Chin J Plant Ecol ›› 2007, Vol. 31 ›› Issue (6): 1079-1091.DOI: 10.17521/cjpe.2007.0136
• Research Articles • Previous Articles Next Articles
ZHANG Zhi-Dong1,2, ZANG Run-Guo1,*()
Received:
2006-11-07
Accepted:
2006-12-20
Online:
2007-11-07
Published:
2007-11-30
Contact:
ZANG Run-Guo
ZHANG Zhi-Dong, ZANG Run-Guo. PREDICTING POTENTIAL DISTRIBUTIONS OF DOMINANT WOODY PLANT KEYSTONE SPECIES IN A NATURAL TROPICAL FOREST LANDSCAPE OF BAWANGLING, HAINAN ISLAND, SOUTH CHINA[J]. Chin J Plant Ecol, 2007, 31(6): 1079-1091.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2007.0136
功能群 Functional group | 潜在最大树高 Potential maximal tree height (m) | 物种个数 Species richness | 相对多度 Relative abundance (%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
先锋灌木Pioneer shrub (F1) | 2~5 | 18 | 2.20 | ||||||||||||||||
先锋次林层乔木Pioneer subcanopy tree (F2) | 5~15 | 33 | 8.51 | ||||||||||||||||
先锋主林层乔木Pioneer canopy tree (F3) | 15~30 | 8 | 1.78 | ||||||||||||||||
先锋超冠层乔木Pioneer emergent tree (F4) | >30 | 2 | 0.43 | ||||||||||||||||
顶极灌木Climax shrub (F5) | 2~5 | 69 | 19.73 | ||||||||||||||||
顶极次林层乔木Climax subcanopy tree (F6) | 5~15 | 276 | 35.16 | ||||||||||||||||
顶极主林层乔木Climax canopy tree (F7) | 15~30 | 157 | 29.82 | ||||||||||||||||
顶极超冠层乔木Climax emergent tree (F8) | >30 | 16 | 2.38 |
Table 1 Aggregation of 579 woody species into six functional groups in the natural forest landscape of Bawangling, Hainan Island, South China
功能群 Functional group | 潜在最大树高 Potential maximal tree height (m) | 物种个数 Species richness | 相对多度 Relative abundance (%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
先锋灌木Pioneer shrub (F1) | 2~5 | 18 | 2.20 | ||||||||||||||||
先锋次林层乔木Pioneer subcanopy tree (F2) | 5~15 | 33 | 8.51 | ||||||||||||||||
先锋主林层乔木Pioneer canopy tree (F3) | 15~30 | 8 | 1.78 | ||||||||||||||||
先锋超冠层乔木Pioneer emergent tree (F4) | >30 | 2 | 0.43 | ||||||||||||||||
顶极灌木Climax shrub (F5) | 2~5 | 69 | 19.73 | ||||||||||||||||
顶极次林层乔木Climax subcanopy tree (F6) | 5~15 | 276 | 35.16 | ||||||||||||||||
顶极主林层乔木Climax canopy tree (F7) | 15~30 | 157 | 29.82 | ||||||||||||||||
顶极超冠层乔木Climax emergent tree (F8) | >30 | 16 | 2.38 |
功能群 Functional group | 潜在关键种 Potential keystone species | DIij (×100) | Nij | Nj |
---|---|---|---|---|
F1 | 1.毛稔Melastoma sanquiueum | 64.85 | 832 | 1 283 |
2.紫毛野牡丹Melastoma penicillatum | 21.43 | 275 | ||
3.野牡丹Melastoma candidum | 4.99 | 64 | ||
F2 | 4.银柴Aporosa chinensis | 19.81 | 982 | 4 956 |
5.猪肚木Canthium horridum | 13.94 | 691 | ||
6.黄牛木Cratoxylum ligustrinum | 11.86 | 588 | ||
F3 | 7.海南杨桐Adinandra hainanensis | 35.78 | 370 | 1 034 |
8.翻白叶Pterospermum heterophyllum | 29.69 | 307 | ||
9.拟赤杨Alniphyllum fortunei | 16.15 | 167 | ||
F4 | 10.枫香Liquidambar formosana | 99.60 | 248 | 249 |
11.西南桦Betula alnoides | 0.40 | 1 | ||
F5 | 12.九节Psychotria rubra | 51.95 | 5 967 | 11 486 |
13.柏拉木Blastus cochinchinensis | 11.04 | 1 268 | ||
14.粗叶木Lasianthus chinensis | 8.10 | 930 | ||
F6 | 15.高脚罗伞Ardisia quinquegona | 10.11 | 2 070 | 20 469 |
16.粗毛野桐Mallotus hookerianus | 6.06 | 1 241 | ||
17.烟斗稠Lithocarpus corneus | 4.33 | 886 | ||
F7 | 18.海南椎Castanopsis hainanensis | 4.67 | 811 | 17 360 |
19.中华厚壳桂Cryptocarya chinensis | 4.03 | 699 | ||
20.黄叶树Xanthophyllum hainanense | 3.92 | 681 | ||
F8 | 21.南亚松Pinus merkusii | 36.38 | 505 | 1 388 |
22.多腺水翁Cleistocalyx conspersipunctatus | 13.40 | 186 | ||
23.野荔枝Litchi chinensis | 10.09 | 140 |
Table 2 Identification of potential keystone species applied by dominance index
功能群 Functional group | 潜在关键种 Potential keystone species | DIij (×100) | Nij | Nj |
---|---|---|---|---|
F1 | 1.毛稔Melastoma sanquiueum | 64.85 | 832 | 1 283 |
2.紫毛野牡丹Melastoma penicillatum | 21.43 | 275 | ||
3.野牡丹Melastoma candidum | 4.99 | 64 | ||
F2 | 4.银柴Aporosa chinensis | 19.81 | 982 | 4 956 |
5.猪肚木Canthium horridum | 13.94 | 691 | ||
6.黄牛木Cratoxylum ligustrinum | 11.86 | 588 | ||
F3 | 7.海南杨桐Adinandra hainanensis | 35.78 | 370 | 1 034 |
8.翻白叶Pterospermum heterophyllum | 29.69 | 307 | ||
9.拟赤杨Alniphyllum fortunei | 16.15 | 167 | ||
F4 | 10.枫香Liquidambar formosana | 99.60 | 248 | 249 |
11.西南桦Betula alnoides | 0.40 | 1 | ||
F5 | 12.九节Psychotria rubra | 51.95 | 5 967 | 11 486 |
13.柏拉木Blastus cochinchinensis | 11.04 | 1 268 | ||
14.粗叶木Lasianthus chinensis | 8.10 | 930 | ||
F6 | 15.高脚罗伞Ardisia quinquegona | 10.11 | 2 070 | 20 469 |
16.粗毛野桐Mallotus hookerianus | 6.06 | 1 241 | ||
17.烟斗稠Lithocarpus corneus | 4.33 | 886 | ||
F7 | 18.海南椎Castanopsis hainanensis | 4.67 | 811 | 17 360 |
19.中华厚壳桂Cryptocarya chinensis | 4.03 | 699 | ||
20.黄叶树Xanthophyllum hainanense | 3.92 | 681 | ||
F8 | 21.南亚松Pinus merkusii | 36.38 | 505 | 1 388 |
22.多腺水翁Cleistocalyx conspersipunctatus | 13.40 | 186 | ||
23.野荔枝Litchi chinensis | 10.09 | 140 |
环境因子图层 Environmental layer | 外部缺省误差Omission error (Ext) | |||||||
---|---|---|---|---|---|---|---|---|
1 | 4 | 7 | 10 | 12 | 15 | 18 | 21 | |
平面曲率Plan curvature | (0.242) | (0.389) | (0.491) | (0.423) | (0.464) | (0.457) | (0.469) | (0.477) |
坡向Aspect (°) | (-0.282*) | (0.269) | (-0.215*) | (0.304) | (-0.321*) | (-0.201*) | (-0.187*) | (0.237) |
海拔Altitude (m) | 0.036 | (-0.202*) | -0.101* | (-0.200*) | (-0.209*) | (-0.198*) | (-0.202*) | (-0.078*) |
剖面曲率Profile curvature | (0.213) | (0.281) | (-0.151*) | 0.137 | (0.270) | (0.230) | (0.242) | (0.250) |
坡度Slope (°) | 0.127 | (0.309) | 0.014 | (0.298) | 0.123 | (0.171) | (0.248) | (0.241) |
年均降雨量Annual mean precipitation (mm) | (-0.248*) | -0.121* | -0.024* | (-0.221*) | 0.076 | -0.062* | -0.030* | -0.101* |
年均相对湿度Annual mean relative humidity (%) | 0.072 | (-0.242*) | 0.041 | -0.127* | -0.117* | 0.025 | -0.154* | (-0.302*) |
最低温度Minimum temperature (℃) | -0.123* | -0.122* | 0.064 | -0.108* | -0.077* | -0.041* | -0.069* | (-0.295*) |
平均温度Mean temperature (℃) | 0.020 | (-0.267*) | -0.138* | (-0.203*) | -0.033* | (-0.225*) | -0.155* | (-0.173*) |
最高温度Maximum temperature (℃) | -0.058* | (-0.296*) | 0.019 | (-0.303*) | (-0.176*) | -0.157* | -0.163* | (-0.255*) |
Table 3 Correlations between the data (0/1) of each coverage and omission error (Externa)
环境因子图层 Environmental layer | 外部缺省误差Omission error (Ext) | |||||||
---|---|---|---|---|---|---|---|---|
1 | 4 | 7 | 10 | 12 | 15 | 18 | 21 | |
平面曲率Plan curvature | (0.242) | (0.389) | (0.491) | (0.423) | (0.464) | (0.457) | (0.469) | (0.477) |
坡向Aspect (°) | (-0.282*) | (0.269) | (-0.215*) | (0.304) | (-0.321*) | (-0.201*) | (-0.187*) | (0.237) |
海拔Altitude (m) | 0.036 | (-0.202*) | -0.101* | (-0.200*) | (-0.209*) | (-0.198*) | (-0.202*) | (-0.078*) |
剖面曲率Profile curvature | (0.213) | (0.281) | (-0.151*) | 0.137 | (0.270) | (0.230) | (0.242) | (0.250) |
坡度Slope (°) | 0.127 | (0.309) | 0.014 | (0.298) | 0.123 | (0.171) | (0.248) | (0.241) |
年均降雨量Annual mean precipitation (mm) | (-0.248*) | -0.121* | -0.024* | (-0.221*) | 0.076 | -0.062* | -0.030* | -0.101* |
年均相对湿度Annual mean relative humidity (%) | 0.072 | (-0.242*) | 0.041 | -0.127* | -0.117* | 0.025 | -0.154* | (-0.302*) |
最低温度Minimum temperature (℃) | -0.123* | -0.122* | 0.064 | -0.108* | -0.077* | -0.041* | -0.069* | (-0.295*) |
平均温度Mean temperature (℃) | 0.020 | (-0.267*) | -0.138* | (-0.203*) | -0.033* | (-0.225*) | -0.155* | (-0.173*) |
最高温度Maximum temperature (℃) | -0.058* | (-0.296*) | 0.019 | (-0.303*) | (-0.176*) | -0.157* | -0.163* | (-0.255*) |
关键种 Keystone species | 逐步线性回归模型 Stepwise linear regression models | 自由度 df | R2 | F | p |
---|---|---|---|---|---|
1 | Y=-9.07-0.08Aspect+1.83Minimum temperature+0.73Altitude | 3 | 0.43 | 253.22 | 0.000 1 |
4 | Y=-29.82-1.88Minimum temperature +1.05Altitude+9.56Mean temperature | 3 | 0.42 | 241.34 | 0.000 1 |
7 | Y=14.62-4.21Mean temperature-0.02Slope-0.25Altitude | 3 | 0.80 | 1 296.04 | 0.000 1 |
10 | Y=-29.21+1.35Altitude+7.01Mean temperature | 2 | 0.36 | 276.28 | 0.000 1 |
12 | Y=73.64-21.54Maximum temperature-0.27Altitude | 2 | 0.70 | 1 184.38 | 0.000 1 |
15 | Y=22.43+1.31Minimum temperature-0.54Altitude-7.45Mean temperature | 3 | 0.73 | 907.28 | 0.000 1 |
18 | Y=10.62-3.44Mean temperature-0.02Aspect | 2 | 0.71 | 1 222.76 | 0.000 1 |
21 | Y=-188.11+5.49Minimum temperature+24.33Annual mean precipitation+0.70Altitude | 3 | 0.30 | 140.51 | 0.000 1 |
Table 4 Stepwise linear regression models between potential distribution of each keystone species and major environmental factors
关键种 Keystone species | 逐步线性回归模型 Stepwise linear regression models | 自由度 df | R2 | F | p |
---|---|---|---|---|---|
1 | Y=-9.07-0.08Aspect+1.83Minimum temperature+0.73Altitude | 3 | 0.43 | 253.22 | 0.000 1 |
4 | Y=-29.82-1.88Minimum temperature +1.05Altitude+9.56Mean temperature | 3 | 0.42 | 241.34 | 0.000 1 |
7 | Y=14.62-4.21Mean temperature-0.02Slope-0.25Altitude | 3 | 0.80 | 1 296.04 | 0.000 1 |
10 | Y=-29.21+1.35Altitude+7.01Mean temperature | 2 | 0.36 | 276.28 | 0.000 1 |
12 | Y=73.64-21.54Maximum temperature-0.27Altitude | 2 | 0.70 | 1 184.38 | 0.000 1 |
15 | Y=22.43+1.31Minimum temperature-0.54Altitude-7.45Mean temperature | 3 | 0.73 | 907.28 | 0.000 1 |
18 | Y=10.62-3.44Mean temperature-0.02Aspect | 2 | 0.71 | 1 222.76 | 0.000 1 |
21 | Y=-188.11+5.49Minimum temperature+24.33Annual mean precipitation+0.70Altitude | 3 | 0.30 | 140.51 | 0.000 1 |
[1] | Anderson RP, Gomez-Laverde M, Peterson AT (2002). Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecology and Biogeography, 11,131-141. |
[2] | Beerling DJ, Huntley B, Bailey JP (1995). Climate and the distribution of Fallopia japonica: use of an introduced species to test the predictive capacity of response surfaces. Journal of Vegetation Science, 6,269-282. |
[3] |
Berger WH, Parker FL (1970). Diversity of planktonic foraminifera in deep sea sediments. Science, 168,1345-1347.
URL PMID |
[4] | Blondel J (2003). Guilds or functional groups: does it matter? Oikos, 100,223-231. |
[5] | Chazdon RL, Careaga S, Webb C, Vargas O (2003). Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests. Ecological Monographs, 73,331-348. |
[6] | Chen PF, Wiley EO, Mcnyset KM (2006). Ecological niche modeling as a predictive tool: silver and bighead carps in North America. Biological Invasions, 9,43-51. |
[7] |
Christianou M, Ebenman B (2005). Keystone species and vulnerable species in ecological communities: strong or weak interactors? Journal of Theoretical Biology, 235,95-103.
DOI URL PMID |
[8] | Chun WY (陈焕镛) (1964). Flora Hainanica, VolumeⅠ (海南植物志,第Ⅰ卷). Science Press, Beijing.167-362. (in Chinese) |
[9] | Chun WY (陈焕镛) (1965). Flora Hainanica, VolumeⅡ (海南植物志,第Ⅱ卷). Science Press, Beijing.1-453. (in Chinese) |
[10] | Coomes DA, Grubb PJ (2003). Colonization, tolerance, competition and seed-size variation within functional groups. Trends in Ecology & Evolution, 18,283-291. |
[11] | Davic RD (2003). Linking keystone species and functional groups: a new operational definition of the keystone species concept. Conservation Ecology, 7(1),r11. http://www.consecol.org/vol17/iss11/resp11. Cited 10 Sep 2006. |
[12] |
Ebenman B, Jonsson T (2005). Using community viability analysis to identify fragile systems and keystone species. Trends in Ecology & Evolution, 20,568-575.
DOI URL PMID |
[13] | ESRI (2003). ARCGIS. Environmental Systems Research Institute, Inc., Redlands, California, USA. |
[14] | Gili JM (2002). Variability of the keystone species concept in marine ecosystems. Trends in Ecology & Evolution, 17,499. |
[15] | Guangdong Institute of Botany(广东省植物研究所) (1974). Flora Hainanica, Volume Ⅲ (海南植物志,第Ⅲ卷). Science Press, Beijing. (in Chinese) |
[16] | Guangdong Institute of Botany(广东省植物研究所) (1977). Flora Hainanica, Volume Ⅳ (海南植物志,第Ⅳ卷). Science Press, Beijing. (in Chinese) |
[17] | Guisan A, Thuiller W (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8,993-1009. |
[18] | Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75,3-35. |
[19] | Hu YJ (胡玉佳), Li YX (李玉杏) (1992). Tropical Rain Forest of Hainan Island (海南岛热带雨林). Guangdong Higher Education Press, Guangzhou. (in Chinese) |
[20] | Huang JH (黄建辉), Han XG (韩兴国) (2001). Keystone species: what is keystoneness? Acta Phytoecologica Sinica (植物生态学报), 25,505-509. (in Chinese with English abstract) |
[21] | Hurlbert SH (1997). Functional importance vs keystoneness: reformulating some questions in theoretical biocenology. Australian Journal of Ecology, 22,369-382. |
[22] | Hutchinson GE (1957). Concluding remarks. Cold Spring Harbor Symposium. Quantitative Biology, 22,415-427. |
[23] | Hutchinson MF (1999). ANUDEM Version 4.6 User Guide. The Australian National University, Centre for Resource and Environmental Studies, Canberra. |
[24] | Hutchinson MF (2000). ANUSPLIN Version 4.1 User Guide. The Australian National University, Centre for Resource and Environmental Studies, Canberra. |
[25] | Jiang YX (蒋有绪), Wang BS (王伯荪), Zang RG (臧润国), Jin JH (金建华), Liao WB (廖文波) (2002). Biodiversity and Mechanism of Maintenance of the Tropical Forest in Hainan Island (海南岛热带林生物多样性及其形成机制). Science Press, Beijing,219-324. (in Chinese) |
[26] | Jordan F, Takacs-Santa A, Molnar I (1999). Are liability theoretical quest for keystones. Oikos, 86,453-462. |
[27] | Køhler P, Ditzer T, Huth A (2000). Concepts for the aggregation of tropical tree species into functional types and application to Sabah's lowland rain forest. Journal of Tropical Ecology, 16,591-602. |
[28] | Krogh SN, Zeisset MS, Jackson E, Whitford WG (2002). Presence/absence of a keystone species as an indicator of rangeland health. Journal of Arid Environments, 50,513-519. |
[29] | Li HM (李红梅), Han HX (韩红香), Xue DY (薛大勇) (2005). Prediction of potential geographic distribution areas for the pine bark scale, Matsucoccus matsumurae(Kuwana)(Homoptera: Margarodidae) in China using GARP modeling system. Acta Entomologica Sinica (昆虫学报), 48,95-100. (in Chinese with English abstract) |
[30] | Li W, Wang Z, Ma Z, Tang H (1997). A regression model for the spatial distribution of red-crown crane in Yancheng Biosphere Reserve, China. Ecological Modelling, 103,115-121. |
[31] | Li YD (李意德) (1993). Comparative analysis for biomass measurement of tropical mountain rain forest in Hainan Island, China. Acta Ecologica Sinica (生态学报), 13,313-320. (in Chinese with English abstract) |
[32] | Loreau M (2000). Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 91,3-17. |
[33] | Loreau M (2004). Does functional redundancy exist? Oikos, 104,606-611. |
[34] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001). Biodiversity and ecosystem functioning: curreent knowledge and future challenges. Science, 294,804-808.
DOI URL PMID |
[35] | Lu Y (陆阳), Li MG (李鸣光), Huang YW (黄雅文), Chen ZH (陈章和), Hu YJ (胡玉佳) (1986). Vegetation of Bawangling Gibbon Natural Reserve, in Hainan Island. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 10,106-114. (in Chinese with English abstract) |
[36] | Monica P, Peterson AT (2003). Predicting the potential invasive distribution for Eupatorium adenophorum Spreng. in China. Journal of Wuhan Botanical Research (武汉植物学研究), 21,137-142. |
[37] | Nix HA (1986). A biogeographic analysis of Australian elapid snakes. In: Longmore Red. Atlas of Australian Elapid Snakes. Australian Government Publishing Service, Canberra,4-15. |
[38] | Paine RT (1995). A conversation on refining the concept of keystone species. Conservation Biology, 9,962-964. |
[39] | Patterson BD (1999). Contingency and determinism in mammalian biogeography: the role of history. Journal of Mammalogy, 80,345-360. |
[40] | Peterson AT, Cohoon KP (1999). Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modelling, 117,159-164. |
[41] | Peterson AT, Pages M, Kluza DA (2003). Predicting the potential invasive distributions of four alien plant species in North America. Weed Science, 51,863-868. |
[42] |
Peterson AT, Soberon J, Sanchez-Cordero V (1999). Conservatism of ecological niches in evolutionary time. Science, 285,1265-1267.
DOI URL PMID |
[43] | Peterson AT, Vieglais DA (2001). Predicting species invasions using ecological niche modeling: new approaches from bioinformatics atack a pressing problem. BioScience, 51,363-371. |
[44] |
Power ME, Mills LS (1995). The keystone cops meet in Hilo. Trends in Ecology & Evolution, 10,182-184.
DOI URL PMID |
[45] | Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996). Changes in the quest for keystones. BioScience, 46,609-620. |
[46] |
Raven PH, Wilson EO (1992). A fifty-year plan for biodiversity surveys. Science, 258,1099-1100.
DOI URL PMID |
[47] | Saunders DA, Hobbs RJ, Margules CR (1991). Biological consequences of ecosystem fragmentation: a review. Conservation Biology, 5,18-32. |
[48] | Scachetti-Pereira R (2001). Desktop GARP. www.lifemapper.org/desktopgarp. Cited 10 Feb. 2006. |
[49] | Skidmore AK, Gauld A, Walker P (1996). Classification of kangaroo distribution using three GIS models. International Journal of Information Systems, 10,441-454. |
[50] | SPSS (2004). SPSS for Windows, Version 13. 0, Chicago. |
[51] | Stockman AK, Beamer DA, Bond JE (2006). An evaluation of a GARP model as an approach to predicting the spatial distribution of non-vagile invertebrate species. Diversity & Distributions, 12,81-89. |
[52] | Stockwell DRB, Peters DP (1999). THe GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Information Systems, 13,143-158. |
[53] | Stockwell DRB, Peterson AT (2002). Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148,1-13. |
[54] |
Swenson NG (2005). Gis-based niche models reveal unifying climatic mechanisms that maintain the location of avian hybrid zones in a North American sutrue zone. Journal of Evolutionary Biology, 19,717-725.
URL PMID |
[55] |
Swets JA (1988). Measuring the accuracy of diagnostic systems. Science, 240,1285-1293.
DOI URL PMID |
[56] | Underwood EC, Klinger R, Moore PE (2004). Predicting patterns of non-native plant invasions in Yosemite National Park, California, USA. Diversity & Distributions, 10,447-459. |
[57] | Voss RS, Emmons LH (1996). Mammalian diversity in neotropical lowland rainforests: a preliminary assessment. Bulletin of the American Museum of Natural History, 230,1-115. |
[58] | Whitmore TC (1998). An Introduction to Tropical Rain Forest 2nd edn. Oxford University Press, Oxford. |
[59] | Wiley EO, McNyset KM, Peterson AT, Robins CR, Stewart AM (2003). Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography, 16,120-127. |
[60] | Willmott CJ, Matsuura K (1999). Smart interpolation of annually averaged air temperature in the United States. Journal of Applied Meteorology, 34,2577-2586. |
[61] | Yan H (阎洪) (2003). Spline interpolation of spatial-temporal climate data for China. Geography and Geo-Information Science (地理与地理信息科学), 19,27-31. (in Chinese with English abstract) |
[62] | Yan H (阎洪) (2004). Modeling spatial distribution of climate in China using thin plate smoothing spline interpolation. Scientia Geographica Sinica (地理科学), 24,163-169. (in Chinese with English abstract) |
[63] | Zang RG (臧润国), An SQ (安树青), Tao JP (陶建平), Jiang YX (蒋有绪), Wang BX (王伯荪) (2004). Biodiversity and Mechanism of Maintenance of the Tropical Forest in Hainan Island (海南岛热带林生物多样性维持机制). Science Press, Beijing,1-169. (in Chinese) |
[64] | Zang RG (臧润国), Cheng KW (成克武), Li JQ (李俊清), Zhang WY (张炜银), Chen XF (陈雪峰), Tao JP (陶建平) (2005). Conservation and Restoration of Biodiversity in Natural Forest (天然林生物多样性保育与恢复). China Science and Technology Press, Beijing,4-6. (in Chinese) |
[1] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[2] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[3] | WAN Chun-Yan, YU Jun-Rui, ZHU Shi-Dan. Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species [J]. Chin J Plant Ecol, 2023, 47(10): 1386-1397. |
[4] | WU Qiu-Xia, WU Fu-Zhong, HU Yi, KANG Zi-Jia, ZHANG Yao-Yi, YANG Jing, YUE Kai, NI Xiang-Yin, YANG Yu-Sheng. Difference in non-structural carbohydrates between fresh and senescent leaves of 11 tree species in a subtropical common-garden [J]. Chin J Plant Ecol, 2021, 45(7): 771-779. |
[5] | WANG Qing-Qing, GAO Yan, WANG Rong. Review on impacts of global change on food web structure [J]. Chin J Plant Ecol, 2021, 45(10): 1064-1074. |
[6] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
[7] | CHEN Si-Lu, CAI Jin-Song, LIN Cheng-Fang, SONG Hao-Wei, YANG Yu-Sheng. Response of leaf litter decomposition of different tree species to nitrogen addition in a subtropical forest [J]. Chin J Plant Ecol, 2020, 44(3): 214-227. |
[8] | MEI Kong-Can, CHENG Lei, ZHANG Qiu-Fang, LIN Kai-Miao, ZHOU Jia-Cong, ZENG Quan-Xin, WU Yue, XU Jian-Guo, ZHOU Jin-Rong, CHEN Yue-Min. Effects of dissolved organic matter from different plant sources on soil enzyme activities in subtropical forests [J]. Chin J Plant Ecol, 2020, 44(12): 1273-1284. |
[9] | CHE Jian, ZHENG Jie, JIANG Ya, JIN Yi, YI Yin. Separation of phylogeny and ecological behaviors between evergreen and deciduous woody angiosperms in the subtropical forest dynamics plots of China [J]. Chin J Plant Ecol, 2020, 44(10): 1007-1014. |
[10] | LIU Xiao-Tong, YUAN Quan, NI Jian. Research advances in modelling plant species distribution in China [J]. Chin J Plant Ecol, 2019, 43(4): 273-283. |
[11] | ZHANG Zhen-Zhen, ZHAO Ping, ZHANG Jin-Xiu, SI Yao. Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2019, 43(2): 131-138. |
[12] | TAN Zheng-Hong,YU Gui-Rui,ZHOU Guo-Yi,HAN Shi-Jie,HSIA Yue-Joe,MAEDA Takashi,KOSUGI Yoshiko,YAMANOI Katsumi,LI Sheng-Gong,OHTA Takeshi,HIRATA Ryuichi,YASUDA Yukio,NAKANO Takashi,KOMINAMI Yuji,KITAMURA Kenzo,MIZOGUCHI Yasuko,LIAO Zhi-Yong,ZHAO Jun-Fu,YANG Lian-Yan. Microclimate of forests across East Asia biomes: 1. Radiation and energy balance [J]. Chin J Plan Ecolo, 2015, 39(6): 541-553. |
[13] | XU Ting,CAO Lin,SHEN Xin,SHE Guang-Hui. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data [J]. Chin J Plan Ecolo, 2015, 39(4): 309-321. |
[14] | SHEN Xin,CAO Lin,XU Ting,SHE Guang-Hui. Classification of Pinus massoniana and secondary deciduous tree species in northern subtropical region based on high resolution and hyperspectral remotely sensed data [J]. Chin J Plan Ecolo, 2015, 39(12): 1125-1135. |
[15] | JIN Jia-Xin,JIANG Hong,PENG Wei,ZHANG Lin-Jing,LU Xue-He,XU Jian-Hui,ZHANG Xiu-Ying,WANG Ying. Evaluating the impact of soil factors on the potential distribution of Phyllostachys edulis (bamboo) in China based on the species distribution model [J]. Chin J Plant Ecol, 2013, 37(7): 631-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn