Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (8): 1078-1088.DOI: 10.17521/cjpe.2023.0291 cstr: 32100.14.cjpe.2023.0291
• Research Articles • Previous Articles
PENG Si-Rui1, ZHANG Hui-Ling1, SUN Zhao-Lin2, ZHAO Xue-Chao2, TIAN Peng2, CHEN Di-Ma1, WANG Qing-Kui2, LIU Sheng-En3,*()
Received:
2023-10-13
Accepted:
2024-02-08
Online:
2024-08-20
Published:
2024-04-24
Contact:
*LIU Sheng-En(liu_iae@163.com)
Supported by:
PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest[J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0291
处理 Treatment | 描述 Description |
---|---|
对照 Control (CK) | 不做任何处理, 保留凋落物原始状态输入 Retain the original litter input without any processing |
凋落叶去除 Leaf litter removal (NL) | 首先彻底清除地上凋落物, 之后在实验小区边缘及中心插入9根PVC管露出地面0.5 m, 在其上放置孔径为1 mm的筛网用以阻绝凋落枝叶, 每月清理筛网 The original aboveground litter was carefully removed at the beginning, and then 9 PVC pipes were inserted at the edge and center of the experimental plot to expose 0.5 m to the ground, and a screen with an aperture of 1 mm was placed on it to prevent the falling litter. The screen was cleaned monthly |
根系去除 Root removal (NR) | 在实验小区四周挖60 cm的深沟, 之后插入0.35 mm厚的聚乙烯板以防止其他根部生长到实验小区内 Trenching the perimeter to 60 cm, inserting a 0.35 mm-thick polyethylene sheet along the bottom and sides of the trench to prevent other roots from growing into the experimental plot |
凋落叶和根系 同时去除 Leaf litter and root removal (NLR) | NL和NR处理组合, 凋落叶和根系输入均去除 NL and NR treatments were combined to remove both leaf litter and root input |
Table 1 Description of the litter removal treatment at the Huitong Cunninghamia lanceolata forest
处理 Treatment | 描述 Description |
---|---|
对照 Control (CK) | 不做任何处理, 保留凋落物原始状态输入 Retain the original litter input without any processing |
凋落叶去除 Leaf litter removal (NL) | 首先彻底清除地上凋落物, 之后在实验小区边缘及中心插入9根PVC管露出地面0.5 m, 在其上放置孔径为1 mm的筛网用以阻绝凋落枝叶, 每月清理筛网 The original aboveground litter was carefully removed at the beginning, and then 9 PVC pipes were inserted at the edge and center of the experimental plot to expose 0.5 m to the ground, and a screen with an aperture of 1 mm was placed on it to prevent the falling litter. The screen was cleaned monthly |
根系去除 Root removal (NR) | 在实验小区四周挖60 cm的深沟, 之后插入0.35 mm厚的聚乙烯板以防止其他根部生长到实验小区内 Trenching the perimeter to 60 cm, inserting a 0.35 mm-thick polyethylene sheet along the bottom and sides of the trench to prevent other roots from growing into the experimental plot |
凋落叶和根系 同时去除 Leaf litter and root removal (NLR) | NL和NR处理组合, 凋落叶和根系输入均去除 NL and NR treatments were combined to remove both leaf litter and root input |
Fig. 1 Multi-factor analysis reveal the effect of litter removal on soil organic carbon and multiple components in different seasons in subtropical Cunninghamia lanceolata forest (mean ± SE). Different lowercase or uppercase letters indicate significant differences between different treatments in summer or winter (p < 0.05). *, p <0.05; **, p < 0.01; ***, p < 0.001. CK, control; NL, leaf litter removal; NLR, leaf litter and root removal; NR, root removal.
季节 Season | 处理 Treatment | HFOC (%) | LFOC (%) | POC (%) | MAOC (%) | ROC (%) | NROC (%) | DOC (%) | MBC (%) |
---|---|---|---|---|---|---|---|---|---|
夏季 Summer | CK | 87.0 ± 0.2b | 13.0 ± 0.2b | 18.2 ± 1.1ab | 81.8 ± 1.1ab | 27.4 ± 0.8b | 72.6 ± 0.8a | 1.6 ± 0.0a | 0.5 ± 0.2a |
NL | 84.8 ± 0.2c | 15.2 ± 0.2a | 20.4 ± 0.7a | 79.6 ± 0.7b | 29.0 ± 0.7b | 71.0 ± 0.7a | 1.8 ± 0.1a | 0.8 ± 0.2a | |
NR | 88.4 ± 0.6ab | 11.6 ± 0.6bc | 15.6 ± 0.7b | 84.4 ± 0.7a | 47.3 ± 3.5a | 52.7 ± 3.5b | 1.8 ± 0.0a | 0.7 ± 0.2a | |
NLR | 90.0 ± 1.1a | 9.9 ± 1.1c | 18.3 ± 0.7a | 81.7 ± 0.7b | 38.0 ± 5.9a | 56.0 ± 2.4b | 1.7 ± 0.1a | 0.9 ± 0.2a | |
冬季 Winter | CK | 89.5 ± 0.8A | 10.5 ± 0.8A | 15.2 ± 0.8A | 84.8 ± 0.8B | 38.2 ± 2.8A | 56.0 ± 4.9B | 1.7 ± 0.0A | 1.2 ± 0.0A |
NL | 90.0 ± 0.7A | 10.0 ± 0.7A | 15.5 ± 0.8A | 84.5 ± 0.8B | 27.8 ± 4.0B | 66.8 ± 2.3A | 1.9 ± 0.0A | 1.4 ± 0.3A | |
NR | 91.2 ± 0.5A | 8.7 ± 0.5A | 11.8 ± 0.2B | 88.2 ± 0.2A | 26.2 ± 0.2B | 71.9 ± 1.8A | 1.7 ± 0.0A | 1.0 ± 0.1A | |
NLR | 91.5 ± 0.8A | 8.4 ± 0.8A | 15.9 ± 0.9A | 84.1 ± 0.9B | 33.3 ± 0.7AB | 63.8 ± 0.7A | 1.6 ± 0.2A | 1.2 ± 0.6A | |
NL | *** | ** | |||||||
NR | *** | *** | ** | ** | ** | ** | |||
Season | ** | ** | *** | *** | * | ||||
NLR | * | ||||||||
NL × Season | |||||||||
NR × Season | *** | ** | |||||||
NLR × Season | * | * | ** | ** |
Table 3 Multi-factor analysis of variance reveal the effect of litter removal on ratios of carbon components to soil organic carbon in subtropical Cunninghamia lanceolata forest (mean ± SE)
季节 Season | 处理 Treatment | HFOC (%) | LFOC (%) | POC (%) | MAOC (%) | ROC (%) | NROC (%) | DOC (%) | MBC (%) |
---|---|---|---|---|---|---|---|---|---|
夏季 Summer | CK | 87.0 ± 0.2b | 13.0 ± 0.2b | 18.2 ± 1.1ab | 81.8 ± 1.1ab | 27.4 ± 0.8b | 72.6 ± 0.8a | 1.6 ± 0.0a | 0.5 ± 0.2a |
NL | 84.8 ± 0.2c | 15.2 ± 0.2a | 20.4 ± 0.7a | 79.6 ± 0.7b | 29.0 ± 0.7b | 71.0 ± 0.7a | 1.8 ± 0.1a | 0.8 ± 0.2a | |
NR | 88.4 ± 0.6ab | 11.6 ± 0.6bc | 15.6 ± 0.7b | 84.4 ± 0.7a | 47.3 ± 3.5a | 52.7 ± 3.5b | 1.8 ± 0.0a | 0.7 ± 0.2a | |
NLR | 90.0 ± 1.1a | 9.9 ± 1.1c | 18.3 ± 0.7a | 81.7 ± 0.7b | 38.0 ± 5.9a | 56.0 ± 2.4b | 1.7 ± 0.1a | 0.9 ± 0.2a | |
冬季 Winter | CK | 89.5 ± 0.8A | 10.5 ± 0.8A | 15.2 ± 0.8A | 84.8 ± 0.8B | 38.2 ± 2.8A | 56.0 ± 4.9B | 1.7 ± 0.0A | 1.2 ± 0.0A |
NL | 90.0 ± 0.7A | 10.0 ± 0.7A | 15.5 ± 0.8A | 84.5 ± 0.8B | 27.8 ± 4.0B | 66.8 ± 2.3A | 1.9 ± 0.0A | 1.4 ± 0.3A | |
NR | 91.2 ± 0.5A | 8.7 ± 0.5A | 11.8 ± 0.2B | 88.2 ± 0.2A | 26.2 ± 0.2B | 71.9 ± 1.8A | 1.7 ± 0.0A | 1.0 ± 0.1A | |
NLR | 91.5 ± 0.8A | 8.4 ± 0.8A | 15.9 ± 0.9A | 84.1 ± 0.9B | 33.3 ± 0.7AB | 63.8 ± 0.7A | 1.6 ± 0.2A | 1.2 ± 0.6A | |
NL | *** | ** | |||||||
NR | *** | *** | ** | ** | ** | ** | |||
Season | ** | ** | *** | *** | * | ||||
NLR | * | ||||||||
NL × Season | |||||||||
NR × Season | *** | ** | |||||||
NLR × Season | * | * | ** | ** |
Fig. 2 Pearsonʼs correlations between soil organic carbon fractions and soil properties in different seasons in subtropical Cunninghamia lanceolata forest. Hollow circles indicate positive correlation and solid circles indicate negative correlation. *, p < 0.05; **, p < 0.01; ***, p < 0.001. C:N, carbon to nitrogen ratio; C:P, carbon to phosphorus ratio; DOC, dissolved organic carbon content; DON, dissolved organic nitrogen content; HFOC, heavy fraction organic carbon content; LFOC, light fraction organic carbon content; MAOC, mineral-associated organic carbon content; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; N:P, nitrogen to phosphorus ratio; NH4+-N, ammonia nitrogen content; NO3--N, nitrate nitrogen content; NROC, non-readily oxidizable carbon content; POC, particulate organic carbon content; ROC, readily oxidizable carbon content; SWC, soil water content content; TN, total nitrogen content; TP, total phosphorus content.
Fig. 3 Redundancy analysis (RDA) reveal the potential mechanisms that litter removal affect soil carbon components by regulating soil properties in different seasons in subtropical Cunninghamia lanceolata forest. C:N, carbon to nitrogen ratio; C:P, carbon to phosphorus ratio; DON, dissolved organic nitrogen content; MBN, microbial biomass nitrogen content; N:P, nitrogen to phosphorus ratio; NH4+-N, ammonia nitrogen content; NO3--N, nitrate nitrogen content; SWC, soil water content; TIN, total inorganic nitrogen content; TN, total nitrogen content; TP, total phosphorus content. CK, control; NL, leaf litter removal; NLR, leaf litter and root removal; NR, root removal.
[1] | Bird JA, Kleber M, Torn MS (2007). 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Organic Geochemistry, 39, 465-477. |
[2] | Blair GJ, Lefroy RDB, Lisle L (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46, 1459-1466. |
[3] | Bowden RD, Deem L, Plante AF, Peltre C, Nadelhoffer K, Lajtha K (2014). Litter input controls on soil carbon in a temperate deciduous forest. Soil Science Society of America Journal, 78, S66-S75. |
[4] |
Brant JB, Myrold DD, Sulzman EW (2006). Root controls on soil microbial community structure in forest soils. Oecologia, 148, 650-659.
DOI PMID |
[5] | Cambardella CA, Elliott ET (1992). Particulate soil organic- matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56, 777-783. |
[6] | Chen C, Wang GJ, Zhao Y, Zhou GX, Li L, Gao JQ (2016). Seasonal dynamics and allometric growth relationships of C, N, and P stoichiometry in the organs of Cunninghamia lanceolata from Huitong. Acta Ecologica Sinica, 36, 7614-7623. |
[陈婵, 王光军, 赵月, 周国新, 李栎, 高吉权 (2016). 会同杉木器官间C、N、P化学计量比的季节动态与异速生长关系. 生态学报, 36, 7614-7623.] | |
[7] |
Chen LY, Fang K, Wei B, Qin SQ, Feng XH, Hu TY, Ji CJ, Yang YH (2021). Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 24, 1018-1028.
DOI PMID |
[8] | Christensen BT (1992). Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates. Springer, New York. |
[9] | Cotrufo MF, Ranalli MG, Haddix ML, Six J, Lugato E (2019). Soil carbon storage informed by particulate and mineral- associated organic matter. Nature Geoscience, 12, 989-994. |
[10] | Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009). Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Global Change Biology, 15, 2003-2019. |
[11] | Dai GH, Zhu SS, Cai Y, Zhu ER, Jia YF, Ji CJ, Tang ZY, Fang JY, Feng XJ (2022). Plant-derived lipids play a crucial role in forest soil carbon accumulation. Soil Biology & Biochemistry, 168, 108645. DOI: 10.1016/j.soilbio.2022.108645. |
[12] |
Dijkstra FA, Zhu B, Cheng W (2021). Root effects on soil organic carbon: a double-edged sword. New Phytologist, 230, 60-65.
DOI PMID |
[13] | Dove NC, Stark JM, Newman GS, Hart SC (2019). Carbon control on terrestrial ecosystem function across contrasting site productivities: the carbon connection revisited. Ecology, 100, e02695. DOI: 10.1002/ecy.2695. |
[14] | Fekete I, Halasz J, Kramoperger Z, Krausz E (2008). Study of litter decomposition intensity in litter manipulative trials in sikfokut cambisols. Cereal Research Communications, 36, 1779-1782. |
[15] | Fekete I, Kotroczó Z, Varga C, Nagy PT, Várbíró G, Bowden RD, Tóth JA, Lajtha K (2014). Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest. Soil Biology & Biochemistry, 74, 106-114. |
[16] | Feng JG, He KY, Zhang QF, Han MG, Zhu B (2022). Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biology, 28, 3426-3440. |
[17] |
Feng XJ, Wang SM (2023). Plant influences on soil microbial carbon pump efficiency. Global Change Biology, 29, 3854-3856.
DOI PMID |
[18] | Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010). Diversity meets decomposition. Trends in Ecology & Evolution, 25, 372-380. |
[19] | Guan X, Huang K, Yan SK, Wang SL (2021). A dataset of litter recovery amount and standing crop dynamics in middle subtropical broad-leaved evergreen forests (2005-2015). China Scientific Data, 6(2), 200-207. |
[关欣, 黄苛, 颜绍馗, 汪思龙 (2021). 2005-2015年中亚热带常绿阔叶林凋落物回收量和现存量月动态数据集. 中国科学数据, 6(2), 200-207.] | |
[20] | Guo CY, Zhang LM, Li SG, Li QK, Dai GH (2020). Comparison of soil greenhouse gas fluxes during the spring freeze-thaw period and the growing season in a temperate broadleaved korean pine forest, Changbai Mountains, China. Forests, 11, 1135. DOI: 10.3390/f11111135. |
[21] | Hao JB, Qiao F, Cai ZL (2019). Seasonal dynamics of soil labile organic carbon and its fractions in subtropical evergreen broadleaved forest. Ecology and Environmental Sciences, 28, 245-251. |
[郝江勃, 乔枫, 蔡子良 (2019). 亚热带常绿阔叶林土壤活性有机碳组分季节动态特征. 生态环境学报, 28, 245-251.]
DOI |
|
[22] | Hicks LC, Lajtha K, Rousk J (2021). Nutrient limitation may induce microbial mining for resources from persistent soil organic matter. Ecology, 102, e03328. DOI: 10.1002/ecy.3328. |
[23] | Janzen HH, Campbell CA, Brandt SA, Lafond GP, Townley-Smith L (1992). Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 56, 1799-1806. |
[24] | Jenkinson DS, Brookes PC, Powlson DS (2004). Measuring soil microbial biomass. Soil Biology & Biochemistry, 36, 5-7. |
[25] | Jia SX, Liu XF, Lin WS, Li XJ, Yang LM, Sun SY, Hui DF, Guo JF, Zou XM, Yang YS (2022). Tree roots exert greater influence on soil microbial necromass carbon than above-ground litter in subtropical natural and plantation forests. Soil Biology & Biochemistry, 173, 108811. DOI: 10.1016/j.soilbio.2022.108811. |
[26] |
Jiang JY, Sun XX, Wang XW, Wang SJ, Ma GB, Chen N, Du Y (2023). Seasonal variation characteristics and influencing factors of dissolved organic carbon of soil water in permafrost peatlands of the Great Hing’an Mountains in summer and autumn. Chinese Journal of Applied Ecology, 34, 2413-2420.
DOI |
[姜静宜, 孙晓新, 王宪伟, 王淑洁, 马国宝, 陈宁, 杜宇 (2023). 大兴安岭多年冻土泥炭地土壤水可溶性有机碳夏秋季节变化特征及其影响因素. 应用生态学报, 34, 2413-2420.]
DOI |
|
[27] | Lajtha K, Bowden RD, Nadelhoffer K (2014). Litter and root manipulations provide insights into soil organic matter dynamics and stability. Soil Science Society of America Journal, 78, S261-S269. |
[28] |
Lavallee JM, Soong JL, Cotrufo MF (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26, 261-273.
DOI PMID |
[29] | Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105. |
[30] | Liu Y, Han SJ (2009). Factors controlling soil respiration in four types of forest of Changbai Mountains, China. Ecology and Environmental Sciences, 18, 1061-1065. |
[刘颖, 韩士杰 (2009). 长白山四种森林土壤呼吸的影响因素. 生态环境学报, 18, 1061-1065.]
DOI |
|
[31] | Lu RK (2000). Methods for Agrochemical Analysis of Soil. Hohai University Press, Nanjing. |
[鲁如坤 (2000). 土壤农业化学分析方法. 河海大学出版社, 南京.] | |
[32] | Luo YJ, Zhang XQ (2007). The assessment of soil degradation in successive rotations of Chinese fir plantation and the soil amelioration of mixed plantation of Chinese fir and broad-leaved. Acta Ecologica Sinica, 27, 715-724. |
[罗云建, 张小全 (2007). 杉木(Cunninghamia lanceolata)连栽地力退化和杉阔混交林的土壤改良作用. 生态学报, 27, 715-724.] | |
[33] | Ma N, Ji YK, Yue K, Peng Y, Li CH, Zhang H, Ma YD, Wu QQ, Li Y (2023). Effect of the seasonal precipitation regime on shrub litter decomposition in a subtropical forest. Forest Ecology and Management, 548, 121423. DOI: 10.1016/j.foreco.2023.121423. |
[34] | Nadelhoffer KJ, Boone RD, Bowden RD, Canary JD, Kaye J, Micks P, Ricca A, Aitkenhead JA, Lajtha K, Mcdowell WH (2004). The Dirt Experiment: Litter and Root Influences on Forest Soil Organic Matter Stocks and Function. Oxford University Press, Oxford. |
[35] | Ni XY, Lin CF, Chen GS, Xie JS, Yang ZJ, Liu XF, Xiong DC, Xu C, Yue K, Wu FZ, Yang YS (2021). Decline in nutrient inputs from litterfall following forest plantation in subtropical China. Forest Ecology and Management, 496, 119445. DOI: 10.1016/j.foreco.2021.119445. |
[36] | Sayer EJ (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society, 81, 1-31. |
[37] | Six J, Conant RT, Paul EA, Paustian K (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155-176. |
[38] |
Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2019). Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist, 221, 233-246.
DOI PMID |
[39] | Sterkenburg E, Clemmensen KE, Ekblad A, Finlay RD, Lindahl BD (2018). Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. The ISME Journal, 12, 2187-2197. |
[40] | Sun T, Hobbie SE, Berg B, Zhang H, Wang Q, Wang Z, Hättenschwiler S (2018). Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proceedings of the National Academy of Sciences of the United States of America, 115, 10392-10397. |
[41] | Tian DL, Shen Y, Kang WX, Xiang WH, Yan WD, Deng XW (2011). Characteristics of nutrient cycling in first and second rotations of Chinese fir plantations. Acta Ecologica Sinica, 31, 5025-5032. |
[田大伦, 沈燕, 康文星, 项文化, 闫文德, 邓湘雯 (2011). 连栽第1和第2代杉木人工林养分循环的比较. 生态学报, 31, 5025-5032.] | |
[42] | Veres Z, Kotroczó Z, Fekete I, Tóth JA, Lajtha K, Townsend K, Tóthmérész B (2015). Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Applied Soil Ecology, 92, 18-23. |
[43] | von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007). SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology & Biochemistry, 39, 2183-2207. |
[44] | Wan X, Huang Z, He Z, Yu Z, Wang M, Davis MR, Yang Y (2015). Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant and Soil, 387, 103-116. |
[45] |
Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, Liu Z, Wang Q, Fang Y, Bai E (2021). Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 27, 2039-2048.
DOI PMID |
[46] | Wang JB, Yang YH, Zuo C, Gu FX, He HL (2021). Impacts of human activities and climate change on gross primary productivity of the terrestrial ecosystems in China. Acta Ecologica Sinica, 41, 7085-7099. |
[王军邦, 杨屹涵, 左婵, 顾峰雪, 何洪林 (2021). 气候变化和人类活动对中国陆地生态系统总初级生产力的影响厘定研究. 生态学报, 41, 7085-7099.] | |
[47] | Wang QK (2011). Responses of forest soil carbon pool and carbon cycle to the changes of carbon input. Chinese Journal of Applied Ecology, 22, 1075-1081. |
[王清奎 (2011). 碳输入方式对森林土壤碳库和碳循环的影响研究进展. 应用生态学报, 22, 1075-1081.] | |
[48] | Wang QK, He TX, Wang SL, Liu L (2013). Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agricultural and Forest Meteorology, 178- 179, 152-160. |
[49] | Wang QK, Wang SL, Gao H, Yu XJ (2005). Dynamics of soil active organic matter in Chinese fir plantations. Chinese Journal of Applied Ecology, 16, 1270-1274. |
[王清奎, 汪思龙, 高洪, 于小军 (2005). 杉木人工林土壤活性有机质变化特征. 应用生态学报, 16, 1270-1274.] | |
[50] | Wang QK, Yu YZ, He TX, Wang YP (2017). Aboveground and belowground litter have equal contributions to soil CO2 emission: an evidence from a 4-year measurement in a subtropical forest. Plant and Soil, 421, 7-17. |
[51] | Wu JJ, Zhang DD, Chen Q, Feng J, Li QX, Yang F, Zhang Q, Cheng XL (2018). Shifts in soil organic carbon dynamics under detritus input manipulations in a coniferous forest ecosystem in subtropical China. Soil Biology & Biochemistry, 126, 1-10. |
[52] | Wu JJ, Zhang Q, Zhang DD, Jia W, Chen J, Liu GH, Cheng XL (2022). The ratio of ligninase to cellulase increased with the reduction of plant detritus input in a coniferous forest in subtropical China. Applied Soil Ecology, 170, 104269. DOI: 10.1016/j.apsoil.2021.104269. |
[53] | Wu QX, Wu FZ, Zhu JJ, Ni XY (2023). Leaf and root inputs additively contribute to soil organic carbon formation in various forest types. Journal of Soils and Sediments, 23, 1135-1145. |
[54] | Xia M, Talhelm AF, Pregitzer KS (2015). Fine roots are the dominant source of recalcitrant plant litter in sugar maple- dominated northern hardwood forests. New Phytologist, 208, 715-726. |
[55] | Yin R, Qin WK, Zhao HY, Wang XD, Cao GM, Zhu B (2022). Climate warming in an alpine meadow: differential responses of soil faunal vs. microbial effects on litter decomposition. Biology and Fertility of Soils, 58, 509-514. |
[56] | Zhang YX, Tang ZX, You YM, Guo XW, Wu CJ, Liu SR, Sun OJ (2023). Differential effects of forest-floor litter and roots on soil organic carbon formation in a temperate oak forest. Soil Biology & Biochemistry, 180, 109017. DOI: 10.1016/j.soilbio.2023.109017. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn