Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (5): 623-637.DOI: 10.17521/cjpe.2023.0127
• Research Articles • Previous Articles Next Articles
DENG Bei, WANG Xiao-Feng, LIAO Jun*()
Received:
2023-05-08
Accepted:
2023-10-09
Online:
2024-05-20
Published:
2023-10-10
Contact:
(Supported by:
DENG Bei, WANG Xiao-Feng, LIAO Jun. Ecophysiological responses of herbaceous and woody plants to environmental stresses in the riparian zone of Three Gorges Reservoir: a meta-analysis[J]. Chin J Plant Ecol, 2024, 48(5): 623-637.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0127
生活型 Life form | 科名 Family | 种名 Species |
---|---|---|
草本 Herb | 莎草科 Cyperaceae | 香附子 Cyperus rotundus |
禾本科 Poaceae | 芦苇 Phragmites australis | |
扁穗牛鞭草 Hemarthria compressa | ||
狗牙根 Cynodon dactylon | ||
狗尾草 Setaria viridis | ||
野古草 Arundinella hirta | ||
香根草 Chrysopogon zizanioides | ||
双穗雀稗 Paspalum distichum | ||
蓼科 Polygonaceae | 水蓼 Persicaria hydropiper | |
酸模叶蓼 Persicaria lapathifolia | ||
菊科 Asteraceae | 苍耳 Xanthium sibiricum | |
马兰 Aster indicus | ||
苋科 Amaranthaceae | 喜旱莲子草 Alternanthera philoxeroides | |
三白草科 Saururaceae | 蕺菜 Houttuynia cordata | |
天南星科 Araceae | 菖蒲 Acorus Calamus | |
木本 Wood | 胡桃科 Juglandaceae | 枫杨 Pterocarya stenoptera |
壳斗科 Fagaceae | 栓皮栎 Quercus variabilis | |
松科 Pinaceae | 湿地松 Pinus elliottii | |
杉科 Taxodiaceae | 水松 Glyptostrobus pensilis | |
水杉 Metasequoia glyptostroboides | ||
池杉 Taxodium ascendens | ||
落羽杉 Taxodium distichum | ||
中山杉 Taxodium ‘Zhongshanshan’ | ||
大戟科 Euphorbiaceae | 乌桕 Triadica sebifera | |
桑科 Moraceae | 桑 Morus alba | |
桦木科 Betulaceae | 水桦 Betula nigra | |
杨柳科 Salicaceae | 旱柳 Salix matsudana | |
秋华柳 Salix variegate | ||
南川柳 Salix rosthornii | ||
樟科 Lauraceae | 樟 Camphora officinarum | |
含羞草科 Mimosaceae | 银合欢 Leucaena leucocephala | |
金缕梅科 Hamamelidaceae | 中华蚊母树 Distylium chinen | |
黄杨科 Buxaceae | 宜昌黄杨 Buxus ichangensis |
Table 1 Common herbs and woody plants in the riparian zone of the Three Gorges Reservoir
生活型 Life form | 科名 Family | 种名 Species |
---|---|---|
草本 Herb | 莎草科 Cyperaceae | 香附子 Cyperus rotundus |
禾本科 Poaceae | 芦苇 Phragmites australis | |
扁穗牛鞭草 Hemarthria compressa | ||
狗牙根 Cynodon dactylon | ||
狗尾草 Setaria viridis | ||
野古草 Arundinella hirta | ||
香根草 Chrysopogon zizanioides | ||
双穗雀稗 Paspalum distichum | ||
蓼科 Polygonaceae | 水蓼 Persicaria hydropiper | |
酸模叶蓼 Persicaria lapathifolia | ||
菊科 Asteraceae | 苍耳 Xanthium sibiricum | |
马兰 Aster indicus | ||
苋科 Amaranthaceae | 喜旱莲子草 Alternanthera philoxeroides | |
三白草科 Saururaceae | 蕺菜 Houttuynia cordata | |
天南星科 Araceae | 菖蒲 Acorus Calamus | |
木本 Wood | 胡桃科 Juglandaceae | 枫杨 Pterocarya stenoptera |
壳斗科 Fagaceae | 栓皮栎 Quercus variabilis | |
松科 Pinaceae | 湿地松 Pinus elliottii | |
杉科 Taxodiaceae | 水松 Glyptostrobus pensilis | |
水杉 Metasequoia glyptostroboides | ||
池杉 Taxodium ascendens | ||
落羽杉 Taxodium distichum | ||
中山杉 Taxodium ‘Zhongshanshan’ | ||
大戟科 Euphorbiaceae | 乌桕 Triadica sebifera | |
桑科 Moraceae | 桑 Morus alba | |
桦木科 Betulaceae | 水桦 Betula nigra | |
杨柳科 Salicaceae | 旱柳 Salix matsudana | |
秋华柳 Salix variegate | ||
南川柳 Salix rosthornii | ||
樟科 Lauraceae | 樟 Camphora officinarum | |
含羞草科 Mimosaceae | 银合欢 Leucaena leucocephala | |
金缕梅科 Hamamelidaceae | 中华蚊母树 Distylium chinen | |
黄杨科 Buxaceae | 宜昌黄杨 Buxus ichangensis |
Fig. 1 Biomass and morphological changes of herbaceous plants and woody plants under flooding conditions. The horizontal dotted line indicates that the response ratio is 0, and the square and the error bar indicate the mean and the 95% confidence interval. There was no significant difference between the treatment and the control in the intersection of the 0 line (p > 0.05). The error line is expressed as a significant positive correlation above the 0 line, and the error line is expressed as a significant negative correlation below the zero line (p < 0.05). Numbers in brackets indicate sample size. Ac, Acorus calamus; Ap, Alternanthera philoxeroides; Cd, Cynodon dactylon; Cr, Cyperus rotundus; Cz, Chrysopogon zizanioides; Dc, Distylium chinen; Hc, Hemarthria compressa; Mg, Metasequoia glyptostroboides; Pe, Pinus elliottii; Ph, Persicaria hydropiper; Ps, Pterocarya stenoptera; Sr, Salix rosthornii; Sv, Setaria viridis; Tz, Taxodium ‘Zhongshanshan’.
Fig. 2 Changes of photosynthetic pigment content and photosynthetic parameters of herbaceous plants and woody plants under flooding conditions. The horizontal dotted line indicates that the response ratio is 0, and the square and the error bar indicate the mean and the 95% confidence interval. There was no significant difference between the treatment and the control in the intersection of the 0 line (p > 0.05). The error line is expressed as a significant positive correlation above the 0 line, and the error line is expressed as a significant negative correlation below the zero line (p < 0.05). Numbers in brackets indicate sample size. The vacancy position indicates that the species has no corresponding data (A-E). Cd, Cynodon dactylon; Cr, Cyperus rotundus; Cz, Chrysopogon zizanioides; Dc, Distylium chinen; Hc, Hemarthria compressa; Ma, Morus alba; Pa, Phragmites australis; Pe, Pinus elliottii; Ph, Persicaria hydropiper; Ps, Pterocarya stenoptera; Sv, Setaria viridis; Sva, Salix variegate; Ta, Taxodium ascendens; Td, Taxodium distichum. Ci, intercellular CO2 concentration; Gs, stomatal conductivity; Pn, net photosynthetic rate; Tr, transpiration rate; T Chl, total chlorophyll.
Fig. 3 Changes of physiological indexes of herbaceous plants and woody plants under flooding. The horizontal dotted line indicates that the response ratio is 0, and the square and the error bar indicate the mean and the 95% confidence interval. There was no significant difference between the treatment and the control in the intersection of the 0 line (p > 0.05). The error line is expressed as a significant positive correlation above the 0 line, and the error line is expressed as a significant negative correlation below the zero line (p < 0.05). Numbers in brackets indicate sample size.The vacancy position indicates that the species has no corresponding data (A, B). Ai, Aster indicus; Cd, Cynodon dactylon; Co, Camphora officinarum; Cr, Cyperus rotundus; Dc, Distylium chinen; Hc, Hemarthria compressa; Hco, Houttuynia cordata; Mg, Metasequoia glyptostroboides; Pd, Paspalum distichum; Pe, Pinus elliottii; Pl, Persicaria lapathifolia; Sr, Salix rosthornii; Sva, Salix variegate; Xs, Xanthium sibiricum. CAT, catalase; MDA, malondialdehyde; Pro, proline; POD, peroxidase; SOD, superoxide dismutase.
Fig. 4 Biomass changes and morphological changes of herbaceous plants and woody plants under drought conditions. The horizontal dotted line indicates that the response ratio is 0, and the square and the error bar indicate the mean and the 95% confidence interval. There was no significant difference between the treatment and the control in the intersection of the 0 line (p > 0.05). The error line is expressed as a significant positive correlation above the 0 line, and the error line is expressed as a significant negative correlation below the zero line (p < 0.05). Numbers in brackets indicate sample size. Ar, root surface; As, specific root area; H, plant height; No., blade number; L, leaf length; Lr, lateral root number; W, leaf width.
Fig. 5 Changes of photosynthetic pigments, photosynthetic parameters and water efficiency of herbaceous plants and woody plants under drought conditions. The horizontal dotted line indicates that the response ratio is 0, and the square and the error bar indicate the mean and the 95% confidence interval. There was no significant difference between the treatment and the control in the intersection of the 0 line (p > 0.05). The error line is expressed as a significant positive correlation above the 0 line, and the error line is expressed as a significant negative correlation below the zero line (p < 0.05). Numbers in brackets indicate sample size. The vacancy position indicates that the species has no corresponding data (A-F). Cd, Cynodon dactylon; Hc, Hemarthria compressa; Ll, Leucaena leucocephala; Ma, Morus alba; Pa, Phragmites australis; Pe, Pinus elliottii; Ps, Pterocarya stenoptera; Ta, Taxodium ascendens; Td, Taxodium distichum. Ci, intercellular CO2 concentration; Gs, stomatal conductivity; Pn, net photosynthetic rate; Tr, transpiration rate; T Chl, total chlorophyll; WUE, water use efficiency.
Fig. 6 Changes of physiological indexes of herbaceous plants and woody plants under drought. The horizontal dotted line indicates that the response ratio is 0, and the square and the error bar indicate the mean and the 95% confidence interval. There was no significant difference between the treatment and the control in the intersection of the 0 line (p > 0.05). The error line is expressed as a significant positive correlation above the 0 line, and the error line is expressed as a significant negative correlation below the zero line (p < 0.05). Numbers in brackets indicate sample size.The vacancy position indicates that the species has no corresponding data (A, B). Ac, Acorus Calamus; Cd, Cynodon dactylon; Cz, Chrysopogon zizanioides; Hc, Hemarthria compressa; Ma, Morus alba; Mg, Metasequoia glyptostroboides; Ps, Pterocarya stenoptera; Sr, Salix rosthornii; Sv, Setaria viridis; Tz, Taxodium ‘Zhongshanshan’. CAT, catalase; MDA, malondialdehyde; Pro, proline; POD, peroxidase; SOD, superoxide dismutase.
生活型 Life form | 胁迫 Stress | 生物量 Biomass | 总叶绿素含量 T Chl content | 净光合速率 Pn |
---|---|---|---|---|
草本 Herb | 水淹胁迫 Flooding stress | -53.48 [-61.22, -44.19] | -12.93 [-20.28, -4.92] | -17.50 [-30.41, -2.20] |
干旱胁迫 Drought stress | -20.49 [-33.89, -4.39] | -11.64 [-18.00, -4.77] | -17.99 [-23.10, -12.54] | |
木本 Wood | 水淹胁迫 Flooding stress | -35.68 [-44.96, -24.84] | -28.66 [-35.39, -21.23] | -36.06 [-42.01, -29.50] |
干旱胁迫 Drought stress | -19.92 [-28.89, -9.82] | 1.23 [-3.68, 6.37] | -14.32 [-24.15, -3.23] |
Table 2 Changes (%) and 95% confidence interval of biomass, total chlorophyll (T Chl) content and net photosynthetic rate (Pn) of herbaceous plants and woody plants under different stresses
生活型 Life form | 胁迫 Stress | 生物量 Biomass | 总叶绿素含量 T Chl content | 净光合速率 Pn |
---|---|---|---|---|
草本 Herb | 水淹胁迫 Flooding stress | -53.48 [-61.22, -44.19] | -12.93 [-20.28, -4.92] | -17.50 [-30.41, -2.20] |
干旱胁迫 Drought stress | -20.49 [-33.89, -4.39] | -11.64 [-18.00, -4.77] | -17.99 [-23.10, -12.54] | |
木本 Wood | 水淹胁迫 Flooding stress | -35.68 [-44.96, -24.84] | -28.66 [-35.39, -21.23] | -36.06 [-42.01, -29.50] |
干旱胁迫 Drought stress | -19.92 [-28.89, -9.82] | 1.23 [-3.68, 6.37] | -14.32 [-24.15, -3.23] |
Fig. 7 Schematic diagram of morphological differences and common response characteristics of herbaceous plants and woody plants under environmental stress. Red arrows indicate decrease or inhibition, and green arrows indicate increase or promotion. The green and red arrows are juxtaposed to indicate first promotion and then inhibition. CAT, catalase; POD, peroxidase; SOD, superoxide dismutase.
[1] | Ai LJ, Wang S, Zhang YL (2013a). Effects of drought stress and recovery on antioxidant enzyme activities of Salix rosthornii Seemen. Chinese Agricultural Science, 29(13), 14-19. |
[艾丽皎, 王胜, 张银龙 (2013a). 消落带植物南川柳对干旱胁迫的生理响应. 中国农学通报, 29(13), 14-19.] | |
[2] | Ai LJ, Wu ZN, Zhang YL (2013b). A summary of water-level- fluctuating zone. Ecological Science, 32, 259-264. |
[艾丽皎, 吴志能, 张银龙 (2013b). 水体消落带国内外研究综述. 生态科学, 32, 259-264.] | |
[3] | Anderson PH, Pezeshki SR (1999). The effects of intermittent flooding on seedlings of three forest species. Photosynthetica, 37, 543-552. |
[4] | Bai LL, Han WJ, Li CX (2015a). Effects of flooding on responses of Metasequoia glyptostroboides saplings to drought. Journal of Northwest A&F University (Natural Science Edition), 43(5), 42-50. |
[白林利, 韩文娇, 李昌晓 (2015a). 前期水淹对水杉树苗响应干旱胁迫的影响. 西北农林科技大学学报(自然科学版), 43(5), 42-50.] | |
[5] | Bai LL, Han WJ, Li CX (2015b). Effects of simulated waterlogging on growth, physiological and biochemical characteristics of Metasequoia glyptostroboides seedlings. Journal of Zhejiang University (Agriculture and Life Sciences), 41, 505-515. |
[白林利, 韩文娇, 李昌晓 (2015b). 模拟水淹对水杉苗木生长与生理生化特性的影响. 浙江大学学报, 41, 505-515.] | |
[6] | Castonguay Y, Nadeau P, Simard RR (1993). Effects of flooding on carbohydrate and ABA levels in roots and shoots of alfalfa. Plant, Cell & Environment, 16, 695-702. |
[7] | Chen FQ, Li Y, Xi GW (2008). The ecophysiological response of Polygonum hydropiper plants to simulated flooding. Ecological and Environment, 17, 1096-1099. |
[陈芳清, 李永, 郄光武 (2008). 水蓼对模拟水淹的生理生态学响应. 生态环境, 17, 1096-1099.] | |
[8] | Chen SF, Shu QY (1999). Biological mechanism of and genetic engineering for drought stress tolerance in plants. Acta Botanica Sinica, 16, 555-560. |
[陈善福, 舒庆尧 (1999). 植物耐干旱胁迫的生物学机理及其基因工程研究进展. 植物学报, 16, 555-560.] | |
[9] | Chen T (2009). Effect of waterflooding on the formation of aerenchymas in the stems of Arundinella anomala and Salix variegata seedlings. Journal of Anhui Agricultural Sciences, 37, 7265-7266. |
[陈婷 (2009). 水淹对野古草和秋华柳幼苗茎通气组织形成的影响. 安徽农业科学, 37, 7265-7266.] | |
[10] | Chen T, Zeng B, Ye XQ, Luo FL, Liu D (2007). Effect of flooding on adventitious root formation of Arundinella anomala Steud. and Salix variegata Franch. Journal of Anhui Agricultural Sciences, 35, 5703-5704. |
[陈婷, 曾波, 叶小齐, 罗芳丽, 刘巅 (2007). 水淹对野古草和秋华柳不定根形成的影响. 安徽农业科学, 35, 5703-5704.] | |
[11] | Davanso VM, de Souza LA, Medri ME, Pimenta JA, Bianchini E (2002). Photosynthesis, growth and development of Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae) in flooded soil. Brazilian Archives of Biology and Technology, 45, 375-384. |
[12] | Elcan JM, Pezeshki SR (2002). Effects of flooding on susceptibility of Taxodium distichum L. seedings to drought. Photosynthetica, 40, 177-182. |
[13] | Feng DL, Huang XH, Xiang ZH, Qi B, Qin J, Geng YH (2013). Mulberry growth and variation of soil nitrogen and phosphorus content under artificial drought created to simulate hydro- fluctuation belt of the Three Gorges Reservoir area. Science of Sericulture, 39, 862-867. |
[冯大兰, 黄小辉, 向仲怀, 漆波, 秦俭, 耿养会 (2013). 桑树在模拟三峡库区消落带干旱条件下的生长状况及土壤氮磷元素的变化. 蚕业科学, 39, 862-867.] | |
[14] | Gan LP, Ren L, Li H, Wang LC (2021). Physiological and structural responses of Betula nigra to periodic flooding in Three Gorges Reservoir fluctuating zone. Forest Research, 34(1), 146-152. |
[甘丽萍, 任立, 李豪, 王立春 (2021). 三峡库区消落带水桦(Betula nigra)周期性水淹后的生理与结构响应. 林业科学研究, 34(1), 146-152.] | |
[15] | Guo QS, Hong M, Kang Y, Pei SX, Cheng RM (2010). Research development on hydro-fluctuation belt plants. World Forestry Research, 23(4), 14-20. |
[郭泉水, 洪明, 康义, 裴顺祥, 程瑞梅 (2010). 消落带适生植物研究进展. 世界林业研究, 23(4), 14-20.] | |
[16] | Guo QS, Kang Y, Hong M, Jin JQ, Zhu NN, Nie BH, Wang ZQ (2013). Responses of terrestrial plants in hydro-fluctuation belt of the Three Gorges Reservoir area to the first time flooding-drying habitat change. Scientia Silvae Sinicae, 49(5), 1-9. |
[郭泉水, 康义, 洪明, 金江群, 朱妮妮, 聂必红, 王佐庆 (2013). 三峡库区消落带陆生植被对首次水陆生境变化的响应. 林业科学, 49(5), 1-9.] | |
[17] | Gao XM, Chen LZ (1998). The revision of plant life-form system and an analysis of the life-form spectrum of forest plans in warm temperate zone of China. Acta Botanica Sinica, 40(6), 70-76. |
[高贤明, 陈灵芝 (1998). 植物生活型分类系统的修订及中国暖温带森林植物生活型谱分析. 植物学报, 40(6), 70-76.] | |
[18] | Han RH, Lu XS (2006). Studies on adaptive mechanism of alfalfa in drought stress at seedling stage. Acta Agrestia Sinica, 14, 393-394. |
[韩瑞宏, 卢欣石 (2006). 苗期紫花苜蓿对干旱胁迫的适应机制. 草地学报, 14, 393-394.]
DOI |
|
[19] | Hedges LV, Gurevitch J, Curtis PS (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150-1156. |
[20] | Huang SY, Ma LH, Fang W, Liu Y, Chen XY (2013). Study on the reconstruction and ecological restoration techniques of vegetation in hydro-fluctuation belt of the Three Gorges Reservoir. Journal of Southwest Forestry University, 33(3), 74-78. |
[黄世友, 马立辉, 方文, 刘杨, 陈雪影 (2013). 三峡库区消落带植被重建与生态修复技术研究. 西南林业大学学报, 33(3), 74-78.] | |
[21] | Huang XH, Liu Y, Li JX, Xiong XZ, Yin XH, Chen Y, Feng DL, Li S (2013a). Effects of simulated soil drought on physiological characteristics of young mulberry (Morus alba L.) trees in the hydro-fluctuation belt of the Three Gorges Reservoir area. Journal of Southwest University (Natural Science Edition), 35(9), 127-132. |
[黄小辉, 刘芸, 李佳杏, 熊兴政, 尹小华, 陈阳, 冯大兰, 李沙 (2013a). 模拟三峡库区消落带土壤干旱对桑树生理特性的影响. 西南大学学报(自然科学版), 35(9), 127-132.] | |
[22] | Huang XH, Liu Y, Li JX, Xiong XZ, Yin XH, Chen Y, Qin J, Huang XZ, Du YW (2012b). Effects of water stress on physiological characteristics of mulberry (Morus alba) seedlings in the hydro-fluctuation belt of the Three Gorges Reservoir area. Scientia Silvae Sinicae, 48(12), 122-127. |
[黄小辉, 刘芸, 李佳杏, 熊兴政, 尹小华, 陈阳, 秦俭, 黄先智, 杜英武 (2012b). 水分胁迫对三峡库区消落带桑树幼苗生理特性的影响. 林业科学, 48(12), 122-127.] | |
[23] | Huang XH, Yin XH, Liu Y, Li JX, Xiong XZ, Chen Y (2012). Effect of drought stress on mulberry growth in water- fluctuating zone in Three Gorges Reservoir area. Journal of Chongqing Normal University (Natural Science), 29(3), 57-60. |
[黄小辉, 尹小华, 刘芸, 李佳杏, 熊兴政, 陈阳 (2012). 干旱胁迫对三峡库区消落带桑树生长的影响. 重庆师范大学学报(自然科学版), 29(3), 57-60.] | |
[24] | Jin JY, Zhang WH, Huang JG (2011). Effects of water stress on growth, nutrition and physiological indices of Hemarthria compressa. Plant Nutrition and Fertilizer Science, 17, 1545-1550. |
[靳军英, 张卫华, 黄建国 (2011). 干旱对扁穗牛鞭草生长、营养及生理指标的影响. 植物营养与肥料学报, 17, 1545-1550.] | |
[25] | Li Q (2016). Influence of sand burial and drought on growth recovery of Cynodon dactylon in a water-level-fluctuating zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 36, 200-208. |
[李强 (2016). 泥沙掩埋和干旱对三峡库区消落带狗牙根生长恢复的影响. 生态学报, 36, 200-208.] | |
[26] | Li Q, Gao X, Ding WQ, Zhu QH, Ou Y, Liu Y (2012). Influence of perennial flooding and drought on growth restoration of Acorus calamus in water-level-fluctuation zone of the Three Gorges Reservoir. Environmental Science, 33, 2628-2633. |
[李强, 高祥, 丁武泉, 朱启红, 欧媛, 刘瑜 (2012). 常年淹水和干旱对三峡库区消落带菖蒲生长恢复的影响. 环境科学, 33, 2628-2633.] | |
[27] | Li Q, Wang SM, Ding WQ, Zhu QH (2017). Influence of sand burial and drought on the growth of Paspalum distichum in water-level-fluctuating zone of the Three Gorges Reservoir. Chinese Journal of Ecology, 36, 649-654. |
[李强, 王书敏, 丁武泉, 朱启红 (2017). 泥沙掩埋和干旱对三峡库区消落带双穗稗草生长的影响. 生态学杂志, 36, 649-654.] | |
[28] | Li SZ, Deng Y, Shi FN, Hu MM, Pang BH, Wang YC, Li K, Chen M, Peng WQ, Qu XD, Bao YF, Meng JJ (2019). Research progress on water-level-fluctuation zones of reservoirs: a review. Wetland Science, 17, 689-696. |
[李姗泽, 邓玥, 施凤宁, 胡明明, 庞博慧, 王雨春, 李坤, 陈铭, 彭文启, 渠晓东, 包宇飞, 孟晶晶 (2019). 水库消落带研究进展. 湿地科学, 17, 689-696.] | |
[29] | Li XX, He YY, Yang WH, Wang CY, Yan JW, Cui Z, Li CX (2018). Effects of different water conditions and plant density on the growth and interspecific competition of Hemarthria compressa and Cynodon dactylon. Acta Ecologica Sinica, 38, 3046-3058. |
[李晓雪, 贺燕燕, 杨文航, 王朝英, 燕江伟, 崔振, 李昌晓 (2018). 不同水分处理和密度配置对牛鞭草与狗牙根生长与种间竞争的影响. 生态学报, 38, 3046-3058.] | |
[30] | Liu JH, Lin F, Shi SH, Ayi QL, Liu SP, Zeng B (2017). Effects of water level regulation on the seed germination and production of annual plant Xanthium sibiricum in the water-level-fluctuating-zone of Three Gorges Reservoir. Scientific Reports, 7, 5056. DOI: 10.1038/s41598-017- 04599-4. |
[31] | Liu ZB, Cheng RM, Xiao WF, Guo QS, Wang N (2014). Effect of flooding on growth, photosynthesis and fluorescence characteristics of Distylium chinense. Scientia Silvae Sinicae, 50(9), 73-81. |
[刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王娜 (2014). 模拟水淹对中华蚊母树生长及光合特性的影响. 林业科学, 50(9), 73-81.] | |
[32] | Liu ZB, Cheng RM, Xiao WF, Guo QS, Wang XR, Feng XH (2013a). Effects of submergence on the growth and photosynthetic characteristics of Rhizoma cyperi in hydro- fluctuation belt of Three Gorges Reservoir area, Southwest China. Chinese Journal of Ecology, 32, 2015-2022. |
[刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王晓荣, 封晓辉 (2013a). 淹水对三峡库区消落带香附子生长及光合特性的影响. 生态学杂志, 32, 2015-2022.] | |
[33] | Liu ZB, Cheng RM, Xiao WF, Guo QS, Wang YH, Wang N (2015). Effect of submergence on physiological characteristics of Cyperus rotundus in hydro-fluctuation belt of Three Gorges Reservoir area. Acta Botanica Boreali-Occidentalia Sinica, 35, 1190-1197. |
[刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王彦辉, 王娜 (2015). 淹水对三峡库区消落带香附子生理特性的影响. 西北植物学报, 35, 1190-1197.] | |
[34] | Liu ZB, Cheng RM, Xiao WF, Guo QS, Wang YH, Wang N (2016). Growth and physiological responses of seedlings of Distylium chinense to autumn and winter flooding. Lake Sciences, 28, 405-413. |
[刘泽彬, 程瑞梅, 肖文发, 郭泉水, 王彦辉, 王娜 (2016). 中华蚊母树(Distylium chinense)幼苗对秋、冬季淹水的生长及生理响应. 湖泊科学, 28, 405-413.] | |
[35] | Liu ZB, Cheng RM, Xiao WF, Wang RL, Feng XH, Wang XR (2013b). Effect of waterlogging on photosynthetic and physioecological characteristics of plants. World Forestry Research, 26(3), 33-38. |
[刘泽彬, 程瑞梅, 肖文发, 王瑞丽, 封晓辉, 王晓荣 (2013b). 水淹胁迫对植物光合生理生态的影响. 世界林业研究, 26(3), 33-38.] | |
[36] | Lu ZJ, Jiang MX (2012). Vegetation restoration strategy in fluctuating zone of Three Gorges Reservoir area. Journal of Chongqing Normal University (Natural Science), 29(3), 27-30. |
[卢志军, 江明喜 (2012). 三峡库区消涨带植被恢复策略. 重庆师范大学学报(自然科学版), 29(3), 27-30.] | |
[37] | Martínez JP, Silva H, Ledent JF, Pinto M (2007). Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal of Agronomy, 26, 30-38. |
[38] | New T, Xie Z (2008). Impacts of large dams on riparian vegetation: applying global experience to the case of China’s Three Gorges Dam. Biodiversity and Conservation, 17, 3149-3163. |
[39] | Ni X, Zhou BZ, Cao YH, Lu XZ (2017). Impact of drought stress on plant photosynthetic physiology: a review. Journal of Jiangsu Forestry Science & Technology, 44(2), 34-39. |
[倪霞, 周本智, 曹永慧, 鲁小珍 (2017). 干旱胁迫对植物光合生理影响研究进展. 江苏林业科技, 44(2), 34-39.] | |
[40] | Oliveira VC, Joly CA (2010). Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): morphological, physiological and growth responses. Trees, 24, 185-193. |
[41] | Pezeshki SR (2001). Wetland plant responses to soil flooding. Environmental and Experimental Botany, 46, 299-312. |
[42] | Pezeshki SR, Santos MI (1998). Relationships among rhizosphere oxygen deficiency, root restriction, photosynthesis, and growth in baldcypress (Taxodium distichum L.) seedlings. Photosynthetica, 35, 381-390. |
[43] |
Sack L, Holbrook NM (2006). Leaf hydraulics. Annual Review of Plant Biology, 57, 361-381.
PMID |
[44] |
Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000.
DOI PMID |
[45] |
Sack L, Tyree MT, Holbrook NM (2005). Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist, 167, 403-413.
PMID |
[46] | Shen ZF, Zhang KJ, Xia X, Hu L (2021). Bibliometric analysis of the current situation and hot research topics on the water level fluctuation zone (WLFZ) of Three Gorges Reservoir. Journal of Hydroecology, 42(1), 26-34. |
[沈振锋, 张开金, 夏雪, 胡莲 (2021). 基于文献计量法的三峡库区消落带研究现状及热点分析. 水生态学杂志, 42(1), 26-34.] | |
[47] | Song PH, Zeng QW, Shang JZ, Ma B, Xiang ZH, He NJ (2013). Research progress in plant responses to waterlogging stress. Science of Sericulture, 39(1), 160-165. |
[宋鹏华, 曾其伟, 商敬哲, 马赑, 向仲怀, 何宁佳 (2013). 植物对水淹胁迫响应的研究进展. 蚕业科学, 39(1), 160-165.] | |
[48] | Sun R, Yuan XZ, Ding JJ (2010). Plant communities in water- level-fluctuation-zone of Baijia Stream in Three Gorges Reservoir after its initiate impounding to 156 m height. Wetland Science, 8, 1-7. |
[孙荣, 袁兴中, 丁佳佳 (2010). 三峡水库蓄水至156 m水位后白夹溪消落带植物群落生态学研究. 湿地科学, 8, 1-7.] | |
[49] | Tang Z, Kozlowski TT (1983). Responses of Pinusbanksiana and Pinusresinosa seedlings to flooding. Canadian Journal of Forest Research, 13, 633-639. |
[50] | Vartapetian BB, Jackson MB (1997). Plant adaptation to anaerobic stress. Annals of Botany, 79(Suppl. A), 3-20. |
[51] | Wang CY, Li CX, Zhang Y (2013a). Effects of flooding on the photosynthetic physiology characteristics of Pterocarya stenoptera seedlings. Chinese Journal of Applied Ecology, 24, 675-682. |
[王朝英, 李昌晓, 张晔 (2013a). 水淹对枫杨幼苗光合生理特征的影响. 应用生态学报, 24, 675-682.] | |
[52] | Wang CY, Li CX, Zhang Y (2013b). Effects of submergence- drought stresses on growth and physiological characteristics of Salix rosthornii seedlings. Scientia Silvae Sinicae, 49(12), 164-170. |
[王朝英, 李昌晓, 张晔 (2013b). 水淹-干旱胁迫对南川柳苗木生长及生理特性的影响. 林业科学, 49(12), 164-170.] | |
[53] | Wang XF, Li XX, Liu TT, Wang JL, Wu SN, Yuan XZ (2022). Trends and hotspots analysis of the researches on the drawdown zone of Three Gorges Reservoir based on CiteSpace. Ecological Science, 41, 249-261. |
[王晓锋, 李贤祥, 刘婷婷, 王继龙, 吴胜男, 袁兴中 (2022). 基于CiteSpace的三峡库区消落带研究热点与进展. 生态科学, 41, 249-261.] | |
[54] | Zhang JJ, Ren RR, Zhu JZ, Song C, Liu JF, Fu JQ, Hu HB, Wang JX, Li HM, Xu JJ (2012). Preliminary experimentation on flooding resistance of mulberry trees along the water- fluctuation belt of the Three Gorges Reservoir. Scientia Silvae Sinicae, 48(5), 154-158. |
[张建军, 任荣荣, 朱金兆, 宋闯, 刘杰锋, 傅建强, 胡海波, 王建修, 李慧敏, 徐佳佳 (2012). 长江三峡水库消落带桑树耐水淹试验. 林业科学, 48(5), 154-158.] | |
[55] | Zhang YT, Zhang JJ, Wu XH, Wang JX, Duan FP (2015). Flooding tolerance of Taxodium hybrid ‘Zhongshanshan’ along the hydro-fluctuation belt of the Three Gorges Reservoir. Science of Soil and Water Conservation, 13(2), 56-62. |
[张艳婷, 张建军, 吴晓洪, 王建修, 段丰沛 (2015). 长江三峡库区消落带中山杉耐淹试验. 中国水土保持科学, 13(2), 56-62.] | |
[56] | Zhao Q, Chen JB (2018). Study and practice on ecological restoration strategy of the hydro-fluctuation belt in the Three Gorges Reservoir area. Journal of Anhui Agricultural Sciences, 46(34), 5-7 |
[赵琴, 陈教斌 (2018). 三峡库区消落带生态修复策略研究与实践. 安徽农业科学, 46(34), 5-7.] |
[1] | . Research progress on spatial-temporal variation of plant-soil feedback [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Jia-Chen QIN Huan WANG Jiang Zhu Yang Wang Chen TIAN Yong-Fei BAI Pei-Zhi YANG Shu-Xia ZHENG. Grazing filtering effect based on intraspecific and interspecific trait variation and its scale effects [J]. Chin J Plant Ecol, 2024, 48(7): 0-0. |
[3] | 艺彤 王 BAIKETUERHAN Yeerjiang Dan LIAO 娟 王. Correlation between Elemental Biometric Characteristics and Sexual Dimorphism in Leaves of the Dioecious Acer barbinerve at Different Growth Stages [J]. Chin J Plant Ecol, 2024, 48(6): 760-769. |
[4] | Huiying Cai Lanhui Li Yang Lin Yatao Liang Guang Yang Long Sun. Responses of nonstructural carbohydrates in Betula platyphylla leaves and fine roots to time since fire [J]. Chin J Plant Ecol, 2024, 48(6): 780-793. |
[5] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(6): 701-718. |
[6] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(6): 744-759. |
[7] | Guang-Ze JIN Zhi-Li LIU. Variations and relationships analysis of leaf traits of three Acer species for different tree sizes and canopy conditions in Xiao Hinggan Mountains of Northeast China [J]. Chin J Plant Ecol, 2024, 48(6): 730-743. |
[8] | HU Die, JIANG Xin-Qi, DAI Zhi-Cong, CHEN Dai-Yi, ZHANG Yu, QI Shan-Shan, DU Dao-Lin. Arbuscular mycorrhizal fungi enhance the capacity of invasive Sphagneticola trilobata to tolerate herbicides [J]. Chin J Plant Ecol, 2024, 48(5): 651-659. |
[9] | BAI Hao-Ran, HOU Meng, LIU Yan-Jie. Mechanisms of the invasion of Cenchrus spinifex and drought effects on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[10] | QU Ze-Kun, ZHU Li-Qin, JIANG Qi, WANG Xiao-Hong, YAO Xiao-Dong, CAI Shi-Feng, LUO Su-Zhen, sCHEN Guang-Shui. Nutrient foraging strategies of arbuscular mycorrhizal tree species in a subtropical evergreen broadleaf forest and their relationship with fine root morphology [J]. Chin J Plant Ecol, 2024, 48(4): 416-427. |
[11] | DONG Shao-Qiong, HOU Dong-Jie, QU Xiao-Yun, GUO Ke. A plot-based dataset of plant communities on the Qaidam Basin, China [J]. Chin J Plant Ecol, 2024, 48(4): 534-540. |
[12] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[13] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[14] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[15] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn