Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (3): 291-305.DOI: 10.17521/cjpe.2021.0451
Special Issue: 全球变化与生态系统; 土壤呼吸
• Review • Next Articles
HE Min1, XU Qiu-Yue1, XIA Yun1, YANG Liu-Ming1,2, FAN Yue-Xin1,2,*(), YANG Yu-Sheng1,2
Received:
2021-12-06
Accepted:
2022-06-06
Online:
2023-03-20
Published:
2023-02-28
Contact:
FAN Yue-Xin
Supported by:
HE Min, XU Qiu-Yue, XIA Yun, YANG Liu-Ming, FAN Yue-Xin, YANG Yu-Sheng. Plant phosphorus acquisition mechanisms and their response to global climate changes[J]. Chin J Plant Ecol, 2023, 47(3): 291-305.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0451
[1] | Amtmann A, Hammond JP, Armengaud P, White PJ (2005). Nutrient sensing and signalling in plants: potassium and phosphorus. Advances in Botanical Research, 43, 209-257. |
[2] |
An R, Moe LA (2016). Regulation of pyrroloquinoline quinone-dependent glucose dehydrogenase activity in the model rhizosphere-dwelling bacterium Pseudomonas putida KT2440. Applied and Environmental Microbiology, 82, 4955-4964.
DOI URL |
[3] |
Antelo J, Arce F, Avena M, Fiol S, López R, Macías F (2007). Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate. Geoderma, 138, 12-19.
DOI URL |
[4] |
Asea PEA, Kucey RMN, Stewart JWB (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology & Biochemistry, 20, 459-464.
DOI URL |
[5] |
Babu-Khan S, Yeo TC, Martin WL, Duron MR, Rogers RD, Goldstein AH (1995). Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61, 972-978.
DOI PMID |
[6] | Bao X, Yu CL, Sun Y (2014). Research progress of phosphate solubilizing microorganisms. Technology Wizard, 11, 232-233. |
[包鑫, 于彩莲, 孙瑶 (2014). 解磷微生物的研究进展. 科技向导, 11, 232-233.] | |
[7] | Bei ZX, Zhang QF, Zheng W, Yang LM, Chen YM, Yang YS (2018). Effects of simulated warming on soil phosphorus availability in subtropical Chinese fir plantation. Acta Ecologica Sinica, 38, 1106-1113. |
[贝昭贤, 张秋芳, 郑蔚, 杨柳明, 陈岳民, 杨玉盛 (2018). 模拟增温对中亚热带杉木人工林土壤磷有效性的影响. 生态学报, 38, 1106-1113.] | |
[8] |
Bell CW, Tissue DT, Loik ME, Wallenstein MD, Acosta-Martinez V, Erickson RA, Zak JC (2014). Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland. Global Change Biology, 20, 1657-1673.
DOI URL |
[9] |
Burleigh SH, Harrison MJ (1999). The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiology, 119, 241-248.
PMID |
[10] |
Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019). Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 10, 157. DOI: 10.3389/fpls.2019.00157.
DOI |
[11] | Cao QQ, Feng YQ, Liu YF, Guo XP, Zhang GQ, Qin L (2011). Advance of plant phosphorus uptake improved by mycorrhiza fungi. Chinese Bulletin of Life Sciences, 23, 407-413. |
[曹庆芹, 冯永庆, 刘玉芬, 郭献平, 张国庆, 秦岭 (2011). 菌根真菌促进植物磷吸收研究进展. 生命科学, 23, 407-413.] | |
[12] |
Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000). Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365.
DOI URL |
[13] |
Castrillo G, Teixeira PJPL, Paredes SH, Theresa F, Law TF, de Lorenzo L, Feltcher ME, Finkel OM, Breakfield NW, Mieczkowski P, Jones CD, Paz-Ares J, Dangl JL (2017). Root microbiota drive direct integration of phosphate stress and immunity. Nature, 543, 513-518.
DOI |
[14] | Chen JK, Chen ZY (1999). Population dynamics of Ranalisma rostratum, an endangered species growing in different habitats. Acta Phytoecologica Sinica, 23, 8-13. |
[陈家宽, 陈中义 (1999). 不同生境内濒危植物长喙毛茛泽泻种群数量动态比较. 植物生态学报, 23, 8-13.] | |
[15] | Chen JR, Wang GL, Meng M, Wang RC (2021). Effects of drought stress on the stoichiometric characteristics in different organs of three shrub species. Chinese Journal of Applied Ecology, 32, 73-81. |
[陈佳瑞, 王国梁, 孟敏, 王润超 (2021). 干旱胁迫对3种灌木不同器官化学计量特征的影响. 应用生态学报, 32, 73-81.]
DOI |
|
[16] | Chen LX, Huang LY, Qiao L, Duan WB, Ji X, Yu YC (2012). Influence of simulated nitrogen deposition on soil nitrogen mineralization rate under different forest stands. Journal of Soil and Water Conservation, 26, 139-146. |
[陈立新, 黄兰英, 乔璐, 段文标, 纪萱, 俞元春 (2012). 模拟氮沉降对温带不同森林类型土壤氮矿化速率的影响. 水土保持学报, 26, 139-146.] | |
[17] | Chen ML, Chen H, Mao QG, Zhu XM, Mo JM (2016). Effect of nitrogen deposition on the soil phosphorus cycle in forest ecosystems: a review. Acta Ecologica Sinica, 36, 4965-4976. |
[陈美领, 陈浩, 毛庆功, 朱晓敏, 莫江明 (2016). 氮沉降对森林土壤磷循环的影响. 生态学报, 36, 4965-4976.] | |
[18] | Chen Z, Wu MN, Qin HL, Wei WX (2009). Advances in research on molecular mechanisms of phosphate-solubilizing microorganisms in soil. Acta Pedologica Sinica, 46, 925-931. |
[陈哲, 吴敏娜, 秦红灵, 魏文学 (2009). 土壤微生物溶磷分子机理研究进展. 土壤学报, 46, 925-931.] | |
[19] |
Chen Z, Yin HJ, Wei YY, Liu Q (2010). Short-term effects of night warming and nitrogen addition on soil available nitrogen and microbial properties in subalpine coniferous forest, western Sichuan, China. Chinese Journal of Plant Ecology, 34, 1254-1264.
DOI |
[陈智, 尹华军, 卫云燕, 刘庆 (2010). 夜间增温和施氮对川西亚高山针叶林土壤有效氮和微生物特性的短期影响. 植物生态学报, 34, 1254-1264.]
DOI |
|
[20] |
Chiou TJ, Lin SI (2011). Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology, 62, 185-206.
DOI URL |
[21] |
Cregger MA, Schadt CW, McDowell NG, Pockman WT, Classen AT (2012). Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Applied and Environmental Microbiology, 78, 8587-8594.
DOI PMID |
[22] |
Crowley KF, McNeil BE, Lovett GM, Canham CD, Driscoll CT, Rustad LE, Denny E, Hallett RA, Arthur MA, Boggs JL, Goodale CL, Kahl JS, McNulty SG, Ollinger SV, Pardo LH, et al. (2012). Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States? Ecosystems, 15, 940-957.
DOI URL |
[23] |
Dijkstra FA, He MZ, Johansen MP, Harrison JJ, Keitel C (2015). Plant and microbial uptake of nitrogen and phosphorus affected by drought using 15N and 32P tracers. Soil Biology & Biochemistry, 82, 135-142.
DOI URL |
[24] |
Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196, 807-815.
DOI PMID |
[25] |
Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, van Veen JA, Kowalchuk GA (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 107, 10938-10942.
DOI PMID |
[26] |
Dunham RJ, Nye PH (1976). The influence of soil water content on the uptake of ions by roots. III. Phosphate, potassium, calcium and magnesium uptake and concentration gradients in soil. Journal of Applied Ecology, 13, 967-984.
DOI URL |
[27] |
Emami S, Alikhani HA, Pourbabaee AA, Etesami H, Motasharezadeh B, Sarmadian F (2020). Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils. Rhizosphere, 14, 100196. DOI: 10.1016/j.rhisph.2020.100196.
DOI |
[28] |
Fan YX, Lin F, Yang LM, Zhong XJ, Wang MH, Zhou JC, Chen YM, Yang YS (2018). Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biology and Fertility of Soils, 54, 149-161.
DOI URL |
[29] |
Fan YX, Lu SX, He M, Yang LM, Hu WF, Yang ZJ, Liu XF, Hui DF, Guo JF, Yang YS (2021). Long-term throughfall exclusion decreases soil organic phosphorus associated with reduced plant roots and soil microbial biomass in a subtropical forest. Geoderma, 404, 115309. DOI: 10.1016/j.geoderma.2021.115309.
DOI |
[30] |
Fang C, Ke W, Campioli M, Pei J, Yuan Z, Song X, Ye JS, Li F, Janssens IA (2020). Unaltered soil microbial community composition, but decreased metabolic activity in a semiarid grassland after two years of passive experimental warming. Ecology and Evolution, 10, 12327-12340.
DOI PMID |
[31] |
Filion M, ST-Arnaud M, Fortin JA (1999). Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytologist, 141, 525-533.
DOI URL |
[32] |
Franco-Zorrilla JM, González E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004). The transcriptional control of plant responses to phosphate limitation. Journal of Experimental Botany, 55, 285-293.
DOI PMID |
[33] | Fu Q, Zheng RB, Fang X, Guo XL (2020). Effects of warming and yak excreta addition on enzyme activity of marsh soil. Acta Ecologica Sinica, 40, 5055-5062. |
[付倩, 郑荣波, 方昕, 郭雪莲 (2020). 增温和牦牛排泄物输入对沼泽土壤酶活性的影响. 生态学报, 40, 5055-5062.] | |
[34] |
Fu XD, Harberd NP (2003). Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 421, 740-743.
DOI URL |
[35] |
Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. American Journal of Botany, 100, 1738-1750.
DOI PMID |
[36] |
Gardner WK, Parbery DG, Barber DA (1982). The acquisition of phosphorus by Lupinus albus L. II. The effect of varying phosphorus supply and soil type on some characteristics of the soil/root interface. Plant and Soil, 68, 33-41.
DOI URL |
[37] |
Goldstein AH (1986). Bacterial solubilization of mineral phosphates: historical perspective and future prospects. American Journal of Alternative Agriculture, 1, 51-57.
DOI URL |
[38] | Goldstein AH (1994). Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria//Torriani-Gorini A, Yagil E, Silver S. Phosphate in Microorganisms: Cellular and Molecular Biology. American Society for Microbiology Press, Washington D.C. 197-203. |
[39] |
González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005). Phosphate transporter traffic facilitator is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell, 17, 3500-3512.
DOI URL |
[40] |
Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003). Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiology, 132, 578-596.
DOI PMID |
[41] |
Hammond JP, Broadley MR, White PJ (2004). Genetic responses to phosphorus deficiency. Annals of Botany, 94, 323-332.
DOI PMID |
[42] | Häussling M, Marschner H (1989). Organic and inorganic soil phosphates and acid phosphatase activity in the rhizosphere of 80-year-old Norway spruce [Picea abies (L.) Karst.] trees. Biology and Fertility of Soils, 8, 128-133. |
[43] | He D, Geng LP, Guo J, Lu XJ, Liu WJ, Li BW (2020). Ability and mechanism of Penicillium oxalicum HB1 solubilizing phosphates. Transactions of the Chinese Society of Agricultural Engineering, 36, 255-265. |
[何迪, 耿丽平, 郭佳, 陆秀君, 刘文菊, 李博文 (2020). 草酸青霉菌HB1溶磷能力及作用机制. 农业工程学报, 36, 255-265.] | |
[44] |
He MZ, Dijkstra FA (2014). Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytologist, 204, 924-931.
DOI PMID |
[45] | Hong PZ, Liu SR, Yu HL, Hao J (2016). Effects of simulated nitrogen deposition on soil microbial biomass and community structure in a young plantation of Castanopsis hystrix. Journal of Shandong University (Natural Science), 51, 18-28. |
[洪丕征, 刘世荣, 于浩龙, 郝建 (2016). 模拟氮沉降对红椎人工幼龄林土壤微生物生物量和微生物群落结构的影响. 山东大学学报(理学版), 51, 18-28.] | |
[46] |
Hou EQ, Chen CR, Luo YQ, Zhou GY, Kuang YW, Zhang YG, Heenan M, Lu XK, Wen DZ (2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24, 3344-3356.
DOI PMID |
[47] |
Huang LM, Jia XX, Zhang GL, Shao MN (2017). Soil organic phosphorus transformation during ecosystem development: a review. Plant and Soil, 417, 17-42.
DOI URL |
[48] | Ji R (2013). Research summary on phosphate dissolution of phosphate solubilizing microorganisms. Gansu Agricultural Science and Technology, (8), 42-45. |
[吉蓉 (2013). 土壤解磷微生物及其解磷机制综述. 甘肃农业科技, (8), 42-45.] | |
[49] | Jiang C, Gao X, Liao L, Harberd NP, Fu X (2007). Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology, 145, 1460-1470. |
[50] | Jiang HH, Wang K, Chen J, Hu GX, Chen DN, Ma B, Ma JJ, Nan LL (2020). Effect of low-phosphorus stress on growth and physiological characteristics of new sainfoin lines at seedling stage. Grassland and Turf, 40(6), 95-101. |
[江海慧, 汪堃, 陈洁, 胡国霞, 陈道楠, 马彪, 马婧娟, 南丽丽 (2020). 低磷胁迫对红豆草新品系幼苗生长及生理特性的影响. 草原与草坪, 40(6), 95-101.] | |
[51] |
Jin J, Tang CX, Sale P (2015). The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Annals of Botany, 116, 987-999.
DOI PMID |
[52] |
Joner EJ, van Aarle IM, Vosatka M (2000). Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant and Soil, 226, 199-210.
DOI URL |
[53] |
Kaisermann A, de Varies FT, Griffiths RI, Bardgett RD (2017). Legacy effects of drought on plant-soil feedbacks and plant-plant interactions. New Phytologist, 215, 1413-1424.
DOI PMID |
[54] | Kong LJ, Zhu Q, Shan YZ, Xie FT, Wang HY, Zhang HJ, Zhao MZ, Ao X (2018). Effect of sucrose on root morphology and substance accumulation at soybean seedling stage under low phosphorus stress. Soybean Science, 37, 239-245. |
[孔令剑, 朱倩, 单玉姿, 谢甫绨, 王海英, 张惠君, 赵明哲, 敖雪 (2018). 蔗糖对低磷胁迫条件下大豆苗期根系形态和物质积累的影响. 大豆科学, 37, 239-245.] | |
[55] |
Lambers H, Albornoz F, Kotula L, Laliberté E, Ranathunge K, Teste F, Zemunik G (2018). How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus impoverished hyperdiverse ecosystems. Plant and Soil, 424, 11-33.
DOI URL |
[56] | Li F, Pan XH, Liu SY, Li MY, Yang FS (2004). Effect of phosphorus deficiency stress on root morphology and nutrient absorption of rice cultivars. Acta Agronomica Sinica, 30, 438-442. |
[李锋, 潘晓华, 刘水英, 李木英, 杨福孙 (2004). 低磷胁迫对不同水稻品种根系形态和养分吸收的影响. 作物学报, 30, 438-442.] | |
[57] | Li JY (2020). Function Analysis of Acid Phosphatase 1 (OsACP1) in Pi Stress Adaptation of Rice. Master degree dissertation, Huazhong Agricultural University, Wuhan. |
[李靖怡 (2020). 酸性磷酸酶OsACP1在水稻缺磷适应性中的功能研究. 硕士学位论文, 华中农业大学, 武汉.] | |
[58] | Li Q, Chen Q, He FR, Bharani M, Dai ZC, Qi SS, Du DL (2020). Arbuscular mycorrhizal fungi promote the growth of Wedelia trilobata and the absorption of insoluble phosphorus. Chinese Journal of Tropical and Subtropical Botany, 28, 339-346. |
[李琴, 陈琪, 贺芙蓉, Bharani M, 戴志聪, 祁珊珊, 杜道林 (2020). 丛枝菌根真菌促进南美蟛蜞菊生长及对难溶磷的吸收. 热带亚热带植物学报, 28, 339-346.] | |
[59] | Liao ZP (2017). Diversity of Microbial Alkaline Phosphatase Gene in Farmland Soil and Its Response to Phosphorus. Master degree dissertation, South China University of Technology, Guangzhou. |
[廖梓鹏 (2017). 农田土壤微生物碱性磷酸酶基因的多样性及其对磷素响应. 硕士学位论文, 华南理工大学, 广州.] | |
[60] | Lin QM, Wang H, Zhao XR, Zhao ZJ (2001). Capacity of some bacteria and fungi in dissolving phosphate rock. Microbiology China, 28(2), 26-30. |
[林启美, 王华, 赵小蓉, 赵紫鹃 (2001). 一些细菌和真菌的解磷能力及其机理初探. 微生物学通报, 28(2), 26-30.] | |
[61] | Liu L, Liao H, Wang XR, Yan XL (2008). Regulation effect of soil P availability on mycorrhizal infection in relation to root architecture and P efficiency of Glycine max. Chinese Journal of Applied Ecology, 19, 564-568. |
[刘灵, 廖红, 王秀荣, 严小龙 (2008). 磷有效性对大豆菌根侵染的调控及其与根构型、磷效率的关系. 应用生态学报, 19, 564-568.] | |
[62] |
Liu ST, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R, Goldstein AH (1992). Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. Journal of Bacteriology, 174, 5814-5819.
PMID |
[63] | Liu YL, Qian HY, Zhang X, Zheng CY, Deng AX, Jiang Y, Zhang WJ (2021). Impacts of arbuscular mycorrhizal fungi (AMF) on growth, N bio-fixation, and phosphorus uptake of legume crop. Chinese Journal of Applied Ecology, 32, 1761-1767. |
[刘云龙, 钱浩宇, 张鑫, 郑成岩, 邓艾兴, 江瑜, 张卫建 (2021). 丛枝菌根真菌对豆科作物生长和生物固氮及磷素吸收的影响. 应用生态学报, 32, 1761-1767.]
DOI |
|
[64] | Liu ZY (2020). The Response and Mechanism of Soil Enzymes and Soil Organic Carbon Decomposition to Warming in Typical Farmland of China. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. |
[刘朝阳 (2020). 我国典型农田土壤酶和有机碳分解对升温的响应及机理探究. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[65] |
Long M, Wu HH, Smith MD, La Pierre KJ, Lü XT, Zhang HY, Han XG, Yu Q (2016). Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland. Plant and Soil, 408, 475-484.
DOI URL |
[66] | Luo YH, Ke ZB, Zhong C, Cheng YJ (2020). Isolation and identification of phosphorus solubilizing bacteria in mangrove soil and their characteristics. Chinese Environmental Science, 40, 2664-2673. |
[骆韵涵, 柯志滨, 钟超, 程扬健 (2020). 红树林土壤解磷菌的分离鉴定及解磷特性. 中国环境科学, 40, 2664-2673.] | |
[67] |
Lynch JP (2011). Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiology, 156, 1041-1049.
DOI PMID |
[68] |
Marra LM, de Oliveira-Longatti SM, Soares CRFS, de Lima JM, Olivares FL, Moreira FMS (2015). Initial pH of medium affects organic acids production but do not affect phosphate solubilization. Brazilian Journal of Microbiology, 46, 367-375.
DOI PMID |
[69] |
McDowell RW, Stewart I (2006). The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: sequential extraction and 31P NMR. Geoderma, 130, 176-189.
DOI URL |
[70] |
McGill WB, Cole CV (1981). Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma, 26, 267-286.
DOI URL |
[71] |
Moorhead DL, Linkins AE (1997). Elevated CO2 alters belowground exoenzyme activities in tussock tundra. Plant and Soil, 189, 321-329.
DOI URL |
[72] | Munns R (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell & Environment, 16, 15-24. |
[73] |
Nacry P, Canivenc G, Muller B, Azmi A, van Onckelen H, Rossignol M, Doumas P (2005). A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiology, 138, 2061-2074.
DOI URL |
[74] |
Nielsen UN, Ball BA (2015). Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 21, 1407-1421.
DOI PMID |
[75] |
Pang L, Zhang Y, Zhou ZC, Feng ZP, Chu DY (2014). Effects of simulated nitrogen deposition on growth and phosphorus efficiency of Pinus massoniana under low phosphorus stress. Chinese Journal of Applied Ecology, 25, 1275-1282.
PMID |
[庞丽, 张一, 周志春, 丰忠平, 储德裕 (2014). 模拟氮沉降对低磷胁迫下马尾松生长和磷效率的影响. 应用生态学报, 25, 1275-1282.]
PMID |
|
[76] |
Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004). Microbial products trigger amino acid exudation from plant roots. Plant Physiology, 136, 2887-2894.
PMID |
[77] |
Plassard C, Dell B (2010). Phosphorus nutrition of mycorrhizal trees. Tree Physiology, 30, 1129-1139.
DOI PMID |
[78] | Qin WM, He B, Qin SY (2008). Biomass and productivity in Acacia crassicarpa plantation. Journal of Northwest Forestry University, 23(2), 17-20. |
[秦武明, 何斌, 覃世赢 (2008). 厚荚相思人工林生物量和生产力的研究. 西北林学院学报, 23(2), 17-20.] | |
[79] |
Raghothama KG (1999). Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 665-693.
PMID |
[80] |
Raven JA, Lambers H, Smith SE, Westoby M (2018). Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytologist, 217, 1420-1427.
DOI PMID |
[81] |
Ren CJ, Zhao FZ, Kang D, Yang GH, Han XH, Tong XG, Feng YZ, Ren GX (2016). Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management, 376, 59-66.
DOI URL |
[82] |
Richardson AE, Hadobas PA, Hayes JE (2001). Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. The Plant Journal, 25, 641-649.
DOI URL |
[83] |
Rosling A, Midgley MG, Cheeke T, Urbina H, Fransson P, Phillips RP (2016). Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist, 209, 1184-1195.
DOI PMID |
[84] |
Rubio V, Linhares F, Solano R, Marín AC, Iglesias J, Leyva A, Paz-Ares J (2001). A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & Development, 15, 2122-2133.
DOI URL |
[85] |
Rui YC, Wang YF, Chen CR, Zhou XQ, Wang SP, Xu ZH, Duan JC, Kang XM, Lu SB, Luo CY (2012). Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357, 73-87.
DOI URL |
[86] |
Ruiz-Lozano JM, Azcon R, Gomez M (1995). Effects of arbuscular-mycorrhizal glomus species on drought tolerance: physiological and nutritional plant responses. Applied and Environmental Microbiology, 61, 456-460.
DOI PMID |
[87] | Sane SA, Mehta SK (2015). Isolation and evaluation of rock phosphate solubilizing fungi as potential biofertilizer. Journal of Fertilizers & Pesticides, 6, 156-160. |
[88] |
Santi C, Bogusz D, Franche C (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany, 111, 743-767.
DOI PMID |
[89] |
Shi JC, Zhao BY, Zheng S, Zhang XW, Wang XL, Dong WT, Xie QJ, Wang G, Xiao YP, Chen F, Yu N, Wang ET (2021). A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell, 184, 5527-5540.
DOI PMID |
[90] |
Shishkova S, Rost TL, Dubrovsky JG (2008). Determinate root growth and meristem maintenance in angiosperms. Annals of Botany, 101, 319-340.
DOI PMID |
[91] |
Smith FW, Mudge SR, Rae AL, Glassop D (2003). Phosphate transport in plants. Plant and Soil, 248, 71-83.
DOI URL |
[92] |
Smith SE, Smith FA, Jakobsen I (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 162, 511-524.
DOI URL |
[93] |
Stenzel I, Ziethe K, Schurath J, Hertel SC, Bosse D, Köck M (2003). Differential expression of the LePS2 phosphatase gene family in response to phosphate availability, pathogen infection and during development. Physiologia Plantarum, 118, 138-146.
DOI URL |
[94] | Sun HM, Wang CH, Lu DX, Liu JJ, Yue ST, Yang MY (2016). Research progress of phosphate dissolving microorganisms and their promotion effect on plant growth. Journal of Henan Agricultural Sciences, 45(5), 1-6. |
[孙合美, 王春红, 卢冬雪, 刘晶晶, 岳胜天, 杨美英 (2016). 土壤溶磷微生物及其对植物促生作用研究进展. 河南农业科学, 45(5), 1-6.] | |
[95] |
Tang HL, Shen JB, Zhang FS, Rengel Z (2013). Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.). Science China Life Sciences, 56, 313-323.
DOI URL |
[96] | Tang MC, Li WJ, Song TS, Xie JJ (2020). Screening of a highly efficient phosphate-solubilizing bacterium and validation of its phosphate-solubilizing effect. Biotechnology Bulletin, 36(6), 102-109. |
[唐岷宸, 李文静, 宋天顺, 谢婧婧 (2020). 一株高效解磷菌的筛选及其解磷效果验证. 生物技术通报, 36(6), 102-109.]
DOI |
|
[97] | Teng ZD, Li M, Zhu J, Song MY (2017). Research advances in effect of phosphate-solubilizing microorganisms on soil phosphorus resource utilization. Chinese Journal of Soil Science, 48, 229-235. |
[滕泽栋, 李敏, 朱静, 宋明阳 (2017). 解磷微生物对土壤磷资源利用影响的研究进展. 土壤通报, 48, 229-235.] | |
[98] |
Thaller MC, Berlutti F, Schippa S, Lombardi G, Rossolini GM (1994). Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology, 140, 1341-1350.
DOI URL |
[99] |
Ticconi CA, Abel S (2004). Short on phosphate: plant surveillance and countermeasures. Trends in Plant Science, 9, 548-555.
PMID |
[100] |
Todd CD, Zeng P, Rodriguez Huete AM, Hoyos ME, Polacco JC (2004). Transcripts of MYB-like genes respond to phosphorous and nitrogen deprivation in Arabidopsis. Planta, 219, 1003-1009.
DOI URL |
[101] |
Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61, 295-304.
DOI PMID |
[102] | Torriani A, Ludtka D (1985). Regulation of the pho regulon in Escherichia coli K-12//Schaechter M. The Molecular Biology of Bacterial Growth. Jones and Bariett Publishers, Sudbury, Canada. 224-242. |
[103] |
Turner BL, Driessen JP, Haygarth PM, McKelvie ID (2003). Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biology & Biochemistry, 35, 187-189.
DOI URL |
[104] |
van Nuland ME, Smith DP, Bhatnagar JM, Stefanski A, Hobbie SE, Reich PB, Peay KG (2020). Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone. FEMS Microbiology Ecology, 96, fiaa108. DOI: 10.1093/femsec/fiaa108.
DOI |
[105] |
Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447.
DOI PMID |
[106] |
Varga T, Hixson KK, Ahkami AH, Sher AW, Barnes ME, Chu RK, Battu AK, Nicora CD, Winkler TE, Reno LR, Fakra SC, Antipova O, Parkinson DY, Hall JR, Doty SL (2020). Endophyte-promoted phosphorus solubilization in Populus. Frontiers in Plant Science, 11, 567918. DOI: 10.3389/fpls.2020.567918.
DOI |
[107] |
Wang C, Lu XK, Mori T, Mao QG, Zhou KJ, Zhou GY, Nie YX, Mo JM (2018). Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biology & Biochemistry, 121, 103-112.
DOI URL |
[108] |
Wang FQ, Tang JW, Li ZL, Xiang J, Wang LW, Tian L, Jiang LF, Luo YQ, Hou EQ, Shao XM (2021). Warming reduces the production of a major annual forage crop on the Tibetan Plateau. Science of the Total Environment, 798, 149211. DOI: 10.1016/j.scitotenv.2021.149211.
DOI |
[109] |
Wang XX, Dong SK, Gao QZ, Zhou HK, Liu SL, Su XK, Li YY (2014a). Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China. Soil Biology & Biochemistry, 76, 140-142.
DOI URL |
[110] |
Wang YH, Garvin DF, Kochian LV (2002). Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots: evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiology, 130, 1361-1370.
DOI URL |
[111] |
Wang ZL, Liu CX, Jiang QX, Li SQ, Chai X (2021). Effects of climate warming on the key process and index of black soil carbon and nitrogen cycle during freezing period. Environmental Science, 42, 1967-1978.
DOI URL |
[王子龙, 刘传兴, 姜秋香, 李世强, 柴迅 (2021). 气候变暖对冻结期黑土碳氮循环关键过程及指标的影响. 环境科学, 42, 1967-1978.] | |
[112] | Wang ZY, Ruan WY, Shi J, Zhang L, Xiang D, Yang C, Li CY, Wu ZC, Liu Y, Yu YN, Shou HX, Mo XR, Mao CZ, Wu P (2014b). Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 111, 14953-14958. |
[113] | Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kikuchi S, Yamagishi M, Osaki M (2003). Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant, Cell & Environment, 26, 1515-1523. |
[114] |
Wenzel CL, Ashford AE, Summerell BA (1994). Phosphate-solubilizing bacteria associated with proteoid roots of seedlings of waratah [Telopea speciosissima (Sm.) R. Br.]. New Phytologist, 128, 487-496.
DOI PMID |
[115] |
Widdig M, Schleuss PM, Weig AR, Guhr A, Biederman LA, Borer ET, Crawley MJ, Kirkman KP, Seabloom EW, Wragg PD, Spohn M (2019). Nitrogen and phosphorus additions alter the abundance of phosphorus-solubilizing bacteria and phosphatase activity in grassland soils. Frontiers in Environmental Science, 7, 185. DOI: 10.3389/fenvs.2019.00185.
DOI |
[116] |
Wu P, Ma LG, Hou XL, Wang MY, Wu Y, Liu FY, Deng XW (2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 132, 1260-1271.
DOI URL |
[117] | Wu PF, Zhang DM, Hao LH, Qi ZP (2008). Status quo and prospects of phosphate-soluble microorganisms. Journal of Agricultural Science and Technology, 10(3), 40-46. |
[吴鹏飞, 张冬明, 郝丽虹, 漆智平 (2008). 解磷微生物研究现状及展望. 中国农业科技导报, 10(3), 40-46.] | |
[118] | Xu XJ, Zhang YC (2018). Research progress on the root adaptation mechanism of plants under low phosphorus stress. Jiangsu Journal of Agricultural Sciences, 34, 1425-1429. |
[许仙菊, 张永春 (2018). 植物耐低磷胁迫的根系适应性机制研究进展. 江苏农业学报, 34, 1425-1429.] | |
[119] |
Xu XY, Qiu YP, Zhang KC, Yang F, Chen MF, Luo X, Yan XB, Wang P, Zhang Y, Chen HH, Guo H, Jiang L, Hu SJ (2022). Climate warming promotes deterministic assembly of arbuscular mycorrhizal fungal communities. Global Change Biology, 28, 1147-1161.
DOI URL |
[120] |
Yan GY, Xing YJ, Wang JY, Li ZH, Wang LG, Wang QG, Xu LJ, Zhang Z, Zhang JH, Dong XD, Shan WJ, Guo L, Han SJ (2018). Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: effects of nitrogen deposition. Agricultural and Forest Meteorology, 248, 70-81.
DOI URL |
[121] |
Yang HT, Wang ZR, Jia RL (2018). Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China. Chinese Journal of Plant Ecology, 42, 288-296.
DOI URL |
[杨昊天, 王增如, 贾荣亮 (2018). 腾格里沙漠东南缘荒漠草地不同群落类型土壤有机碳分布及储量特征. 植物生态学报, 42, 288-296.
DOI |
|
[122] |
Yang JY, Wang X, Sun LF, Wang C, Bai E (2020). Effects of nitrogen and phosphorus addition on soil microbial community and amino sugar in a temperate forest on Changbai Mountain, northeast China. Chinese Journal of Applied Ecology, 31, 1948-1956.
DOI |
[杨静怡, 王旭, 孙立飞, 王超, 白娥 (2020). 氮磷添加对长白山温带森林土壤微生物群落组成和氨基糖的影响. 应用生态学报, 31, 1948-1956.]
DOI |
|
[123] |
Yang LM, Yang ZJ, Peng YZ, Lin YY, Xiong DC, Li YQ, Yang YS (2019). Evaluating P availability influenced by warming and N deposition in a subtropical forest soil: a bioassay mesocosm experiment. Plant and Soil, 444, 87-99.
DOI |
[124] |
Yin HJ, Zhang ZL, Liu Q (2018). Root exudates and their ecological consequences in forest ecosystems: problems and perspective. Chinese Journal of Plant Ecology, 42, 1055-1070.
DOI URL |
[尹华军, 张子良, 刘庆 (2018). 森林根系分泌物生态学研究: 问题与展望. 植物生态学报, 42, 1055-1070.]
DOI |
|
[125] |
Zeng WJ, Wang W (2015). Combination of nitrogen and phosphorus fertilization enhance ecosystem carbon sequestration in a nitrogen-limited temperate plantation of northern China. Forest Ecology and Management, 341, 59-66.
DOI URL |
[126] | Zhang BG, Li GT (1998). Roles of soil organisms on the enhancement of plant availability of soil phosphorus. Acta Pedologica Sinica, 35, 104-111. |
[张宝贵, 李贵桐 (1998). 土壤生物在土壤磷有效化中的作用. 土壤学报, 35, 104-111.] | |
[127] | Zhang EH, Zhang XH, Wang HZ (2004). Adaptable effects of phosphorus stress on different genotypes of faba-bean. Acta Ecologica Sinica, 24, 1589-1593. |
[张恩和, 张新慧, 王惠珍 (2004). 不同基因型春蚕豆对磷胁迫的适应性反应. 生态学报, 24, 1589-1593.] | |
[128] | Zhang EP, Wang WN, Zhang SH (2014). A study on active soil organic carbon and available nutrients for protected soil under long-term fertilization. Journal of Shenyang Agricultural University, 45, 528-532. |
[张恩平, 王维念, 张淑红 (2014). 长期定位施肥条件下土壤活性有机碳变化及其与土壤速效养分的相关性. 沈阳农业大学学报, 45, 528-532.] | |
[129] | Zhang H, Han B, Dong QM, Lv JY, Shi YN, Zhou HK, Shao XQ (2020). Effects of AMF inoculation, short-term warming and increasing precipitation on nitrogen and phosphorus absorption of plant. Acta Agrestia Sinica, 28, 1034-1042. |
[张慧, 韩冰, 董全民, 吕进英, 史雅楠, 周华坤, 邵新庆 (2020). AMF及短期增温增雨互作对植物吸收氮磷功能的影响. 草地学报, 28, 1034-1042.]
DOI |
|
[130] |
Zhang HZ, Shi LL, Fu SL (2020). Effects of nitrogen deposition and increased precipitation on soil phosphorus dynamics in a temperate forest. Geoderma, 380, 114650. DOI: 10.1016/j.geoderma.2020.114650.
DOI |
[131] | Zhang J (2014). Molecular Mechanism of Phosphate Solubilization to Phosphate Deficient Stress in Penicillium oxalicum BK. Master degree dissertation, Dalian University of Technology, Dalian, Liaoning. |
[张健 (2014). 低磷胁迫下草酸青霉菌BK溶磷的分子机制. 硕士学位论文, 大连理工大学, 辽宁大连.] | |
[132] |
Zhang L, Fan J, Feng G, Declerck S (2019). The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 43194 induces the gene expression of citrate synthase in the tricarboxylic acid cycle of the phosphate-solubilizing bacterium Rahnella aquatilis HX2. Mycorrhiza, 29, 69-75.
DOI PMID |
[133] |
Zhang NY, Guo R, Song P, Guo JX, Gao YZ (2013). Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe, northeastern China. Soil Biology & Biochemistry, 65, 96-104.
DOI URL |
[134] | Zhang Q, Li JX, Fan XL, Xu WT, Xie ZQ (2021). Effects of nitrogen addition on litter production and leaf decomposition in Rhododendron simsii shrubland in the mid-subtropical of China. Acta Ecologica Sinica, 41, 2372-2383. |
[张蔷, 李家湘, 樊晓亮, 徐文婷, 谢宗强 (2021). 氮添加对中亚热带杜鹃灌丛凋落物生产和叶分解的影响. 生态学报, 41, 2372-2383.] | |
[135] | Zhang Y, Liu HT, Zhou YP, Li CJ (2015). Comparison of the responses between maize and faba bean to low phosphorus stress in the field. Journal of Plant Nutrition and Fertilizer, 21, 911-919. |
[张瑜, 刘海涛, 周亚平, 李春俭 (2015). 田间玉米和蚕豆对低磷胁迫响应的差异比较. 植物营养与肥料学报, 21, 911-919.] | |
[136] |
Zhang ZC, Zhu LX, Li DX, Wang N, Sun HC, Zhang YJ, Zhang K, Li AC, Bai ZY, Li CD, Liu LT (2021). In situ root phenotypes of cotton seedlings under phosphorus stress revealed through RhizoPot. Frontiers in Science, 12, 716691. DOI: 10.3389/fpls.2021.716691.
DOI |
[137] |
Zhang ZH, Yang SK, Han C, Xu D, Wang ZD, Ke F, Shen QS (2020). Effects of environmental stress on characteristics of low molecular weight organic acids secreted by macrophyte roots. Journal of Lake Sciences, 32, 462-471.
DOI URL |
[张治宏, 杨诗卡, 韩超, 许笛, 王兆德, 柯凡, 申秋实 (2020). 环境胁迫对水生植物根系分泌小分子量有机酸(LMWOAs)的影响特征. 湖泊科学, 32, 462-471.] | |
[138] | Zhao JQ, Wu JP, Zhang HL, Xiong X, Zhao MD, Chu GW, Meng Z, Zhou GY, Zhang DQ (2019). Effects of warming on soil microbial communities of a subtropical monsoon evergreen broad-leaved forest in southern China. Ecology and Environmental Sciences, 28, 881-889. |
[赵建琪, 吴建平, 张慧玲, 熊鑫, 赵梦頔, 褚国伟, 孟泽, 周国逸, 张德强 (2019). 增温对南亚热带季风常绿阔叶林土壤微生物群落的影响. 生态环境学报, 28, 881-889.]
DOI |
|
[139] |
Zhou J, Li XL, Peng F, Li CY, Lai CM, You QG, Xue X, Wu YH, Sun HY, Chen Y, Zhong HT, Lambers H (2021). Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorus-acquisition strategies in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 27, 6578-6591.
DOI PMID |
[140] | Zhu Q, Zhou ZD, Shi Y, Wu YB, Xue JH (2018). Effects of biochar-based fertilizer on phosphorus content of Karst calcareous soil. Acta Ecologica Sinica, 38, 4037-4044. |
[朱倩, 周之栋, 施毅, 吴永波, 薛建辉 (2018). 施用生物炭基肥对喀斯特石灰土磷元素特性的影响. 生态学报, 38, 4037-4044.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn