Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (6): 760-769.DOI: 10.17521/cjpe.2023.0151 cstr: 32100.14.cjpe.2023.0151
• Research Articles • Previous Articles Next Articles
WANG Yi-Tong1,2, Yeerjiang BAIKETUERHAN3, LIAO Dan1,2, WANG Juan1,2,*()
Received:
2023-05-30
Accepted:
2023-10-09
Online:
2024-06-20
Published:
2024-02-28
Contact:
*WANG Juan(wangjuan@bjfu.edu.cn)
Supported by:
WANG Yi-Tong, Yeerjiang BAIKETUERHAN, LIAO Dan, WANG Juan. Correlation between elemental biometric characteristics and sexual dimorphism in leaves of dioecious Acer barbinerve at different growth stages[J]. Chin J Plant Ecol, 2024, 48(6): 760-769.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0151
性别 Sex | 处理组 Treatment group | 株数 Tree number | 胸径 DBH (mm) | 基径 BD (mm) | |||
---|---|---|---|---|---|---|---|
开花期 Flowering period | 结果期 Fruiting period | 开花期 Flowering period | 结果期 Fruiting period | 开花期 Flowering period | 结果期 Fruiting period | ||
雌株 Female | I | 24 | 22 | 19.80a | 23.01a | 25.39a | 31.73a |
II | 15 | 13 | 21.66a | 20.83a | 30.36a | 33.47a | |
III | 21 | 21 | 23.77a | 24.03a | 30.14a | 36.68a | |
雄株 Male | I | 13 | 7 | 17.09a | 17.31a | 21.46a | 25.52a |
II | 13 | 13 | 19.35a | 19.59a | 27.18a | 29.48a | |
III | 15 | 13 | 20.56a | 21.58a | 26.37a | 31.32a |
Table 1 Basic investigation of Acer barbinerve
性别 Sex | 处理组 Treatment group | 株数 Tree number | 胸径 DBH (mm) | 基径 BD (mm) | |||
---|---|---|---|---|---|---|---|
开花期 Flowering period | 结果期 Fruiting period | 开花期 Flowering period | 结果期 Fruiting period | 开花期 Flowering period | 结果期 Fruiting period | ||
雌株 Female | I | 24 | 22 | 19.80a | 23.01a | 25.39a | 31.73a |
II | 15 | 13 | 21.66a | 20.83a | 30.36a | 33.47a | |
III | 21 | 21 | 23.77a | 24.03a | 30.14a | 36.68a | |
雄株 Male | I | 13 | 7 | 17.09a | 17.31a | 21.46a | 25.52a |
II | 13 | 13 | 19.35a | 19.59a | 27.18a | 29.48a | |
III | 15 | 13 | 20.56a | 21.58a | 26.37a | 31.32a |
性别 Sex | 处理组 Treatment group | 花数 Number of flowers | 花生物量 Flower biomass (g) | 果数 Number of fruit | 果生物量 Fruit biomass (g) |
---|---|---|---|---|---|
雌株 Female | I | 10 | 0.08 | 3.72 | 0.29 |
II | - | - | - | - | |
III | 12 | 0.05 | - | - | |
雄株 Male | I | 65 | 0.21 | - | - |
II | - | - | - | - | |
III | 52 | 1.55 | - | - |
Table 2 Reproductive biomass of Acer barbinerve
性别 Sex | 处理组 Treatment group | 花数 Number of flowers | 花生物量 Flower biomass (g) | 果数 Number of fruit | 果生物量 Fruit biomass (g) |
---|---|---|---|---|---|
雌株 Female | I | 10 | 0.08 | 3.72 | 0.29 |
II | - | - | - | - | |
III | 12 | 0.05 | - | - | |
雄株 Male | I | 65 | 0.21 | - | - |
II | - | - | - | - | |
III | 52 | 1.55 | - | - |
元素 Element | 因子 Factor | 开花期 Flowering period | 结果期 Fruiting period | ||
---|---|---|---|---|---|
F | p | F | p | ||
C | G | 18.127 | 0.485e-04*** | 9.949 | 0.221e-02** |
T | 0.229 | 0.795 | 0.057 | 0.945 | |
G × T | 0.345 | 0.709 | 0.388 | 0.680 | |
N | G | 0.457 | 0.501 | 4.273 | 0.042* |
T | 1.737 | 0.182 | 0.235 | 0.791 | |
G × T | 0.504 | 0.606 | 1.414 | 0.249 | |
P | G | 6.871 | 0.010* | 13.876 | 0.346e-03*** |
T | 0.307 | 0.719 | 0.318 | 0.729 | |
G × T | 0.928 | 0.399 | 1.511 | 0.226 | |
C:N | G | 14.074 | 0.302e-03*** | 9.794 | 0.238e-02** |
T | 0.068 | 0.934 | 0.135 | 0.874 | |
G × T | 0.648 | 0.526 | 0.621 | 0.540 | |
C:P | G | 8.810 | 0.379e-02** | 14.990 | 0.209e-03*** |
T | 0.186 | 0.830 | 0.250 | 0.779 | |
G × T | 0.911 | 0.406 | 1.130 | 0.328 | |
N:P | G | 6.533 | 0.012* | 15.839 | 0.143e-03*** |
T | 0.249 | 0.780 | 0.365 | 0.696 | |
G × T | 0.904 | 0.408 | 1.333 | 0.269 | |
K | G | 11.152 | 0.001** | 8.973 | 0.357e-02** |
T | 0.038 | 0.963 | 0.003 | 0.997 | |
G × T | 1.406 | 0.250 | 0.172 | 0.842 | |
Ca | G | 3.537 | 0.063 | 4.730 | 0.324e-01* |
T | 0.101 | 0.904 | 0.359 | 0.700 | |
G × T | 0.580 | 0.562 | 1.580 | 0.212 | |
Mg | G | 17.322 | 0.693e-04*** | 10.250 | 0.191e-02** |
T | 0.021 | 0.979 | 0.089 | 0.915 | |
G × T | 0.532 | 0.589 | 0.462 | 0.631 | |
S | G | 17.042 | 7.850e-05*** | 9.756 | 2.430e-03** |
T | 0.030 | 0.970 | 0.110 | 0.890 | |
G × T | 0.477 | 0.622 | 0.554 | 0.577 |
Table 3 Analysis of influencing factors of elemental stoichiometry in Acer barbinerve leaves
元素 Element | 因子 Factor | 开花期 Flowering period | 结果期 Fruiting period | ||
---|---|---|---|---|---|
F | p | F | p | ||
C | G | 18.127 | 0.485e-04*** | 9.949 | 0.221e-02** |
T | 0.229 | 0.795 | 0.057 | 0.945 | |
G × T | 0.345 | 0.709 | 0.388 | 0.680 | |
N | G | 0.457 | 0.501 | 4.273 | 0.042* |
T | 1.737 | 0.182 | 0.235 | 0.791 | |
G × T | 0.504 | 0.606 | 1.414 | 0.249 | |
P | G | 6.871 | 0.010* | 13.876 | 0.346e-03*** |
T | 0.307 | 0.719 | 0.318 | 0.729 | |
G × T | 0.928 | 0.399 | 1.511 | 0.226 | |
C:N | G | 14.074 | 0.302e-03*** | 9.794 | 0.238e-02** |
T | 0.068 | 0.934 | 0.135 | 0.874 | |
G × T | 0.648 | 0.526 | 0.621 | 0.540 | |
C:P | G | 8.810 | 0.379e-02** | 14.990 | 0.209e-03*** |
T | 0.186 | 0.830 | 0.250 | 0.779 | |
G × T | 0.911 | 0.406 | 1.130 | 0.328 | |
N:P | G | 6.533 | 0.012* | 15.839 | 0.143e-03*** |
T | 0.249 | 0.780 | 0.365 | 0.696 | |
G × T | 0.904 | 0.408 | 1.333 | 0.269 | |
K | G | 11.152 | 0.001** | 8.973 | 0.357e-02** |
T | 0.038 | 0.963 | 0.003 | 0.997 | |
G × T | 1.406 | 0.250 | 0.172 | 0.842 | |
Ca | G | 3.537 | 0.063 | 4.730 | 0.324e-01* |
T | 0.101 | 0.904 | 0.359 | 0.700 | |
G × T | 0.580 | 0.562 | 1.580 | 0.212 | |
Mg | G | 17.322 | 0.693e-04*** | 10.250 | 0.191e-02** |
T | 0.021 | 0.979 | 0.089 | 0.915 | |
G × T | 0.532 | 0.589 | 0.462 | 0.631 | |
S | G | 17.042 | 7.850e-05*** | 9.756 | 2.430e-03** |
T | 0.030 | 0.970 | 0.110 | 0.890 | |
G × T | 0.477 | 0.622 | 0.554 | 0.577 |
Fig. 2 Stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) elements in Acer barbinerve leaves under different treatments. I, all plants were not subjected to any treatment; II, all plants remove all buds from the whole plant at the early stage of the bud; III, all plants had all flower buds removed from the entire plant at the early flower bud stage. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Fig. 3 Stoichiometric ratios of carbon (C), nitrogen (N) and phosphorus (P) in Acer barbinerve leaves under different treatments. I, all plants were not subjected to any treatment; II, all plants remove all buds from the whole plant at the early stage of the bud; III, all plants had all flower buds removed from the entire plant at the early flower bud stage. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Fig. 4 Stoichiometric characteristics of potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) elements in Acer barbinerve leaves under different treatments. I, all plants were not subjected to any treatment; II, all plants remove all buds from the whole plant at the early stage of the bud; III, all plants had all flower buds removed from the entire plant at the early flower bud stage. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
[1] | Aldon D, Mbengue M, Mazars C, Galaud JP (2018). Calcium signalling in plant biotic interactions. International Journal of Molecular Sciences, 19, 665. DOI: 10.3390/ijms19030665. |
[2] |
Allen AP, Gillooly JF (2009). Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecology Letters, 12, 369-384.
DOI PMID |
[3] | Allen M, Poggiali D, Whitaker K, Marshall TR, van Langen J, Kievit RA (2021). Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Research, 21, 63. DOI: 10.12688/wellcomeopenres.15191.2. |
[4] | Álvarez-Cansino L, Zunzunegui M, Díaz Barradas MC, Esquivias MP (2010). Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album. Annals of Botany, 106, 989-998. |
[5] |
Barrett SCH, Hough J (2013). Sexual dimorphism in flowering plants. Journal of Experimental Botany, 64, 67-82.
DOI PMID |
[6] | Cai ZY, Yang CC, Liao J, Song HF, Zhang S (2021). Sex-biased genes and metabolites explain morphologically sexual dimorphism and reproductive costs in Salix paraplesia catkins. Horticulture Research, 8, 125. DOI: 10.1038/s41438-021-00566-3. |
[7] |
Campbell LG, Peach K, Wizenberg SB (2021). Dioecious hemp (Cannabis sativa L.) plants do not express significant sexually dimorphic morphology in the seedling stage. Scientific Reports, 11, 16825. DOI: 10.1038/s41598-021-96311-w.
PMID |
[8] | Cepeda-Cornejo V, Dirzo R (2010). Sex-related differences in reproductive allocation, growth, defense and herbivory in three dioecious neotropical palms. PLoS ONE, 5, e9824. DOI: 10.1371/journal.pone.0009824. |
[9] | Chen J, Duan B, Xu G, Korpelainen H, Niinemets Ü, Li C (2016). Sexual competition affects biomass partitioning, carbon-nutrient balance, Cd allocation and ultrastructure of Populus cathayana females and males exposed to Cd stress. Tree Physiology, 36, 1353-1368. |
[10] | Chen J, Liu Q, Yu L, Korpelainen H, Niinemets Ü, Li C (2021). Elevated temperature and CO2 interactively modulate sexual competition and ecophysiological responses of dioecious Populus cathayana. Forest Ecology and Management, 481, 118747. DOI: 10.1016/j.foreco.2020.118747. |
[11] | Cheng B, Zhao YJ, Zhang WG, An SQ (2010). The research advances and prospect of ecological stoichiometry. Acta Ecologica Sinica, 30, 1628-1637. |
[程滨, 赵永军, 张文广, 安树青 (2010). 生态化学计量学研究进展. 生态学报, 30, 1628-1637.] | |
[12] | Cipollini ML, Whigham DF (1994). Sexual dimorphism and cost of reproduction in the dioecious shrub Lindera benzoin (Lauraceae). American Journal of Botany, 81, 65-75. |
[13] | Editorial Committee of Chinese Flora, Chinese Academy of Sciences (1981). Flora Reipublicae Popularis Sinica (Tomus 46). Science Press, Beijing. |
[中国科学院中国植物志编辑委员会 (1981). 中国植物志(第四十六卷). 科学出版社, 北京.] | |
[14] |
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-608.
DOI PMID |
[15] |
Elser JJ, Hamilton A (2007). Stoichiometry and the new biology: the future is now. PLoS Biology, 5, e181. DOI: 10.1371/journal.pbio.0050181.
PMID |
[16] |
Fox T, DeBruin J, Haug Collet K, Trimnell M, Clapp J, Leonard A, Li B, Scolaro E, Collinson S, Glassman K, Miller M, Schussler J, Dolan D, Liu L, Gho C, et al. (2017). A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnology Journal, 15, 942-952.
DOI PMID |
[17] | Galfrascoli GM, Calviño A (2020). Secondary sexual dimorphism in a dioecious tree: a matter of inter-plant variability? Flora, 266, 151595. DOI: 10.1016/j.flora.2020.151595. |
[18] | Garcia-Barreda S, Sangüesa-Barreda G, García-González MD, Camarero JJ (2022). Sex and tree rings: females neither grow less nor are less water-use efficient than males in four dioecious tree species. Dendrochronologia, 73, 125944. DOI: 10.1016/j.dendro.2022.125944. |
[19] |
Gouker FE, Carlson CH, Zou J, Evans L, Crowell CR, Smart CD, DiFazio SP, Smart LB (2021). Sexual dimorphism in the dioecious willow Salix purpurea. American Journal of Botany, 108, 1374-1387.
DOI PMID |
[20] |
Harris MS, Pannell JR (2008). Roots, shoots and reproduction: sexual dimorphism in size and costs of reproductive allocation in an annual herb. Proceedings of the Royal Society B: Biological Sciences, 275, 2595-2602.
DOI PMID |
[21] |
Hultine KR, Grady KC, Wood TE, Shuster SM, Stella JC, Whitham TG (2016). Climate change perils for dioecious plant species. Nature Plants, 2, 16109. DOI: 10.1038/nplants.2016.109.
PMID |
[22] |
Juvany M, Munné-Bosch S (2015). Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context. Journal of Experimental Botany, 66, 6083-6092.
DOI PMID |
[23] |
Käfer J, Marais GAB, Pannell JR (2017). On the rarity of dioecy in flowering plants. Molecular Ecology, 26, 1225-1241.
DOI PMID |
[24] |
Krischik VA, Denno RF (1990). Patterns of growth, reproduction, defense, and herbivory in the dioecious shrub Baccharis halimifolia (Compositae). Oecologia, 83, 182-190.
DOI PMID |
[25] | Leigh A, Nicotra AB (2003). Sexual dimorphism in reproductive allocation and water use efficiency in Maireana pyramidata (Chenopodiaceae), a dioecious, semi-arid shrub. Australian Journal of Botany, 51, 509-514. |
[26] | Li L, Ding MM, Lan ZC, Zhao Y, Chen JK (2019). Light availability and patterns of allocation to reproductive and vegetative biomass in the sexes of the dioecious macrophyte Vallisneria spinulosa. Frontiers in Plant Science, 10, 572. DOI: 10.3389/fpls.2019.00572. |
[27] | Li SW, Dong HJ, Pei WK, Liu CN, Zhang S, Sun TT, Xue XH, Ren HY (2017). LlFH1-mediated interaction between actin fringe and exocytic vesicles is involved in pollen tube tip growth. New Phytologist, 214, 745-761. |
[28] | Luo J, Zhou J, Masclaux-Daubresse C, Wang N, Wang H, Zheng B (2019). Morphological and physiological responses to contrasting nitrogen regimes in Populus cathayana is linked to resources allocation and carbon/ nitrogen partition. Environmental and Experimental Botany, 162, 247-255. |
[29] |
Midgley JJ, Cramer MD (2022). Unequal allocation between male versus female reproduction cannot explain extreme vegetative dimorphism in Aulax species (Cape Proteaceae). Scientific Reports, 12, 1407. DOI: 10.1038/s41598-022-05558-4.
PMID |
[30] | Nicotra AB (1999). Sexually dimorphic growth in the dioecious tropical shrub, Siparuna grandiflora. Functional Ecology, 13, 322-331. |
[31] | Nowak K, Giertych MJ, Pers-Kamczyc E, Thomas PA, Iszkuło G (2021). Defence is a priority in female juveniles and adults of Taxus baccata L. Forests, 12, 844. DOI: 10.3390/f12070844. |
[32] | Nybakken L, Julkunen-Tiitto R (2013). Gender differences in Salix myrsinifolia at the pre-reproductive stage are little affected by simulated climatic change. Physiologia Plantarum, 147, 465-476. |
[33] |
Obeso JR (2002). The costs of reproduction in plants. New Phytologist, 155, 321-348.
DOI PMID |
[34] |
Pan CF, Zhang CY, Zhao XH, Xia FC, Zhou HC, Wang Y (2010). Sex ratio and spatial patterns of males and females of different ages in the dioecious understory tree, Acer barbinerve, in a broad-leaved Korean pine forest. Biodiversity Science, 18, 292-299.
DOI |
[潘春芳, 张春雨, 赵秀海, 夏富才, 周海成, 王云 (2010). 不同林龄阔叶红松林林下簇毛槭的性比格局及雌雄个体的空间分布. 生物多样性, 18, 292-299.]
DOI |
|
[35] | Pers-Kamczyc E, Tyrała-Wierucka Ż, Rabska M, Wrońska-Pilarek D, Kamczyc J (2020). The higher availability of nutrients increases the production but decreases the quality of pollen grains in Juniperus communis L. Journal of Plant Physiology, 248, 153156. DOI: 10.1016/j.jplph.2020.153156. |
[36] | Qiao XJ, Zhang JX, Wang Z, Xu YZ, Zhou TY, Mi XC, Cao M, Ye WH, Jin GZ, Hao ZQ, Wang XG, Wang XH, Tian SY, Li XK, Xiang WS, et al. (2021). Foundation species across a latitudinal gradient in China. Ecology, 102, e03234. DOI: 10.1002/ecy.3234. |
[37] | Rabska M, Pers-Kamczyc E, Żytkowiak R, Adamczyk D, Iszkuło G (2020). Sexual dimorphism in the chemical composition of male and female in the dioecious tree, Juniperus communis L., growing under different nutritional conditions. International Journal of Molecular Sciences, 21, 8094. DOI: 10.3390/ijms21218094. |
[38] | Song CM, Zheng J, Wang FJ (2017). Distribution of natural forests in Jiaohe forestry experimental zone management bureau of Jilin Province. China Southern Agricultural Machinery, 48(22), 165. |
[宋彩民, 郑军, 王峰洁 (2017). 吉林省蛟河林业实验区管理局天然林分布情况. 南方农机, 48(22), 165.] | |
[39] |
Steer MW, Steer JM (1989). Pollen tube tip growth. New Phytologist, 111, 323-358.
DOI PMID |
[40] | Sterner RW, Elser JJ (2017). Ecological Stoichiometry. Princeton University Press, Princeton. |
[41] | Sun H, Zhou T, Sletvold N (2022). The expression of demographic costs of reproduction varies among coexisting plants with different life history traits. Journal of Ecology, 110, 2343-2358. |
[42] | Tang Y, Tong CF, Liu MY, Zhu YP, Chen BB (2020). Seasonal variations of carbon, nitrogen, phosphorus stoichiometry of four emergent hydrophytes in Jinze Reservoir, Shanghai. Acta Ecologica Sinica, 40, 4528-4537. |
[唐玥, 童春富, 刘毛亚, 朱宜平, 陈蓓蓓 (2020). 上海金泽水库典型挺水植物碳、氮、磷化学计量特征的季节变化. 生态学报, 40, 4528-4537.] | |
[43] |
Teitel Z, Pickup M, Field DL, Barrett SCH (2016). The dynamics of resource allocation and costs of reproduction in a sexually dimorphic, wind-pollinated dioecious plant. Plant Biology, 18, 98-103.
DOI PMID |
[44] | Tozawa M, Ueno N, Seiwa K (2009). Compensatory mechanisms for reproductive costs in the dioecious tree Salix integra. Botany, 87, 315-323. |
[45] | Ushimaru A, Seo N, Sakagami K, Funamoto D (2023). Sexual dimorphism in a dioecious species with complex, specialist-pollinated flowers. American Journal of Botany, 110, e16148. DOI: 10.1002/ajb2.16148. |
[46] | Verdú M, Spanos K, Canová I, Slobodník B, Paule L (2007). Similar gender dimorphism in the costs of reproduction across the geographic range of Fraxinus ornus. Annals of Botany, 99, 183-191. |
[47] | Wang H, Qin SL (2012). Forest resource status and sustainable management countermeasures of Jiaohe forestry experimental region administration of Jilin Province. Forest Investigation Design, (2), 2-5. |
[王辉, 秦树林 (2012). 吉林省蛟河林业实验区管理局森林资源现状及可持续经营对策. 林业勘查设计, (2), 2-5.] | |
[48] | Wang XG, Zhao XH, Jiang CJ, Li CH, Cong S, Wu D, Chen YQ, Yu HQ, Wang CY (2015). Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). Journal of Integrative Agriculture, 14, 856-863. |
[49] | Williams GC (1966). Natural selection, the costs of reproduction, and a refinement of lack’s principle. The American Naturalist, 100, 687-690. |
[50] | Xie KL, Cakmak I, Wang SY, Zhang FS, Guo SW (2021). Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal, 9, 249-256. |
[51] | Yang LT, Zhou YF, Wang YY, Wu YM, Ye X, Guo JX, Chen LS (2019). Magnesium deficiency induced global transcriptome change in Citrus sinensis leaves revealed by RNA-seq. International Journal of Molecular Sciences, 20, 3129. DOI: 10.3390/ijms20133129. |
[52] |
Yu Q, Barrett SCH, Wang XJ, Zhong L, Wang H, Li DZ, Zhou W (2022). Sexual dimorphism, temporal niche differentiation, and evidence for the Jack Sprat effect in an annual dioecious plant. Journal of Systematics and Evolution, 60, 1078-1091.
DOI |
[53] | Zeng ZH, Yu Q, Feng QH, Wang XJ, Zhong L, Sun HY, Wang H, Li DZ, Barrett SCH, Zhou W (2023). Functional consequences of temporal reversal of height dimorphism for pollen and seed dispersal in a dioecious plant. Journal of Systematics and Evolution, 62, 638-648. |
[54] | Zhao HY, Song ZL, Xu M, Huang YH, Zhang XN, Wang J (2019). Delayed effects of reproductive costs in dioecious species Acer barbinerve. Journal of Beijing Forestry University, 41(8), 84-93. |
[赵海艳, 宋子龙, 徐萌, 黄云浩, 张新娜, 王娟 (2019). 雌雄异株植物簇毛槭繁殖代价延迟效应研究. 北京林业大学学报, 41(8), 84-93.] | |
[55] |
Zhou Y, Li L, Song ZP (2019). Plasticity in sexual dimorphism enhances adaptation of dioecious Vallisneria natans plants to water depth change. Frontiers in Plant Science, 10, 826. DOI: 10.3389/fpls.2019.00826.
PMID |
[56] | Zhu QL, Yan K, Dong YF, Wang YP (2023). Rhizosphere bacterial communities and soil nutrient conditions reveal sexual dimorphism of Populus deltoides. Journal of Forestry Research, 34, 761-771. |
[57] | Zuo XY, Cui LJ, Li W, Lei YR, Dou ZG, Liu ZJ, Cai Y, Zhai XJ (2021). Spartina alterniflora leaf and soil eco-stoichiometry in the Yancheng coastal wetland. Plants, 10, 13. DOI: 10.3390/plants10010013. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn