999). Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. Journal of Experimental Botany, 50, 29-37.
DOI URL |
[3] | Bai KD, Mo L, Liu M, Zhang DN, He CX, Wan XC, Jiang DB (2015). Nutrient resorption patterns of evergreen and deciduous tree species at different altitudes on Mao’er Mountain, Guangxi. Acta Ecologica Sinica, 35, 5776-5787. |
[白坤栋, 莫凌, 刘铭, 张德楠, 何成新, 万贤崇, 蒋得斌 (2015). 广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式. 生态学报, 35, 5776-5787.] | |
[4] |
Baraloto C, Timothy Paine CE, Poorter L, Beauchene J, Bonal D, Domenach AM, Hérault B, Patiño S, Roggy JC, Chave J (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338-1347.
DOI URL |
[5] |
Chabot BF, Hicks DJ (1982). The ecology of leaf life spans. Annual Review of Ecology and Systematics, 13, 229-259.
DOI URL |
[6] |
Chapin III FS (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260.
DOI URL |
[7] |
Chen GS, Hobbie SE, Reich PB, Yang YS, Robinson D (2019). Allometry of fine roots in forest ecosystems. Ecology Letters, 22, 322-331.
DOI URL |
[8] |
Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
DOI URL |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[9] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[10] |
Craine JM, Lee WG (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471-478.
PMID |
[11] |
Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19.
DOI URL |
[12] |
de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR, Marañón T, Villar R (2016). A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? Journal of Vegetation Science, 27, 187-199.
DOI URL |
[13] |
Díaz S, Cabido M, Casanoves F (1998). Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113-122.
DOI URL |
[14] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL |
[15] |
Ding JX, Kong DL, Zhang ZL, Cai Q, Xiao J, Liu Q, Yin HJ (2020). Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal-dominated alpine coniferous forests. Journal of Ecology, 108, 2544-2556.
DOI URL |
[16] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27, 1-60. |
[17] |
Fortunel C, Fine PVA, Baraloto C (2012). Leaf, stem and root tissue strategies across 758 Neotropical tree species. Functional Ecology, 26, 1153-1161.
DOI URL |
[18] |
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Evidence of the “plant economics spectrum” in a subarctic flora. Journal of Ecology, 98, 362-373.
DOI URL |
[19] |
Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu WD, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao JP, Cornelissen JHC (2013). Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. Journal of Ecology, 101, 943-952.
DOI URL |
[20] |
Funk JL, Cornwell WK (2013). Leaf traits within communities: context may affect the mapping of traits to function. Ecology, 94, 1893-1897.
DOI URL |
[21] |
Geng Y, Wang L, Jin DM, Liu HY, He JS (2014). Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits. Oecologia, 175, 445-455.
DOI PMID |
[22] | Givnish TJ (2002). Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica, 36, 703-743. |
[23] |
Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, et al. (1997). Integrated screening validates primary axes of specialisation in plants. Oikos, 79, 259-281.
DOI URL |
[24] |
He YY, Guo SL, Wang Z (2019). Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 43, 1021-1035.
DOI URL |
[何芸雨, 郭水良, 王喆 (2019). 植物功能性状权衡关系的研究进展. 植物生态学报, 43, 1021-1035.]
DOI |
|
[25] |
Isaac ME, Martin AR, de Melo Virginio Filho E, Rapidel B, Roupsard O, van den Meersche K (2017). Intraspecific trait variation and coordination: root and leaf economics spectra in coffee across environmental gradients. Frontiers in Plant Science, 8, 1196. DOI: 10.3389/fpls.2017.01196.
DOI |
[26] |
Kong DL, Wang JJ, Kardol P, Wu HF, Zeng H, Deng XB, Deng Y (2016). Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences, 13, 415-424.
DOI URL |
[27] |
Kong DL, Wang JJ, Wu HF, Valverde-Barrantes OJ, Wang RL, Zeng H, Kardol P, Zhang HY, Feng YL (2019). Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 10, 2203. DOI: 10.1038/s41467-019-10245-6.
DOI |
[28] |
Li FL, Hu H, McCormlack ML, Feng DF, Liu X, Bao WK (2019). Community-level economics spectrum of fine-roots driven by nutrient limitations in subalpine forests. Journal of Ecology, 107, 1238-1249.
DOI URL |
[29] |
Li JH, Peng GQ, Yang DM (2017). Effect of stem length to stem slender ratio of current-year twigs on the leaf display efficiency in evergreen and deciduous broadleaved trees. Chinese Journal of Plant Ecology, 41, 650-660.
DOI URL |
[李俊慧, 彭国全, 杨冬梅 (2017). 常绿和落叶阔叶物种当年生小枝茎长度和茎纤细率对展叶效率的影响. 植物生态学报, 41, 650-660.]
DOI |
|
[30] |
Liu GF, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010). Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytologist, 188, 543-553.
DOI URL |
[31] |
Liu L, Ge JL, Shu HW, Zhao CM, Xu WT, Shen GZ, Xie ZQ (2019). C, N and P stoichiometric ratios in mixed evergreen and deciduous broadleaved forests in Shennongjia, China. Chinese Journal of Plant Ecology, 43, 482-489.
DOI URL |
[刘璐, 葛结林, 舒化伟, 赵常明, 徐文婷, 申国珍, 谢宗强 (2019). 神农架常绿落叶阔叶混交林碳氮磷化学计量比. 植物生态学报, 43, 482-489.]
DOI |
|
[32] | Liu XZ, Fang FS (2001). Scientific Survey of the Wuyishan Nature Reserve in Jiangxi. China Forestry Publishing House, Beijing. |
[刘信中, 方福生 (2001). 江西武夷山自然保护区科学考察集. 中国林业出版社, 北京.] | |
[33] |
Lusk CH, Reich PB, Montgomery RA, Ackerly DD, Cavender- Bares J (2008). Why are evergreen leaves so contrary about shade? Trends in Ecology & Evolution, 23, 299-303.
DOI URL |
[34] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI |
[35] | Mao W, Li YL, Zhang TH, Zhao XY, Huang YX, Song LL (2012). Research advances of plant leaf traits at different ecology scales. Journal of Desert Research, 32, 33-41. |
[毛伟, 李玉霖, 张铜会, 赵学勇, 黄迎新, 宋琳琳 (2012). 不同尺度生态学中植物叶性状研究概述. 中国沙漠, 32, 33-41.] | |
[36] |
Medeiros JS, Burns JH, Nicholson J, Rogers L, Valverde- Barrantes O (2017). Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron. American Journal of Botany, 104, 803-816.
DOI PMID |
[37] |
Méndez-Alonzo R, Paz H, Zuluaga RC, Rosell JA, Olson ME (2012). Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology, 93, 2397-2406.
PMID |
[38] |
Monk CD (1966). An ecological significance of evergreenness. Ecology, 47, 504-505.
DOI URL |
[39] |
Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E (2012). Evidence for a “plant community economics spectrum” driven by nutrient and water limitations in a Mediterranean rangeland of southern France. Journal of Ecology, 100, 1315-1327.
DOI URL |
[40] |
Poorter H, Lambers H, Evans JR (2014). Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. New Phytologist, 201, 378-382.
DOI URL |
[41] |
Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim JH, Maeght JL, Mao Z, Pierret A, Portillo N, Roupsard O, Thammahacksa C, Stokes A (2015). Root functional parameters along a land-use gradient: evidence of a community- level economics spectrum. Journal of Ecology, 103, 361-373.
DOI URL |
[42] | Qu P, Xing YJ, Wang QG (2018). Research progress of plant economic spectrum. Chinese Agricultural Science Bulletin, 34, 88-94. |
[曲鹏, 邢亚娟, 王庆贵 (2018). 植物经济谱研究进展. 中国农学通报, 34, 88-94.] | |
[43] |
Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[44] |
Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955-1969.
DOI URL |
[45] |
Reich PB, Tjoelker MG, Walters MB, Vanderklein DW, Buschena C (1998). Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Functional Ecology, 12, 327-338.
DOI URL |
[46] | Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734. |
[47] |
Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164.
DOI URL |
[48] |
Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao KF, Stokes A (2016). Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytologist, 210, 815-826.
DOI URL |
[49] |
Tang QQ, Huang YT, Ding Y, Zang RG (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270.
DOI URL |
[唐青青, 黄永涛, 丁易, 臧润国 (2016). 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.]
DOI |
|
[50] |
Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508.
PMID |
[51] |
van Ommen Kloeke AEE, Douma JC, Ordoñez JC, Reich PB, van Bodegom PM (2012). Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 21, 224-235.
DOI URL |
[52] | Venables WN, Smith DM, The R Core Team (2019). An introduction to R. Notes on R: a programming environment for data analysis and graphics. Version 3.6.0 RC (2019-04- 24). [2019-04-27]. http://ydl.oregonstate.edu/pub/cran/doc/manuals/r-patched/R-intro.pdf. |
[53] |
Wang M, Wan PC, Guo JC, Xu JS, Chai YF, Yue M (2017). Relationships among leaf, stem and root traits of the dominant shrubs from four vegetation zones in Shaanxi Province, China. Israel Journal of Ecology and Evolution, 63, 25-32.
DOI URL |
[54] |
Warren CR, Adams MA (2004). Evergreen trees do not maximize instantaneous photosynthesis. Trends in Plant Science, 9, 270-274.
DOI URL |
[55] |
Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174.
DOI URL |
[56] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
PMID |
[57] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[58] |
Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397.
DOI URL |
[59] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411-421.
DOI URL |
[60] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
PMID |
[61] |
Xiao D, Wang XJ, Zhang K, He NP, Hou JH (2016). Effects of nitrogen addition on leaf traits of common species in natural Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China. Chinese Journal of Plant Ecology, 40, 686-701.
DOI URL |
[肖迪, 王晓洁, 张凯, 何念鹏, 侯继华 (2016). 氮添加对山西太岳山天然油松林主要植物叶片性状的影响. 植物生态学报, 40, 686-701.]
DOI |
|
[62] |
Yu HY, Chen YT, Xu ZZ, Zhou GS (2014). Analysis of relationships among leaf functional traits and economics spectrum of plant species in the desert steppe of Nei Mongol. Chinese Journal of Plant Ecology, 38, 1029-1040.
DOI URL |
[于鸿莹, 陈莹婷, 许振柱, 周广胜 (2014). 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析. 植物生态学报, 38, 1029-1040.]
DOI |
|
[63] | Zhao YT, Ali A, Yan ER (2017). The plant economics spectrum is structured by leaf habits and growth forms across subtropical species. Tree Physiology, 37, 173-185. |
[64] | Zheng CY, Liu ZL, Fang JY (2004). Tree species diversity along altitudinal gradient on southeastern and northwestern slopes of Mt. Huanggang, Wuyi Mountains, Fujian, China. Biodiversity Science, 12, 63-74. |
郑成洋, 刘增力, 方精云 (2004). 福建黄岗山东南坡和西北坡乔木物种多样性及群落特征的垂直变化. 生物多样性, 12, 63-74.].
DOI |
[1] | Lu-Yu Qi Hao-Nan Chen KuLiHong SAIREBIELI Tian-Yu JI Gao-De MENG 慧颖 秦 Ning WANG Yi-Xin SONG Chun-Yu LIU Ning DU Weihua GUO. Growth strategies of five shrub seedlings in warm temperate zone based on plant functional traits [J]. Chin J Plant Ecol, 2022, 46(11): 1388-1399. |
[2] | ZHANG Jing-Hui, WANG Zheng, HUANG Yong-Mei, CHEN Hui-Ying, LI Zhi-Yong, LIANG Cun-Zhu. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical steppe [J]. Chin J Plant Ecol, 2021, 45(8): 818-833. |
[3] | LIU Run-Hong, BAI Jin-Lian, BAO Han, NONG Juan-Li, ZHAO Jia-Jia, JIANG Yong, LIANG Shi-Chu, LI Yue-Juan. Variation and correlation in functional traits of main woody plants in the Cyclobalanopsis glauca community in the karst hills of Guilin, southwest China [J]. Chin J Plant Ecol, 2020, 44(8): 828-841. |
[4] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
[5] | FENG Ji-Guang, ZHU Biao. A review on the effects of nitrogen and phosphorus addition on tree growth and productivity in forest ecosystems [J]. Chin J Plant Ecol, 2020, 44(6): 583-597. |
[6] | ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511. |
[7] | GAO Si-Han, GE Yu-Xi, ZHOU Li-Yi, ZHU Bao-Lin, GE Xing-Yu, LI Kai, NI Jian. What is the optimal number of leaves when measuring leaf area of tree species in a forest community? [J]. Chin J Plant Ecol, 2018, 42(9): 917-925. |
[8] | Jun-Hui LI, Guo-Quan PENG, Dong-Mei YANG. Effect of stem length to stem slender ratio of current-year twigs on the leaf display efficiency in evergreen and deciduous broadleaved trees [J]. Chin J Plant Ecol, 2017, 41(6): 650-660. |
[9] | Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Yang WANG, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China [J]. Chin J Plant Ecol, 2017, 41(1): 31-42. |
[10] | Bin-Bin KONG, Xin-Hua WEI, Jia-Li DU, Ying-Nian LI, Zhi-Hong ZHU. Effects of clipping and fertilization on the temporal dynamics of species diversity and functional diversity and their relationships in an alpine meadow [J]. Chin J Plan Ecolo, 2016, 40(3): 187-199. |
[11] | Dan LI, Saruul KANG, Meng-Ying ZHAO, Qing ZHANG, Hai-Juan REN, Jing REN, Jun-Mei ZHOU, Zhen WANG, Ren-Ji WU, Jian-Ming NIU. Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2016, 40(10): 991-1002. |
[12] | ZHAN Shu-Xia, ZHENG Shu-Xia, WANG Yang, BAI Yong-Fei. Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions [J]. Chin J Plant Ecol, 2016, 40(1): 36-47. |
[13] | XU Ming-Shan,HUANG Hai-Xia,SHI Qing-Ru,YANG Xiao-Dong,ZHOU Liu-Li,ZHAO Yan-Tao,ZHANG Qing-Qing,YAN En-Rong. Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province [J]. Chin J Plan Ecolo, 2015, 39(9): 857-866. |
[14] | HUANG Yong-Tao,YAO Lan,AI Xun-Ru,LÜ Shi-An,DING Yi. Quantitative classification of the subtropical evergreen-deciduous broadleaved mixed forest and the deciduous and evergreen species composition structure across two national nature reserves in the southwest of Hubei, China [J]. Chin J Plan Ecolo, 2015, 39(10): 990-1002. |
[15] | CHEN Hui-Ying, ZHANG Jing-Hui, HUANG Yong-Mei, GONG Ji-Rui. Traits related to carbon sequestration of common plant species in a Stipa grandis steppe in Nei Mongol under different land-uses [J]. Chin J Plant Ecol, 2014, 38(8): 821-832. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn