Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (10): 1113-1125.DOI: 10.17521/cjpe.2017.0116
• Reviews • Previous Articles
Xin-Qi WANG, Chuan-Kuan WANG*(), Tai-Dong ZHANG
Online:
2017-10-10
Published:
2017-12-24
Contact:
Chuan-Kuan WANG
Xin-Qi WANG, Chuan-Kuan WANG, Tai-Dong ZHANG. New perspectives on forest soil carbon and nitrogen cycling processes: Roles of arbuscular mycorrhizal versus ectomycorrhizal tree species[J]. Chin J Plan Ecolo, 2017, 41(10): 1113-1125.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0116
Fig. 1 Comparative diagram of soil carbon and nitrogen cycles between arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) forests. DOC, dissolved organic carbon; DON, dissolved organic nitrogen; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen. The dark grey boxes represent greater pools in AM than in EM forests, the light ones represent greater ones in EM than in AM forests, and the white ones represent insignificant differences between them. The black arrows represent greater fluxes in AM than in EM forest, the grey ones represent greater ones in EM than in AM forests, and the grey dashed ones represent insignificant differences between them. ? indicates inconsistent measurements of the fluxes.
[1] |
Asghari HR, Cavagnaro TR (2011). Arbuscular mycorrhizas enhance plant interception of leached nutrients.Functional Plant Biology, 38, 219-226.
DOI URL |
[2] |
Austin AT, Zanne AE (2015). Whether in life or in death: Fresh perspectives on how plants affect biogeochemical cycling.Journal of Ecology, 103, 1367-1371.
DOI URL |
[3] |
Averill C (2016). Slowed decomposition in ectomycorrhizal ecosystems is independent of plant chemistry.Soil Biology & Biochemistry, 102, 52-54.
DOI URL |
[4] |
Averill C, Hawkes CV (2016). Ectomycorrhizal fungi slow soil carbon cycling.Ecology Letters, 19, 937.
DOI URL PMID |
[5] |
Averill C, Turner BL, Finzi AC (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.Nature, 505, 543-545.
DOI URL PMID |
[6] |
Avis PG, McLaughlin DJ, Dentinger BC, Reich PB (2003). Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance ofRussula spp. in a temperate oak savanna. New Phytologist, 160, 239-253.
DOI URL |
[7] |
Baldrian P, Kola?ík M, Stursová M, Kopecky J, Valá?ková V, Větrovsky T, Zif?áková L, Snajdr J, Rídl J, Vl?ek C, Vo?í?ková J (2012). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition.ISME Journal, 6, 248-258.
DOI URL PMID |
[8] |
Bardgett RD, Mommer L, de Vries FT (2014). Going underground: Root traits as drivers of ecosystem processes.Trends in Ecology & Evolution, 29, 692-699.
DOI URL PMID |
[9] | B?deker I, Clemmensen KE, Boer W, Martin F, Olson ?, Lindahl BD (2014). EctomycorrhizalCortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytologist, 203, 245-256. |
[10] | Brundrett MC (2009). Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis.Plant and Soil, 320, 37-77. |
[11] |
Brzostek ER, Dragoni D, Brown ZA, Phillips RP (2015). Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest.New Phytologist, 206, 1274-1282.
DOI URL PMID |
[12] | Carreiro M, Sinsabaugh R, Repert D, Parkhurst D (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition.Ecology, 81, 2359-2365. |
[13] | Chapin FS III, Matson PA, Vitousek PM (2011). Principles of Terrestrial Ecosystem Ecology. 2nd edn. Springer, New York. |
[14] |
Cheeke TE, Phillips RP, Brzostek ER, Rosling A, Bever JD, Fransson P (2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function.New Phytologist, 214, 432-442.
DOI URL PMID |
[15] |
Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2.Science, 337, 1084-1087.
DOI URL |
[16] |
Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest.Science, 339, 1615-1618.
DOI URL PMID |
[17] |
Cornelissen J, Aerts R, Cerabolini B, Werger M, Heijden MVD (2001). Carbon cycling traits of plant species are linked with mycorrhizal strategy.Oecologia, 129, 611-619.
DOI URL PMID |
[18] | Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?Global Change Biology, 19, 988-995. |
[19] | del Giorgio PA, Cole JJ (1998). Bacterial growth efficiency in natural aquatic systems.Annual Review of Ecology and Systematics, 29, 503-541. |
[20] | Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML (2011). Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2.Ecology Letters, 14, 349-357. |
[21] |
Fernandez CW, Kennedy PG (2016). Revisiting the “Gadgil effect”: Do interguild fungal interactions control carbon cycling in forest soils?New Phytologist, 209, 1382-1394.
DOI URL PMID |
[22] |
Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC (2013). Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide.Journal of Ecology, 101, 943-952.
DOI URL |
[23] | Gadgil PD, Gadgil RL (1975). Suppression of litter decomposition by mycorrhizal roots ofPinus radiata. New Zealand Forest Service, 5, 35-41. |
[24] | Gadgil RL, Gadgil PD (1971). Mycorrhiza and litter decomposition.Nature, 233, 133. |
[25] | Hagen-Thorn A, Callesen I, Armolaitis K, Nihlgard B (2004). The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land.Forest Ecology & Management, 195, 373-384. |
[26] |
Hasegawa S, Macdonald CA, Power SA (2016). Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limitedEucalyptus woodland. Global Change Biology, 22, 1628-1643.
DOI URL PMID |
[27] | Hawkins HJ, Johansen A, George E (2000). Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi.Plant and Soil, 226, 275-285. |
[28] |
Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007). Tree species effects on soil organic matter dynamics: The role of soil cation composition.Ecosystems, 10, 999-1018.
DOI URL |
[29] | Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006). Tree species effects on decomposition and forest floor dynamics in a common garden.Ecology, 87, 2288-2297. |
[30] |
Hodge A, Campbell CD, Fitter AH (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material.Nature, 413, 297-299.
DOI URL PMID |
[31] |
Hodge A, Helgason T, Fitter AH (2010). Nutritional ecology of arbuscular mycorrhizal fungi.Fungal Ecology, 3, 267-273.
DOI URL |
[32] |
Hodge A, Storer K (2015). Arbuscular mycorrhiza and nitrogen: Implications for individual plants through to ecosystems.Plant and Soil, 386, 1-19.
DOI URL |
[33] |
Holden SR, Berhe AA, Treseder KK (2015). Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire.Soil Biology & Biochemistry, 87, 1-9.
DOI URL |
[34] |
Huang Y, Wang DW, Cai JL, Zheng WS (2011). Review of glomalin-related soil protein and its environmental function in the rhizosphere.Chinese Journal of Plant Ecology, 35, 232-236. (in Chinese with English abstract)[黄艺, 王东伟, 蔡佳亮, 郑维爽 (2011). 球囊霉素相关土壤蛋白根际环境功能研究进展. 植物生态学报, 35, 232-236.]
DOI URL |
[35] |
Iversen CM, Keller JK, Garten Jr CT, Norby RJ (2012). Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment.Global Change Biology, 18, 1684-1697.
DOI URL |
[36] |
Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G (2010). Reduction of forest soil respiration in response to nitrogen deposition.Nature Geoscience, 3, 315-322.
DOI URL |
[37] |
Jastrow JD, Michael Miller R, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE (2005). Elevated atmospheric carbon dioxide increases soil carbon.Global Change Biology, 11, 2057-2064.
DOI URL |
[38] | Jin L, Sun L, Wang Q, Dong M, Wang XJ, Wang Q, Zhang L (2016). Functions of arbuscular mycorrhizas in grassland ecosystems.Acta Ecologica Sinica, 36, 873-882. (in Chinese with English abstract)[金樑, 孙莉, 王强, 董梅, 王晓娟, 王茜, 张亮 (2016). AM真菌在草原生态系统中的功能. 生态学报, 36, 873-882.] |
[39] |
Keller NP, Turner G, Bennett JW (2005). Fungal secondary metabolism—From biochemistry to genomics.Nature Reviews Microbiology, 3, 937-947.
DOI URL PMID |
[40] |
Knicker H (2011). Soil organic N—An under-rated player for C sequestration in soils?Soil Biology & Biochemistry, 43, 1118-1129.
DOI URL |
[41] |
Koele N, Dickie IA, Oleksyn J, Richardson SJ, Reich PB (2012). No globally consistent effect of ectomycorrhizal status on foliar traits.New Phytologist, 196, 845-852.
DOI URL PMID |
[42] | Koide R, Wu T (2003). Ectomycorrhizas and retarded decomposition in aPinus resinosa plantation. New Phytologist, 158, 401-407. |
[43] |
Kraus TEC, Dahlgren RA, Zasoski RJ (2003). Tannins in nutrient dynamics of forest ecosystems—A review.Plant and Soil, 256, 41-66.
DOI URL |
[44] | Lal R, Negassa W, Lorenz K (2015). Carbon sequestration in soil.Current Opinion in Environmental Sustainability, 15, 79-86. |
[45] |
Laliberté E (2016). Below-ground frontiers in trait-based plant ecology.New Phytologist, 213, 1597-1603.
DOI URL PMID |
[46] |
Leifheit EF, Verbruggen E, Rillig MC (2015). Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation.Soil Biology & Biochemistry, 81, 323-328.
DOI URL |
[47] |
Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014). Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis.Plant and Soil, 374, 523-537.
DOI URL |
[48] | Li YJ, Liu ZL, He XY, Tian CJ (2013). Nitrogen metabolism and translocation in arbuscular mycorrhizal symbiote and its ecological implications.Chinese Journal of Applied Ecology, 24, 861-868. (in Chinese with English abstract)[李元敬, 刘智蕾, 何兴元, 田春杰 (2013). 丛枝菌根共生体的氮代谢运输及其生态作用. 应用生态学报, 24, 861-868.] |
[49] |
Lin G, Mccormack ML, Ma C, Guo D (2016). Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests.New Phytologist, 213, 1440-1451.
DOI URL PMID |
[50] |
Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, H?gberg P, Stenlid J, Finlay RD (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest.New Phytologist, 173, 611-620.
DOI URL PMID |
[51] |
Lindahl BD, Tunlid A (2015). Ectomycorrhizal fungi—Potential organic matter decomposers, yet not saprotrophs.New Phytologist, 205, 1443-1447.
DOI URL PMID |
[52] |
Liu MQ, Hu F, Chen XY (2007). A review on mechanisms of soil organic carbon stabilization.Acta Ecologica Sinica, 27, 2642-2650. (in Chinese with English abstract)[刘满强, 胡锋, 陈小云 (2007). 土壤有机碳稳定机制研究进展. 生态学报, 27, 2642-2650.]
DOI URL |
[53] |
Lützow MV, K?gel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006). Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review.European Journal of Soil Science, 57, 426-445.
DOI URL |
[54] |
Manzoni S, Taylor P, Richter A, Porporato A, ?gren GI (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils.New Phytologist, 196, 79-91.
DOI URL PMID |
[55] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Lepp?lammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes.New Phytologist, 207, 505-518.
DOI URL PMID |
[56] |
McGuire KL, Zak DR, Edwards IP, Blackwood CB, Upchurch R (2010). Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest.Oecologia, 164, 785-795.
DOI URL PMID |
[57] |
Midgley MG, Brzostek E, Phillips RP (2015). Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees.Journal of Ecology, 103, 1454-1463.
DOI URL |
[58] |
Midgley MG, Phillips RP (2014). Mycorrhizal associations of dominant trees influence nitrate leaching responses to N deposition.Biogeochemistry, 117, 241-253.
DOI URL |
[59] |
Midgley MG, Phillips RP (2016). Resource stoichiometry and the biogeochemical consequences of nitrogen deposition in a mixed deciduous forest.Ecology, 97, 3369-3378.
DOI URL PMID |
[60] |
Moore JAM, Jiang J, Patterson CM, Mayes MA, Wang G, Classen AT (2015). Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes.Journal of Ecology, 103, 1442-1453.
DOI URL |
[61] |
Mucha J, Dahm H, Strzelczyk E, Werner A (2006). Synthesis of enzymes connected with mycoparasitism by ectomycorrhizal fungi.Archives of Microbiology, 185, 69-77.
DOI URL PMID |
[62] |
Mueller KE, Eissenstat DM, Hobbie SE, Oleksyn J, Jagodzinski AM, Reich PB, Chadwick OA, Chorover J (2012). Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment.Biogeochemistry, 111, 601-614.
DOI URL |
[63] |
Mueller KE, Hobbie SE, Chorover J, Reich PB, Eisenhauer N, Castellano MJ, Chadwick OA, Dobies T, Hale CM, Jagodziński AM (2015). Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species.Biogeochemistry, 123, 313-327.
DOI URL |
[64] | Norby RJ, Kauwe DMG, Walker AP, Werner C, Zaehle S, Zak DR (2017). Comments on “mycorrhizal association as a primary control of the CO2 fertilization effect”.Science, 355, 358b. |
[65] |
Nottingham AT, Turner BL, Winter K, Chamberlain PM, Stott A, Tanner EV (2013). Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest.FEMS Microbiology Ecology, 85, 37-50.
DOI URL PMID |
[66] | Oostra S, Majdi H, Olsson M (2006). Impact of tree species on soil carbon stocks and soil acidity in southern Sweden.Scandinavian Journal of Forest Research, 21, 364-371. |
[67] |
Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011). Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment.Ecology Letters, 14, 493-502.
DOI URL PMID |
[68] |
Paterson E, Sim A, Davidson J, Daniell TJ (2016). Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation.Plant and Soil, 408, 243-254.
DOI URL |
[69] |
Paul EA (2016). The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization.Soil Biology & Biochemistry, 98, 109-126.
DOI URL |
[70] |
Pellitier PT, Zak DR (2017). Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: Why evolutionary history matters.New Phytologist, 103, 495-496.
DOI URL |
[71] |
Phillips LA, Ward V, Jones MD (2014). Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.ISME Journal, 8, 699-713.
DOI URL PMID |
[72] |
Phillips RP, Brzostek E, Midgley MG (2013). The mycorrhizal- associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests.New Phytologist, 199, 41-51.
DOI URL PMID |
[73] |
Phillips RP, Finzi AC, Bernhardt ES (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation.Ecology Letters, 14, 187-194.
DOI URL PMID |
[74] |
Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC (2012). Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2.Ecology Letters, 15, 1042-1049.
DOI URL PMID |
[75] |
Prescott CE (2010). Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 101, 133-149.
DOI URL |
[76] | Read D, Perez-Moreno J (2003). Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance?New Phytologist, 157, 475-492. |
[77] |
Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005). Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species.Ecology Letters, 8, 811-818.
DOI URL |
[78] |
Rillig MC (2004). Arbuscular mycorrhizae and terrestrial ecosystem processes.Ecology Letters, 7, 740-754.
DOI URL |
[79] |
Rillig MC, Aguilartrigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015). Plant root and mycorrhizal fungal traits for understanding soil aggregation.New Phytologist, 205, 1385-1388.
DOI URL PMID |
[80] |
Rillig MC, Mummey DL (2006). Mycorrhizas and soil structure.New Phytologist, 171, 41-53.
DOI URL PMID |
[81] |
Rillig MC, Ramsey PW, Morris S, Paul EA (2003). Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change.Plant and Soil, 253, 293-299.
DOI URL |
[82] | Rillig MC, Wright SF, Eviner VT (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species.Plant and Soil, 238, 325-333. |
[83] |
Scott EE, Rothstein DE (2017). Patterns of DON and DOC leaching losses across a natural N availability gradient in temperate hardwood forests.Ecosystems, 20, 1-16.
DOI URL |
[84] |
Shi ZY, Liu DH, Wang FY, Ding XD (2012a). Effect of mycorrhizal strategy on net primary productivity of trees in global forest ecosystem.Ecology and Environmental Sciences, 21, 404-408. (in Chinese with English abstract)[石兆勇, 刘德鸿, 王发园, 丁效东 (2012a). 菌根类型对森林树木净初级生产力的影响. 生态环境学报, 21, 404-408.]
DOI URL |
[85] |
Shi ZY, Wang FY, Miao YF (2012b). Responses of net primary productivity to air temperature change in forests dominated by different mycorrhizal strategies.Chinese Journal of Plant Ecology, 36, 1165-1171. (in Chinese with English abstract)[石兆勇, 王发园, 苗艳芳 (2012b). 不同菌根类型的森林净初级生产力对气温变化的响应. 植物生态学报, 36, 1165-1171.]
DOI URL |
[86] |
Six J, Bossuyt H, Degryze S, Denef K (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics.Soil & Tillage Research, 79, 7-31.
DOI URL |
[87] |
S?rensen LH (1972). Stabilization of newly formed amino acid metabolites in soil by clay minerals.Soil Science, 114, 5-11.
DOI URL |
[88] |
Soudzilovskaia NA, Mg VDH, Cornelissen JH, Makarov MI, Onipchenko VG, Maslov MN, Akhmetzhanova AA, van Bodegom PM (2015). Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling.New Phytologist, 208, 280-293.
DOI URL PMID |
[89] |
Subke J-A, Voke NR, Leronni V, Garnett MH, Ineson P (2010). Dynamics and pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest girdling.Journal of Ecology, 99, 186-193.
DOI URL |
[90] |
Sulman BN, Brzostek ER, Medici C, Shevliakova E, Menge DN, Phillips RP (2017). Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association.Ecology Letters, 20, 1043-1053.
DOI URL PMID |
[91] |
Talhelm AF, Pregitzer KS, Kubiske ME, Zak DR, Campany CE, Burton AJ, Dickson RE, Hendrey GR, Isebrands JG, Lewin KF, Nagy J, Karnosky DF (2014). Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.Global Change Biology, 20, 2492-2504.
DOI URL PMID |
[92] |
Taylor MK, Lankau RA, Wurzburger N (2016). Mycorrhizal associations of trees have different indirect effects on organic matter decomposition.Journal of Ecology, 104, 1576-1584.
DOI URL |
[93] |
Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect.Science, 353, 72-74.
DOI URL PMID |
[94] | Terrer C, Vicca S, Hungate BA, Phillips RP, Reich PB, Franklin O, Stocker BD, Fisher JB, Prentice IC (2017). Response to comment on “Mycorrhizal association as a primary control of the CO2 fertilization effect”.Science, 355, 358c. |
[95] |
Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010). Increased tree carbon storage in response to nitrogen deposition in the US.Nature Geoscience, 3, 13-17.
DOI URL |
[96] |
Tisdall JM, Oades J (1982). Organic matter and water-stable aggregates in soils.Journal of Soil Science, 33, 141-163.
DOI URL |
[97] |
Treseder KK (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies.New Phytologist, 164, 347-355.
DOI URL |
[98] |
Treseder KK, Allen MF (2000). Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition.New Phytologist, 147, 189-200.
DOI URL |
[99] |
van der Heijden M, Martin FM, Selosse MA, Sanders IR (2015). Mycorrhizal ecology and evolution: The past, the present, and the future.New Phytologist, 205, 1406-1423.
DOI URL PMID |
[100] |
Verbruggen E, Jansa J, Hammer EC, Rillig MC (2016). Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil?Journal of Ecology, 104, 261-269.
DOI URL |
[101] |
Veresoglou SD, Chen B, Rillig MC (2012). Arbuscular mycorrhiza and soil nitrogen cycling.Soil Biology & Biochemistry, 46, 53-62.
DOI URL |
[102] |
Vesterdal L, Bo E, Christiansen JR, Callesen I, Schmidt IK (2012). Soil respiration and rates of soil carbon turnover differ among six common European tree species.Forest Ecology & Management, 264, 185-196.
DOI URL |
[103] |
Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013). Do tree species influence soil carbon stocks in temperate and boreal forests?Forest Ecology & Management, 309, 4-18.
DOI URL |
[104] |
Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species.Forest Ecology & Management, 255, 35-48.
DOI URL |
[105] | Wang Q, Wang Q, Wang XJ, Zhang L, Jin L (2015). Research progress on ecological function of arbuscular mycorrhizal network.Chinese Journal of Applied Ecology, 26, 2192-2202. (in Chinese with English abstract)[王茜, 王强, 王晓娟, 张亮, 金樑 (2015). 丛枝菌根网络的生态学功能研究进展. 应用生态学报, 26, 2192-2202.] |
[106] | Wang XQ, Wang CK, Han Y (2015). Effects of tree species on soil organic carbon density: A common garden experiment of five temperate tree species.Chinese Journal of Plant Ecology, 39, 1033-1043. (in Chinese with English abstract)[王薪琪, 王传宽, 韩轶 (2015). 树种对土壤有机碳密度的影响: 5种温带树种同质园试验. 植物生态学报, 39, 1033-1043.] |
[107] | Werner A, Zadworny M, Idzikowska K (2002). Interaction between Laccaria laccata and Trichoderma virens in co-culture and in the rhizosphere of Pinus sylvestris grown in vitro. Mycorrhiza, 12, 139-145. |
[108] |
Whiteside MD, Digman MA, Gratton E, Treseder KK (2012). Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest.Soil Biology & Biochemistry, 55, 7-13.
DOI URL PMID |
[109] |
Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees.Ecological Monographs, 76, 381-397.
DOI URL |
[110] |
Yin H, Wheeler E, Phillips RP (2014). Root-induced changes in nutrient cycling in forests depend on exudation rates.Soil Biology & Biochemistry, 78, 213-221.
DOI URL |
[111] |
Zerihun A, Bassirirad H (2001). Interspecies variation in nitrogen uptake kinetic responses of temperate forest species to elevated CO2: Potential causes and consequences.Global Change Biology, 7, 211-222.
DOI URL |
[112] | Zheng W, Morris EK, Rillig MC (2014). Ectomycorrhizal fungi in association withPinus sylvestris seedlings promote soil aggregation and soil water repellency. Soil Biology & Biochemistry, 78, 326-331. |
[113] |
Zhu W, Ehrenfeld JG (1996). The effects of mycorrhizal roots on litter decomposition, soil biota, and nutrients in a spodosolic soil. Plant and Soil, 179, 109-118.
DOI URL |
[1] | Ke-Yu CHEN Sen Xing Yu Tang Sun JiaHui Shijie Ren Bao-Ming JI. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[2] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[3] | Die Hu Xinqi Jiang DAI Zhicong Daiyi Chen Yu Zhang Shan-Shan Qi. Arbuscular mycorrhizal fungi enhance the herbicide tolerance of an invasive weed Sphagneticola trilobata [J]. Chin J Plant Ecol, 2024, 48(5): 651-659. |
[4] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[5] | QU Ze-Kun, ZHU Li-Qin, JIANG Qi, WANG Xiao-Hong, YAO Xiao-Dong, CAI Shi-Feng, LUO Su-Zhen, sCHEN Guang-Shui. Nutrient foraging strategies of arbuscular mycorrhizal tree species in a subtropical evergreen broadleaf forest and their relationship with fine root morphology [J]. Chin J Plant Ecol, 2024, 48(4): 416-427. |
[6] | CHEN Bao-Dong, FU Wei, WU Song-Lin, ZHU Yong-Guan. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling [J]. Chin J Plant Ecol, 2024, 48(1): 1-20. |
[7] | REN Yue, GAO Guang-Lei, DING Guo-Dong, ZHANG Ying, ZHAO Pei-Shan, LIU Ye. Species composition and driving factors of the ectomycorrhizal fungal community associated with Pinus sylvestris var. mongolica at different growth periods [J]. Chin J Plant Ecol, 2023, 47(9): 1298-1309. |
[8] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[9] | HE Fei, LI Chuan, Faisal SHAH, LU Xie-Min, WANG Ying, WANG Meng, RUAN Jia, WEI Meng-Lin, MA Xing-Guang, WANG Zhuo, JIANG Hao. Carbon transport and phosphorus uptake in an intercropping system of Robinia pseudoacacia and Amorphophallus konjac mediated by arbuscular mycorrhizal hyphal networks [J]. Chin J Plant Ecol, 2023, 47(6): 782-791. |
[10] | YANG Jia-Rong, DAI Dong, CHEN Jun-Fang, WU Xian, LIU Xiao-Lin, LIU Yu. Insight into recent studies on the diversity of arbuscular mycorrhizal fungi in shaping plant community assembly and maintaining rare species [J]. Chin J Plant Ecol, 2023, 47(6): 745-755. |
[11] | HU Tong-Xin, LI Bei, LI Guang-Xin, REN Yue-Xiao, DING Hai-Lei, SUN Long. Effects of fire originated black carbon on species composition of ectomycorrhizal fungi in a Larix gmelinii forest in growing season [J]. Chin J Plant Ecol, 2023, 47(6): 792-803. |
[12] | HE Min, XU Qiu-Yue, XIA Yun, YANG Liu-Ming, FAN Yue-Xin, YANG Yu-Sheng. Plant phosphorus acquisition mechanisms and their response to global climate changes [J]. Chin J Plant Ecol, 2023, 47(3): 291-305. |
[13] | HE Xi, FENG Qiu-Hong, ZHANG Pei-Pei, YANG Han, DENG Shao-Jun, SUN Xiao-Ping, YIN Hua-Jun. Altitudinal patterns of nutrient limiting characteristics of Abies fargesii var. faxoniana forest based on leaf and soil enzyme stoichiometry in western Sichuan, China [J]. Chin J Plant Ecol, 2023, 47(12): 1646-1657. |
[14] | ZHAO Rong-Jiang, CHEN Tao, DONG Li-Jia, GUO Hui, MA Hai-Kun, SONG Xu, WANG Ming-Gang, XUE Wei, YANG Qiang. Progress of plant-soil feedback in ecology studies [J]. Chin J Plant Ecol, 2023, 47(10): 1333-1355. |
[15] | ZHANG Hui, ZENG Wen-Jing, GONG Xin-Tao, MA Ze-Qing. Relationships between root hairs and mycorrhizal fungi across typical subtropical tree species [J]. Chin J Plant Ecol, 2023, 47(1): 88-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn