Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (5): 444-455.DOI: 10.17521/cjpe.2020.0135
Special Issue: 青藏高原植物生态学:生态系统生态学
• Research Articles • Previous Articles Next Articles
ZONG Ning1, SHI Pei-Li1,2,*(), ZHAO Guang-Shuai3, ZHENG Li-Li1,2, NIU Ben1, ZHOU Tian-Cai1,2, HOU Ge1,2
Received:
2020-05-08
Accepted:
2020-08-10
Online:
2021-05-20
Published:
2020-11-02
Contact:
SHI Pei-Li
Supported by:
ZONG Ning, SHI Pei-Li, ZHAO Guang-Shuai, ZHENG Li-Li, NIU Ben, ZHOU Tian-Cai, HOU Ge. Variations of nitrogen and phosphorus limitation along the environmental gradient in alpine grasslands on the Northern Xizang Plateau[J]. Chin J Plant Ecol, 2021, 45(5): 444-455.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0135
Fig. 1 Biomass response patterns of the four main types of nitrogen and phosphorus co-limitation. Assuming that nutritional additions have no negative effects. CK, control (no resource addition); +A, adding resource A; +B, adding resource B; +AB, adding A and B together.
研究站点 Study site | ||||
---|---|---|---|---|
高寒草甸 Alpine meadow | 高寒草甸草原 Alpine meadow-steppe | 高寒草原 Alpine steppe | 高寒荒漠草原 Alpine desert-steppe | |
经纬度 Latitude and longitude | 31.57° N, 92.57° E | 31.38° N, 90.23° E | 31.78° N, 87.23° E | 32.37° N, 82.27° E |
海拔 Altitude (m) | 4 570 | 4 590 | 4 580 | 4 520 |
年平均气温 Mean annual air temperature (℃) | -0.9 | -1.0 | -1.4 | -1.4 |
年降水量 Mean annual precipitation (mm) | 444.9 | 335.4 | 327.4 | 175.2 |
群落盖度 Coverage (%) | 70-80 | 40-50 | 20-30 | 15-25 |
优势种群 Dominant species | 高山嵩草 Kobresia pygmaea | 紫花针茅、窄叶薹草 Stipa purpurea, Carex montis-everesti | 紫花针茅 S. purpurea | 紫花针茅、小叶棘豆 S. purpurea, Oxytropis microphylla |
Table 1 Description of study sites in alpine grasslands on the Northern Xizang Plateau
研究站点 Study site | ||||
---|---|---|---|---|
高寒草甸 Alpine meadow | 高寒草甸草原 Alpine meadow-steppe | 高寒草原 Alpine steppe | 高寒荒漠草原 Alpine desert-steppe | |
经纬度 Latitude and longitude | 31.57° N, 92.57° E | 31.38° N, 90.23° E | 31.78° N, 87.23° E | 32.37° N, 82.27° E |
海拔 Altitude (m) | 4 570 | 4 590 | 4 580 | 4 520 |
年平均气温 Mean annual air temperature (℃) | -0.9 | -1.0 | -1.4 | -1.4 |
年降水量 Mean annual precipitation (mm) | 444.9 | 335.4 | 327.4 | 175.2 |
群落盖度 Coverage (%) | 70-80 | 40-50 | 20-30 | 15-25 |
优势种群 Dominant species | 高山嵩草 Kobresia pygmaea | 紫花针茅、窄叶薹草 Stipa purpurea, Carex montis-everesti | 紫花针茅 S. purpurea | 紫花针茅、小叶棘豆 S. purpurea, Oxytropis microphylla |
Fig. 2 Inter-annual variations of precipitation in different types of alpine grasslands and the relationship between soil nitrogen (N) and phosphorus (P) content and precipitation on the Northern Xizang Plateau. ADS, alpine desert-steppe; AM, alpine meadow; AMS, alpine meadow-steppe; AS, alpine steppe.
功能群 Functional group | 年份 Year | 施肥 Fertilization | 草地类型 Grassland | 年份×施肥 Year × Fertilization | 年份×草地 Year × Grassland | 草地×施肥 Grassland × Fertilization | 年份×草地×施肥 Year × Grassland × Fertilization | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df = 2 | df = 3 | df = 3 | df = 6 | df = 6 | df = 9 | df = 18 | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
群落 Community | 14.81 | <0.001 | 24.70 | <0.001 | 336.91 | <0.001 | 0.83 | 0.55 | 2.92 | 0.014 | 2.78 | 0.016 | 0.77 | 0.73 |
禾草 Grasses | 16.98 | <0.001 | 33.60 | <0.001 | 30.68 | <0.001 | 5.64 | <0.001 | 12.59 | <0.001 | 6.92 | <0.001 | 4.19 | <0.001 |
莎草 Sedges | 2.63 | 0.080 | 3.82 | 0.019 | 403.75 | <0.001 | 0.53 | 0.79 | 2.07 | 0.069 | 3.04 | 0.01 | 0.56 | 0.91 |
豆科 Legumes | 11.57 | <0.001 | 3.64 | 0.023 | 24.66 | <0.001 | 0.92 | 0.48 | 11.34 | <0.001 | 6.81 | <0.001 | 1.29 | 0.48 |
杂类草 Forbs | 6.49 | 0.003 | 7.38 | 0.001 | 52.69 | <0.001 | 2.15 | 0.060 | 7.23 | 0.003 | 1.44 | 0.21 | 3.27 | <0.001 |
Table 2 Using year as the repeated factor, Repeated Measure ANOVA analysis of the effects of nitrogen and phosphorus addition on the aboveground biomass of different types of alpine grasslands
功能群 Functional group | 年份 Year | 施肥 Fertilization | 草地类型 Grassland | 年份×施肥 Year × Fertilization | 年份×草地 Year × Grassland | 草地×施肥 Grassland × Fertilization | 年份×草地×施肥 Year × Grassland × Fertilization | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df = 2 | df = 3 | df = 3 | df = 6 | df = 6 | df = 9 | df = 18 | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
群落 Community | 14.81 | <0.001 | 24.70 | <0.001 | 336.91 | <0.001 | 0.83 | 0.55 | 2.92 | 0.014 | 2.78 | 0.016 | 0.77 | 0.73 |
禾草 Grasses | 16.98 | <0.001 | 33.60 | <0.001 | 30.68 | <0.001 | 5.64 | <0.001 | 12.59 | <0.001 | 6.92 | <0.001 | 4.19 | <0.001 |
莎草 Sedges | 2.63 | 0.080 | 3.82 | 0.019 | 403.75 | <0.001 | 0.53 | 0.79 | 2.07 | 0.069 | 3.04 | 0.01 | 0.56 | 0.91 |
豆科 Legumes | 11.57 | <0.001 | 3.64 | 0.023 | 24.66 | <0.001 | 0.92 | 0.48 | 11.34 | <0.001 | 6.81 | <0.001 | 1.29 | 0.48 |
杂类草 Forbs | 6.49 | 0.003 | 7.38 | 0.001 | 52.69 | <0.001 | 2.15 | 0.060 | 7.23 | 0.003 | 1.44 | 0.21 | 3.27 | <0.001 |
Fig. 3 Effects of nitrogen (N) and phosphorus (P) addition on the aboveground biomass of different plant functional groups of alpine grasslands. Different uppercase letters in the same year represent significant differences among fertilization treatments (p < 0.05). F and P represent the differences in different functional groups among fertilization treatments. A-C, Alpine meadow. D-F, Alpine meadow-steppe. G-I, Alpine steppe. J-L, Alpine desert-steppe.
Fig. 4 Relative co-limitation index of nitrogen and phosphorus for different types of alpine grasslands. ADS, alpine desert-steppe; AM, alpine meadow; AMS, alpine meadow-steppe; AS, alpine steppe. RCIN, nitrogen limitation index; RCIP, phosphorus limitation index. Different uppercase letters in the same year represent significant differences among grassland types (p < 0.05).
Fig. 5 Relationships between relative co-limitation index and precipitation as well as soil nutrient content in alpine grasslands on the Northern Xizang Plateau. RCIN, nitrogen limitation index; RCIP, phosphorus limitation index.
[1] |
Bowman WD,Theodose TA,Schardt JC,Conant RT(1993).Constraints of nutrient availability on primary production in two alpine tundra communities.Ecology,74, 2085-2097.
DOI URL |
[2] |
Brant AN,Chen HYH(2015).Patterns and mechanisms of nutrient resorption in plants.Critical Reviews in Plant Sciences,34, 471-486.
DOI URL |
[3] | Chapin III FS,Matson PA(2011).Principles of Terrestrial Ecosystem Ecology. 2nd ed.Springer-Verlag,New York. |
[4] |
Clark CM,Tilman D(2008).Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands.Nature,451, 712-715.
DOI URL |
[5] |
Craine JM,Jackson RD(2010).Plant nitrogen and phosphorus limitation in 98 North American grassland soils.Plant and Soil,334, 73-84.
DOI URL |
[6] |
Craine JM,Morrow C,Stock WD(2008).Nutrient concentration ratios and co-limitation in South African grasslands.New Phytologist,179, 829-836.
DOI URL |
[7] |
Crowley KF,McNeil BE,Lovett GM,Canham CD,Driscoll CT,Rustad LE,Denny E,Hallett RA,Arthur MA,Boggs JL,Goodale CL,Kahl JS,McNulty SG,Ollinger SV,Pardo LH,Schaberg PG,Stoddard JL,Weand MP,Weathers KC(2012).Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the Northeastern United States?Ecosystems,15, 940-957.
DOI URL |
[8] |
Du EZ,Terrer C,Pellegrini AFA,Ahlstrom A,van Lissa CJ,Zhao X,Xia N,Wu XH,Jackson RB(2020).Global patterns of terrestrial nitrogen and phosphorus limitation.Nature Geoscience,13, 221-226.
DOI URL |
[9] |
Elser JJ,Bracken MES,Cleland EE,Gruner DS,Harpole WS,Hillebrand H,Ngai JT,Seabloom EW,Shurin JB,Smith JE(2007).Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Ecology Letters,10, 1135-1142.
DOI URL |
[10] |
Galloway JN,Dentener FJ,Capone DG,Boyer EW,Howarth RW,Seitzinger SP,Asner GP,Cleveland CC,Green PA,Holland EA,Karl DM,Michaels AF,Porter JH,Townsend AR,Vöosmarty CJ(2004).Nitrogen cycles: past, present, and future.Biogeochemistry,70, 153-226.
DOI URL |
[11] |
Gao QZ,Li YE,Wan YF(2006).Grassland degradation in Northern Tibet based on remote sensing data.Journal of Geographical Sciences,16, 165-173.
DOI URL |
[12] |
Gao YH,Cooper DJ,Ma XX(2016).Phosphorus additions have no impact on plant biomass or soil nitrogen in an alpine meadow on the Qinghai-Tibetan Plateau, China.Applied Soil Ecology,106, 18-23.
DOI URL |
[13] |
Gao YH,Cooper DJ,Zeng XY(2018).Nitrogen, not phosphorus, enrichment controls biomass production in alpine wetlands on the Tibetan Plateau, China.Ecological Engineering,116, 31-34.
DOI URL |
[14] |
Gleeson SK,Tilman D(1992).Plant allocation and the multiple limitation hypothesis.The American Naturalist,139, 1322-1343.
DOI URL |
[15] |
Gusewell S(2004).N:P ratios in terrestrial plants: variation and functional significance.New Phytologist,164, 243-266.
DOI URL |
[16] |
Han WX,Tang LY,Chen YH,Fang JY(2013).Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants.PLOS ONE,8, e83366. DOI:10.1371/journal.pone.0083366.
DOI URL |
[17] |
Harpole WS,Ngai JT,Cleland EE,Seabloom EW,Borer ET,Bracken MES,Elser JJ,Gruner DS,Hillebrand H,Shurin JB,Smith JE(2011).Nutrient co-limitation of primary producer communities.Ecology Letters,14, 852-862.
DOI URL |
[18] |
Hautier Y,Niklaus PA,Hector A(2009).Competition for light causes plant biodiversity loss after eutrophication.Science,324, 636-638.
DOI PMID |
[19] | Huang J,Wang GF,An SZ,Yun J,Li H,Zhang RH(2009).Effect of nitrogen fertilization on the vegetation structure and biomass of degraded meadow and soil fertility.Pratacultural Science,26, 75-78. |
[黄军,王高峰,安沙舟,贠静,李海,张荣华(2009).施氮对退化草甸植被结构和生物量及土壤肥力的影响.草业科学,26, 75-78.] | |
[20] |
Lamarque JF,Hess P,Emmons L,Buja L,Washington W,Granier C(2005).Tropospheric ozone evolution between 1890 and 1990.Journal of Geophysical Research,110, D08304. DOI:10.1029/2004jd005537.
DOI |
[21] |
LeBauer DS,Treseder KK(2008).Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology,89, 371-379.
PMID |
[22] | Li MS(2000).Rational exploitation of grassland resources in the Northern Xizang Plateau.Journal of Natural Resources,15, 335-339. |
[李明森(2000).藏北高原草地资源合理利用.自然资源学报,15, 335-339.] | |
[23] | Liebig J(1855).Principles of Agricultural Chemistry. 2nd ed.Walton and Maberly,London. |
[24] | Odum EP,Barrett GW(2005).Fundamentals of Ecology. 5th ed.Thomson Brooks/Cole, Belmont,USA. |
[25] |
Peñuelas J,Poulter B,Sardans J,Ciais P,van der Velde M,Bopp L,Boucher O,Godderis Y,Hinsinger P,Llusia J,Nardin E,Vicca S,Obersteiner M,Janssens IA(2013).Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe.Nature Communications,4, 2934. DOI:10.1038/ncomms3934.
DOI PMID |
[26] | Shen ZX,Zhou XM,Chen ZZ,Zhou HK(2002).Response of plant groups to simulated rainfall and nitrogen supply in alpine Kobresia humilis meadow.Acta Phytoecologica Sinica,26, 288-294. |
[沈振西,周兴民,陈佐忠,周华坤(2002).高寒矮嵩草草甸植物类群对模拟降水和施氮的响应.植物生态学报,26, 288-294.] | |
[27] |
Song MH,Yu FH,Ouyang H,Cao GM,Xu XL,Cornelissen JHC(2012).Different inter-annual responses to availability and form of nitrogen explain species coexistence in an alpine meadow community after release from grazing.Global Change Biology,18, 3100-3111.
DOI URL |
[28] |
Song MH,Zong N,Jiang J,Shi PL,Zhang XZ,Gao JQ,Zhou HK,Li YK,Loreau M(2019).Nutrient-induced shifts of dominant species reduce ecosystem stability via increases in species synchrony and population variability.Science of the Total Environment,692, 441-449.
DOI URL |
[29] |
Sullivan BW,Alvarez-Clare S,Castle SC,Porder S,Reed SC,Schreeg L,Townsend AR,Cleveland CC(2014).Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments.Ecology,95, 668-681.
DOI URL |
[30] | Tilman D(1982).Resource Competition and Community Structure.Princeton University Press,Princeton. |
[31] | Vitousek PM(2004).Nutrient Cycling and Limitation: Hawai'i as a Model System.Princeton University Press,Princeton. |
[32] |
Vitousek PM,Porder S,Houlton BZ,Chadwick OA(2010).Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions.Ecological Applications,20, 5-15.
DOI URL |
[33] |
Wieder WR,Cleveland CC,Smith WK,Todd-Brown K(2015).Future productivity and carbon storage limited by terrestrial nutrient availability.Nature Geoscience,8, 441-444.
DOI URL |
[34] |
Wu JS,Zhang XZ,Shen ZX,Shi PL,Xu XL,Li XJ(2013).Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the Northern Tibetan Plateau.Rangeland Ecology and Management,66, 454-461.
DOI URL |
[35] |
Yan ZB,Tian D,Han WX,Tang ZY,Fang JY(2017).An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants.Annals of Botany,120, 937-942.
DOI URL |
[36] |
Yang XX,Ren F,Zhou HK,He JS(2014).Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology,38, 159-166.
DOI URL |
[杨晓霞,任飞,周华坤,贺金生(2014).青藏高原高寒草甸植物群落生物量对氮、磷添加的响应.植物生态学报,38, 159-166.] | |
[37] |
Yuan ZY,Chen HYH(2009).Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation.Global Ecology and Biogeography,18, 11-18.
DOI URL |
[38] |
Zhao GS,Shi PL,Wu JS,Xiong DP,Zong N,Zhang XZ(2017).Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau.Ecology and Evolution,7, 7201-7212.
DOI URL |
[39] | Zhou XM(2001).Chinese Kobresia Meadows.Science Press,Beijing. |
[周兴民(2001).中国嵩草草甸,科学出版社,北京.] | |
[40] | Zong N,Shi PL,Niu B,Jiang J,Song MH,Zhang XZ,He YT(2014).Effects of nitrogen and phosphorous fertilization on community structure and productivity of degraded alpine meadows in northern Tibet, China.Chinese Journal of Applied Ecology,25, 3458-3468. |
[宗宁,石培礼,牛犇,蒋婧,宋明华,张宪洲,何永涛(2014).氮磷配施对藏北退化高寒草甸群落结构和生产力的影响.应用生态学报,25, 3458-3468.] | |
[41] |
Zong N,Song MH,Zhao GS,Shi PL(2020).Nitrogen economy of alpine plants on the north Tibetan Plateau: nitrogen conservation by resorption rather than open sources through biological symbiotic fixation.Ecology and Evolution,10, 2051-2061.
DOI URL |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[3] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[4] | GAMADAERJI , YANG Ze, TAN Xing-Ru, WANG Shan-Shan, LI Wei-Jing, YOU Cui-Hai, WANG Yan-Bing, ZHANG Bing-Wei, REN Ting-Ting, CHEN Shi-Ping. Effect of altered litter input and nitrogen addition on ecosystem aboveground primary productivity and plant functional group composition in a semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(8): 791-806. |
[5] | FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands [J]. Chin J Plant Ecol, 2019, 43(7): 566-575. |
[6] | MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565. |
[7] | LIU Yuan-Yuan, MA Jin-Ze, BU Zhao-Jun, WANG Sheng-Zhong, ZHANG Xue-Bing, ZHANG Ting-Yu, LIU Sha-Sha, FU Biao, KANG Yuan. Effect of geographical sources and biochemical traits on plant litter decomposition in a peatland [J]. Chin J Plan Ecolo, 2018, 42(7): 713-722. |
[8] | Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2018, 42(4): 430-441. |
[9] | YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238. |
[10] | Jing WANG, Shan-Shan WANG, Xian-Guo QIAO, Ang LI, Jian-Guo XUE, Muqier HASI, Xue-Yao ZHANG, Jian-Hui HUANG. Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland [J]. Chin J Plan Ecolo, 2016, 40(10): 980-990. |
[11] | FAN Da-Yong,XIONG Gao-Ming,ZHANG Ai-Ying,LIU Xi,XIE Zong-Qiang,LI Zhao-Jia. Effect of water-lever regulation on species selection for ecological restoration practice in the water-level fluctuation zone of Three Gorges Reservoir [J]. Chin J Plan Ecolo, 2015, 39(4): 416-432. |
[12] | SONG Yan-Tao, ZHOU Dao-Wei, LI Qiang, WANG Ping, HUANG Ying-Xin. Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China [J]. Chin J Plant Ecol, 2012, 36(3): 222-230. |
[13] | LIU Chao, WANG Yang, WANG Nan, WANG Gen-Xuan. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: a review [J]. Chin J Plant Ecol, 2012, 36(11): 1205-1216. |
[14] | ZHANG Zhi-Dong, ZANG Run-Guo. PREDICTING POTENTIAL DISTRIBUTIONS OF DOMINANT WOODY PLANT KEYSTONE SPECIES IN A NATURAL TROPICAL FOREST LANDSCAPE OF BAWANGLING, HAINAN ISLAND, SOUTH CHINA [J]. Chin J Plant Ecol, 2007, 31(6): 1079-1091. |
[15] | ZHU Yu-Jie, GAO Qiong, LIU Jun-Shan, XU Xia, ZHOU Chan. AGGREGATION OF PLANT FUNCTIONAL TYPES BASED ON MODELS OF STOMATAL CONDUCTANCE AND PHOTOSYNTHESIS [J]. Chin J Plant Ecol, 2007, 31(5): 873-882. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn