Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (10): 1064-1074.DOI: 10.17521/cjpe.2020.0061
Special Issue: 全球变化与生态系统; 生态系统结构与功能
• Reviews • Previous Articles Next Articles
WANG Qing-Qing, GAO Yan, WANG Rong()
Received:
2020-03-11
Accepted:
2020-08-03
Online:
2021-10-20
Published:
2020-11-30
Contact:
WANG Rong
Supported by:
WANG Qing-Qing, GAO Yan, WANG Rong. Review on impacts of global change on food web structure[J]. Chin J Plant Ecol, 2021, 45(10): 1064-1074.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0061
专业术语 Terminology | 解释 Explanation |
---|---|
上行调控 Bottom-up control | 通过低营养级物种的防御限制高营养级物种的可利用食物资源进而调控食物网中各物种的种群大小(Terborgh et al., The defenses of species at low trophic levels limit the availability of food resource for species at high trophic levels, regulating the population size of each species in a food web (Terborgh et al., |
下行调控 Top-down control | 通过高营养级物种对低营养级物种的捕食/取食控制食物网中各物种种群大小(Terborgh et al., Species at high trophic levels control the population size of each species in a food web through preying on or feeding on the species at low trophic levels (Terborgh et al., |
DNA条形码技术 DNA barcoding | DNA条形码是指基因组中能够代表该物种的且在种间有足够变异的、易扩增的DNA片段。通过获取一个或多个DNA条形码片段信息并与数据库中相关序列进行对比可快速、精确地完成物种鉴定(Hebert et al., The DNA fragments can represent the genomic characters of a species but with sufficient interspecific genetic variations and can be easily amplified. Rapid and accurate species identification can be achieved by using one to several DNA barcode fragments and comparing the obtained sequence information with related sequences in gene databases (Hebert et al., |
进化军备竞赛 Evolutionary arm race | 自然选择在不断提高捕食者发现和捕获猎物效率的同时也会不断改进猎物及时发现和逃避捕食者的能力, 这种相互适应的进化历程被称为进化军备竞赛(You et al., As a result of reciprocal selection, the efficiency of predators in finding and capturing preys and the ability of preys in detecting and eluding predators are simultaneously and continuously improved. This type of coadaptation in evolutionary history is named as the evolutionary arms race (You et al., |
内禀优势 Inherent superiority | 外来种在繁殖和扩散的过程中, 某些固有特征(如生理、生态、遗传和行为等)相对于本地种具有竞争优势, 从而导致其成功入侵(Zou et al., In reproduction and dispersal processes, many alien species have advantages compared with native species, due to their inherent characteristics in some aspects like physiology, ecology, genetics, and behavior, consequently resulting in successful invasions (Zou et al., |
入侵崩溃 Invasional meltdown | 两个或多个外来物种间产生互惠关系, 促进它们在新生境中的种群建立、繁殖与扩散, 最终导致这些物种共同入侵(Ricciardi & MacIsaac, The population establishment, reproduction and dispersal of two or more alien species in the novel environments were facilitated by their reciprocal mutualism(s), ultimately leading to the co-invasion of these species (Ricciardi & MacIsaac, |
Table 1 Explanation of terminology in this review
专业术语 Terminology | 解释 Explanation |
---|---|
上行调控 Bottom-up control | 通过低营养级物种的防御限制高营养级物种的可利用食物资源进而调控食物网中各物种的种群大小(Terborgh et al., The defenses of species at low trophic levels limit the availability of food resource for species at high trophic levels, regulating the population size of each species in a food web (Terborgh et al., |
下行调控 Top-down control | 通过高营养级物种对低营养级物种的捕食/取食控制食物网中各物种种群大小(Terborgh et al., Species at high trophic levels control the population size of each species in a food web through preying on or feeding on the species at low trophic levels (Terborgh et al., |
DNA条形码技术 DNA barcoding | DNA条形码是指基因组中能够代表该物种的且在种间有足够变异的、易扩增的DNA片段。通过获取一个或多个DNA条形码片段信息并与数据库中相关序列进行对比可快速、精确地完成物种鉴定(Hebert et al., The DNA fragments can represent the genomic characters of a species but with sufficient interspecific genetic variations and can be easily amplified. Rapid and accurate species identification can be achieved by using one to several DNA barcode fragments and comparing the obtained sequence information with related sequences in gene databases (Hebert et al., |
进化军备竞赛 Evolutionary arm race | 自然选择在不断提高捕食者发现和捕获猎物效率的同时也会不断改进猎物及时发现和逃避捕食者的能力, 这种相互适应的进化历程被称为进化军备竞赛(You et al., As a result of reciprocal selection, the efficiency of predators in finding and capturing preys and the ability of preys in detecting and eluding predators are simultaneously and continuously improved. This type of coadaptation in evolutionary history is named as the evolutionary arms race (You et al., |
内禀优势 Inherent superiority | 外来种在繁殖和扩散的过程中, 某些固有特征(如生理、生态、遗传和行为等)相对于本地种具有竞争优势, 从而导致其成功入侵(Zou et al., In reproduction and dispersal processes, many alien species have advantages compared with native species, due to their inherent characteristics in some aspects like physiology, ecology, genetics, and behavior, consequently resulting in successful invasions (Zou et al., |
入侵崩溃 Invasional meltdown | 两个或多个外来物种间产生互惠关系, 促进它们在新生境中的种群建立、繁殖与扩散, 最终导致这些物种共同入侵(Ricciardi & MacIsaac, The population establishment, reproduction and dispersal of two or more alien species in the novel environments were facilitated by their reciprocal mutualism(s), ultimately leading to the co-invasion of these species (Ricciardi & MacIsaac, |
Fig. 1 Schematic diagram of the impacts of loss of keystone species on food web structure. The black arrows represent trophic relationships, and the red arrows indicate the strengthened consumption by consumers. Loss of key top predators causes the absence of top-down regulation, drastically increasing consumer density and feeding intensity on producers and consequently leading to meltdown of food webs. Local extinction of key consumers may restrict energy flow between trophic levels, detrimentally affecting top predators with a simultaneous consequence of aggravating inter-specific competition among producers, which can reduce the species richness of producers. Disappearance of key producers intensifies the feeding on the remnant producers, causing the extinction of these species and in turn threatening the existence of consumers and top predators.
Fig. 2 Schematic diagram of the impacts of alien invasive species on food web structure. The black arrows represent trophic relationships, and the red arrows indicate the increased consumption or the strengthened predation. Invasive predators can exclude native predators by competition and alter the interspecific competition of consumer due to their feeding preference, impacting the species composition at lower trophic levels. Invasive consumers exclude native consumers, intensify feeding on some producers and restrict food resources of top predators, disturbing top-down and bottom-up regulations and changing food web structure. In the absence of natural enemies, invasive producers exclude native producers and cut off energy flow, leading to massive extinction of consumers and top predators and meltdown of food webs.
[1] |
Althoff DM, Segraves KA, Johnson MTJ (2014). Testing for coevolutionary diversification: linking pattern with process. Trends in Ecology & Evolution, 29, 82-89.
DOI URL |
[2] |
Bardgett RD, van der Putten WH (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
DOI URL |
[3] |
Bascompte J (2009). Disentangling the web of life. Science, 325, 416-419.
DOI PMID |
[4] |
Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009). Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? Journal of Animal Ecology, 78, 73-83.
DOI URL |
[5] |
Both C, van Turnhout CAM, Bijlsma RG, Siepel H, van Strien AJ, Foppen RPB (2010). Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proceedings of the Royal Society B: Biological Sciences, 277, 1259-1266.
DOI URL |
[6] |
Bracken MES, Low NHN (2012). Realistic losses of rare species disproportionately impact higher trophic levels. Ecology Letters, 15, 461-467.
DOI URL |
[7] |
Butchart SHM, Walpole M, Collen B, van Strien AJ, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, et al. (2010). Global biodiversity: indicators of recent declines. Science, 328, 1164-1168.
DOI PMID |
[8] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59-67. |
[9] |
Croll DA, Maron JL, Estes JA, Danner EM, Byrd GV (2005). Introduced predators transform subarctic islands from grassland to tundra. Science, 307, 1959-1961.
PMID |
[10] |
Dalsgaard B, Trøjelsgaard K, Martín González AM, Nogués- Bravo D, Ollerton J, Petanidou T, Sandel B, Schleuning M, Wang ZH, Rahbek C, Sutherland WJ, Svenning JC, Olesen JM (2013). Historical climate-change influences modularity and nestedness of pollination networks. Ecography, 36, 1331-1340.
DOI URL |
[11] |
Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010). Co-invasion by Pinus and its mycorrhizal fungi. New Phytologist, 187, 475-484.
DOI PMID |
[12] | Dunne JA, Williams RJ, Martinez ND (2002). Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 99, 12917-12922. |
[13] |
Ehrenfeld JG (2010). Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics, 41, 59-80.
DOI URL |
[14] | Elton CS (1958). The Ecology of Invasions by Animals and Plants. Springer, Boston. |
[15] |
Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, et al. (2011). Trophic downgrading of planet earth. Science, 333, 301-306.
DOI URL |
[16] |
Ewers RM, Didham RK (2006). Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81, 117-142.
DOI URL |
[17] | Futuyma DJ, Agrawal AA (2009). Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences of the United States of America, 106, 18054-18061. |
[18] |
Gallardo B, Clavero M, Sánchez MI, Vilà M (2016). Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology, 22, 151-163.
DOI PMID |
[19] |
Gibson L, Lynam AJ, Bradshaw CJA, He FL, Bickford DP, Woodruff DS, Bumrungsri S, Laurance WF (2013). Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science, 341, 1508-1510.
DOI PMID |
[20] |
Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010). A framework for community interactions under climate change. Trends in Ecology & Evolution, 25, 325-331.
DOI URL |
[21] |
Goodell K, Parker IM (2017). Invasion of a dominant floral resource: effects on the floral community and pollination of native plants. Ecology, 98, 57-69.
DOI PMID |
[22] |
Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD (2015). Habitat fragmentation and its lasting impact on earth’s ecosystems. Science Advances, 1, e1500052. DOI: 10.1126/sciadv.1500052.
DOI URL |
[23] |
Hairston NG, Smith FE, Slobodkin LB (1960). Community structure, population control, and competition. The American Naturalist, 94, 421-425.
DOI URL |
[24] |
Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, et al. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509, 218-221.
DOI URL |
[25] |
Hansson LA, Nicolle A, Granéli W, Hallgren P, Kritzberg E, Persson A, Björk J, Nilsson PA, Brönmark C (2013). Food-chain length alters community responses to global change in aquatic systems. Nature Climate Change, 3, 228-233.
DOI URL |
[26] | Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313-321. |
[27] |
Hoffmann AA, Sgrò CM (2011). Climate change and evolutionary adaptation. Nature, 470, 479-485.
DOI URL |
[28] |
Hughes BB, Eby R, van Dyke E, Tinker MT, Marks CI, Johnson KS, Wasson K (2013). Recovery of a top predator mediates negative eutrophic effects on seagrass. Proceedings of the National Academy of Sciences of the United States of America, 110, 15313-15318.
DOI PMID |
[29] |
Hulme PE (2009). Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology, 46, 10-18.
DOI URL |
[30] |
Ju RT, Li H, Shi ZR, Li B (2012). Progress of biological invasions research in China over the last decade. Biodiversity Science, 20, 581-611.
DOI URL |
[ 鞠瑞亭, 李慧, 石正人, 李博 (2012). 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.]
DOI |
|
[31] |
Kadoya T, Gellner G, McCann KS (2018). Potential oscillators and keystone modules in food webs. Ecology Letters, 21, 1330-1340.
DOI PMID |
[32] |
Kardol P, Wardle DA (2010). How understanding aboveground belowground linkages can assist restoration ecology. Trends in Ecology & Evolution, 25, 670-679.
DOI URL |
[33] |
Kiers TE, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010). Mutualisms in a changing world: an evolutionary perspective. Ecology Letters, 13, 1459-1474.
DOI PMID |
[34] |
Letnic M, Koch F, Gordon C, Crowther MS, Dickman CR (2009). Keystone effects of an alien top-predator stem extinctions of native mammals. Proceedings of the Royal Society B: Biological Sciences, 276, 3249-3256.
DOI PMID |
[35] | Li Y, Li GY, Mu JP, Sun SC (2008). Effects of consumer diversity on food web structure and ecosystem functioning: current knowledge and perspectives. Acta Ecologica Sinica, 28, 388-398. |
[ 李妍, 李国勇, 慕军鹏, 孙书存 (2008). 消费者多样性对食物网结构和生态系统功能的影响. 生态学报, 28, 388-398.] | |
[36] |
Lindeman RL (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399-418.
DOI URL |
[37] |
Liu YZ, Reich PB, Li GY, Sun SC (2011). Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology, 92, 1201-1207.
DOI URL |
[38] |
May RM (1972). Will a large complex system be stable? Nature, 238, 413-414.
DOI URL |
[39] |
Memmott J, Waser NM, Price MV (2004). Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society B: Biological Sciences, 271, 2605-2611.
PMID |
[40] |
Murphy GEP, Romanuk TN (2014). A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution, 4, 91-103.
DOI URL |
[41] |
Nallu S, Hill J, Don K, Sahagun C, Zhang W, Meslin C, Snell-Rood E, Clark NL, Morehouse NI, Bergelson J, Wheat CW, Kronforst MR (2017). The molecular genetic basis of herbivory between butterflies and their host-plants. Nature Ecology and Evolution, 2, 1418-1427.
DOI URL |
[42] |
Neutel AM, Heesterbeek JAP, van de Koppel J, Hoenderboom G, Vos A, Kaldeway C, Berendse F, de Ruiter PC (2007). Reconciling complexity with stability in naturally assembling food webs. Nature, 449, 599-602.
DOI URL |
[43] |
Olsen JL, Rouze P, Verhelst B, Lin Y, Bayer T, Collen J, Dattolo E de Paoli E, Dittami SM, Maumus F (2016). The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 530, 331-335.
DOI URL |
[44] |
Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012). Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348.
DOI PMID |
[45] |
Pimm SL (1979). The structure of food webs. Theoretical Population Biology, 16, 144-158.
PMID |
[46] |
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345-353.
DOI URL |
[47] |
Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18, 1725-1737.
DOI URL |
[48] |
Ricciardi A, MacIsaac HJ (2000). Recent mass invasion of the North American Great Lakes by Ponto-Caspian species. Trends in Ecology & Evolution, 15, 62-65.
DOI URL |
[49] |
Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014). Status and ecological effects of the world’s largest carnivores. Science, 343, 1241484. DOI: 10.1126/science.1241484.
DOI URL |
[50] |
Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, Hayward MW, Kerley GIH, Levi T, Lindsey PA, MacDonald DW, Malhi Y, Painter LE, Sandom CJ, Terborgh J, van Valkenburgh B (2015). Collapse of the world’s largest herbivores. Science Advances, 1, e1400103. DOI: 10.1126/sciadv.1400103.
DOI URL |
[51] |
Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Besler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, et al. (2010). Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468, 553-556.
DOI URL |
[52] |
Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil BS, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M (2013). Impacts of biological invasions: What’s what and the way forward. Trends in Ecology & Evolution, 28, 58-66.
DOI URL |
[53] |
Sydeman WJ, Poloczanska E, Reed TE, Thompson SA (2015). Climate change and marine vertebrates. Science, 350, 772-777.
DOI URL |
[54] |
Tao J, He DK, Kennard MJ, Ding CZ, Bunn SE, Liu CL, Jia YT, Che RX, Chen YF (2018). Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau. Global Change Biology, 24, 2093-2104.
DOI URL |
[55] |
Taubert F, Fischer R, Groeneveld J, Lehmann S, Muller MS, Rodig E, Wiegand T, Huth A (2018). Global patterns of tropical forest fragmentation. Nature, 554, 519-522.
DOI URL |
[56] |
Terborgh J, Lopez L, Nuñez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD, Balbas L (2001). Ecological meltdown in predator-free forest fragments. Science, 294, 1923-1926.
PMID |
[57] |
Terborgh JW (2015). Toward a trophic theory of species diversity. Proceedings of the National Academy of Sciences of the United States of America, 112, 11415-11422.
DOI PMID |
[58] |
Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe SJ, Helaouet P, Johns DG, Jones ID, Leech DI (2016). Phenological sensitivity to climate across taxa and trophic levels. Nature, 535, 241-245.
DOI URL |
[59] | Tong X, Wang R, Chen XY (2018). Expansion or invasion? A response to Nackley et al. Trends in Ecology & Evolution, 33, 234-235. |
[60] |
Traveset A, Richardson DM (2014). Mutualistic interactions and biological invasions. Annual Review of Ecology, Evolution, and Systematics, 45, 89-113.
DOI |
[61] |
Trisos CH, Merow C, Pigot AL (2020). The projected timing of abrupt ecological disruption from climate change. Nature, 580, 496-501.
DOI URL |
[62] |
Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351-1363.
PMID |
[63] |
Wabnitz C, Balazs G, Beavers S, Bjorndal KA, Bolten AB, Christensen V, Hargrove S, Pauly D (2010). Ecosystem structure and processes at Kaloko Honokohau, focusing on the role of herbivores, including the green sea turtle Chelonia mydas, in reef resilience. Marine Ecology Progress Series, 420, 27-44.
DOI |
[64] |
Wang R, Chen XY, Chen Y, Wang G, Dunn DW, Quinnell RJ, Compton SG (2019a). Loss of top-down biotic interactions changes the relative benefits for obligate mutualists. Proceedings of the Royal Society B: Biological Sciences, 286, 20182501. DOI: 10.1098/rspb.2018.2501.
DOI URL |
[65] |
Wang R, Shi YS, Zhang YX, Xu GF, Shen GC, Chen XY (2019b). Distance-dependent seed-seedling transition in the tree Castanopsis sclerophylla is altered by fragment size. Communications Biology, 2, 277. DOI: 10.1038/s42003-019-0528-x.
DOI URL |
[66] |
Wang R, Zhang X, Shi YS, Li YY, Wu JG, He FL, Chen XY (2020). Habitat fragmentation changes top-down and bottom-up controls of food webs. Ecology, 101, e03062. DOI: 10.1002/ecy.3062.
DOI |
[67] |
Wang SP, Brose U (2018). Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecology Letters, 21, 9-20.
DOI URL |
[68] |
Wang SP, Brose U, Gravel D (2019c). Intraguild predation enhances biodiversity and functioning in complex food webs. Ecology, 100, e02616. DOI: 10.1002/ecy.2616.
DOI |
[69] |
Wang YY, Xu J, Lei GC (2013). Proximate and ultimate determinants of food chain length. Acta Ecologica Sinica, 33, 5990-5996.
DOI URL |
[ 王玉玉, 徐军, 雷光春 (2013). 食物链长度远因与近因研究进展综述. 生态学报, 33, 5990-5996.] | |
[70] |
Wardle DA, Bardgett RD, Callaway RM, der Putten WHV (2011). Terrestrial ecosystem responses to species gains and losses. Science, 332, 1273-1277.
DOI PMID |
[71] | Weiner CN, Werner M, Linsenmair KE, Blüthgen N (2014). Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology, 95, 466-474. |
[72] |
Wilson MC, Chen XY, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hughes AC, Jiang L, Laurance WF, Liu JJ, Pimm SL, Robinson SK, Russo SE, Si XF, Wilcove DS, Wu JG, Yu MJ (2016). Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecology, 31, 219-227.
DOI URL |
[73] |
You MS, Yue Z, He WY, Yang XH, Yang G, Xie M, Zhan DL, Baxter SW, Vasseur L, Gurr GM, Douglas CJ, Bai JL, Wang P, Cui K, Huang SG, et al. (2013). A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics, 45, 220-225.
DOI URL |
[74] |
Zander A, Bersier L, Gray SM (2017). Effects of temperature variability on community structure in a natural microbial food web. Global Change Biology, 23, 56-67.
DOI PMID |
[75] |
Zettlemoyer MA, Schultheis EH, Lau JA (2019). Phenology in a warming world: differences between native and non- native plant species. Ecology Letters, 22, 1253-1263.
DOI PMID |
[76] |
Zhao L, Zhang HY, O’Gorman EJ, Tian W, Ma A, Moore JC, Borrett SR, Woodward G (2016). Weighting and indirect effects identify keystone species in food webs. Ecology Letters, 19, 1032-1040.
DOI PMID |
[77] |
Zou JW, Rogers WE, Siemann E (2007). Differences in morphological and physiological traits between native and invasive populations of Sapium sebiferum. Functional Ecology, 21, 721-730.
DOI URL |
[78] | Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V de Deyn GB, Flynn DFB (2014). Selection for niche differentiation in plant communities increases biodiversity effects. Nature, 515, 108-111. |
[1] | CHEN Bao-Dong, FU Wei, WU Song-Lin, ZHU Yong-Guan. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling [J]. Chin J Plant Ecol, 2024, 48(1): 1-20. |
[2] | HE Min, XU Qiu-Yue, XIA Yun, YANG Liu-Ming, FAN Yue-Xin, YANG Yu-Sheng. Plant phosphorus acquisition mechanisms and their response to global climate changes [J]. Chin J Plant Ecol, 2023, 47(3): 291-305. |
[3] | WANG Wen-Wei, HAN Wei-Peng, LIU Wen-Wen. Short-term response of leaf functional traits of the invasive plant Spartina alterniflora to a tidal gradient in coastal wetlands [J]. Chin J Plant Ecol, 2023, 47(2): 216-226. |
[4] | ZHAO Rong-Jiang, CHEN Tao, DONG Li-Jia, GUO Hui, MA Hai-Kun, SONG Xu, WANG Ming-Gang, XUE Wei, YANG Qiang. Progress of plant-soil feedback in ecology studies [J]. Chin J Plant Ecol, 2023, 47(10): 1333-1355. |
[5] | QIN Wen-Chao, TAO Zhi-Bin, WANG Yong-Jian, LIU Yan-Jie, HUANG Wei. Research progress and prospect on the impacts of resource pulses on alien plant invasion [J]. Chin J Plant Ecol, 2021, 45(6): 573-582. |
[6] | ZHANG Hong-Jin, WANG Wei. Responses of ecosystem multifunctionality to global change: progress, problem and prospect [J]. Chin J Plant Ecol, 2021, 45(10): 1112-1126. |
[7] | JING Xin, HE Jin-Sheng. Relationship between biodiversity, ecosystem multifunctionality and multiserviceability: literature overview and research advances [J]. Chin J Plant Ecol, 2021, 45(10): 1094-1111. |
[8] | XING Peng, LI Biao, HAN Yi-Xuan, GU Qiu-Jin, WAN Hong-Xiu. Responses of freshwater ecosystems to global change: research progress and outlook [J]. Chin J Plant Ecol, 2020, 44(5): 565-574. |
[9] | ZHANG Yang-Jian, ZHU Jun-Tao, SHEN Ruo-Nan, WANG Li. Research progress on the effects of grazing on grassland ecosystem [J]. Chin J Plant Ecol, 2020, 44(5): 553-564. |
[10] | PENG Shu-Shi, YUE Chao, CHANG Jin-Feng. Developments and applications of terrestrial biosphere model [J]. Chin J Plant Ecol, 2020, 44(4): 436-448. |
[11] | XU Guang-Yao, LI Hong-Yuan, MO Xun-Qiang, MENG Wei-Qing. Composition and spatial-temporal distribution of Chinese naturalized plants [J]. Chin J Plant Ecol, 2019, 43(7): 601-610. |
[12] | CHEN Bao-Ming, WEI Hui-Jie, CHEN Wei-Bin, ZHU Zheng-Cai, YUAN Ya-Ru, ZHANG Yong-Long, LAN Zhi-Gang. Effects of plant invasion on soil nitrogen transformation processes and its associated microbes [J]. Chin J Plant Ecol, 2018, 42(11): 1071-1081. |
[13] | Li-Ling JIANG, Cong-Sheng ZENG, Jun-Jiong SHAO, Xu-Hui ZHOU. Plant nutrient dynamics and stoichiometric homeostasis of invasive species Spartina alterniflora and native Cyperus malaccensis var. brevifolius in the Minjiang River estuarine wetlands [J]. Chin J Plant Ecol, 2017, 41(4): 450-460. |
[14] | Liang-Jun ZHU, Zong-Shan LI, Xiao-Chun WANG. Anatomical characteristics of xylem in tree rings and its relationship with environments [J]. Chin J Plan Ecolo, 2017, 41(2): 238-251. |
[15] | Xin-Qi WANG, Chuan-Kuan WANG, Tai-Dong ZHANG. New perspectives on forest soil carbon and nitrogen cycling processes: Roles of arbuscular mycorrhizal versus ectomycorrhizal tree species [J]. Chin J Plan Ecolo, 2017, 41(10): 1113-1125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn