Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (7): 624-634.DOI: 10.17521/cjpe.2019.0028
• Research Articles • Previous Articles
LI Na,ZHANG Yi-He,HAN Xiao-Zeng(),YOU Meng-Yang,HAO Xiang-Xiang
Received:
2019-01-30
Accepted:
2019-06-25
Online:
2019-07-20
Published:
2019-12-12
Contact:
HAN Xiao-Zeng
Supported by:
LI Na, ZHANG Yi-He, HAN Xiao-Zeng, YOU Meng-Yang, HAO Xiang-Xiang. Effects of long-term vegetation cover changes on the organic carbon fractions in soil aggregates of mollisols[J]. Chin J Plant Ecol, 2019, 43(7): 624-634.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0028
Fig. 1 Contents of soil organic carbon and total nitrogen in initial soil and soils under different vegetation covers (mean ± SD). Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers. BL, bareland; FL, farmland; GL, grassland.
Fig. 2 Distribution of soil aggregates and mean weight diameter (MWD) of aggregates under different vegetation covers (mean ± SD). Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers.
Fig. 3 Contents of organic carbon in soil aggregates fractions under different vegetation covers (mean ± SD). Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers.
Fig. 4 Organic carbon contents in different density fractions of aggregates under different vegetation covers (mean ± SD). Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers.
Fig. 5 Contents of organic carbon in humic substances and humification index in bulk soil under different vegetation covers (mean ± SD). FA, fulvic acid; HA, humic acid; HU, humin. Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers.
Fig. 6 Contents of organic carbon in soil aggregates under different vegetation covers (mean ± SD). Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers.
[1] |
Beare MH, Hendrix PF, Cabrera ML, Coleman DC ( 1994). Aggregate-protected and unprotected organic matter pools in conventional- and no-tillage soils. Soil Science Society of America Journal, 58, 787-795.
DOI URL |
[2] |
Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K ( 2001). Influence of microbial populations and residue quality on aggregate stability. Applied Soil Ecology, 16, 195-208.
DOI URL |
[3] |
Bronick CJ, Lal R ( 2005). Soil structure and management: A review. Geoderma, 124, 3-22.
DOI URL PMID |
[4] |
Chaney K, Swift RS ( 1986). Studies on aggregate stability. II. The effect of humic substances on the stability of reformed soil aggregates. Journal of Soil Science, 37, 337-343.
DOI URL |
[5] | Chenu C, Stotzky G ( 2002). Interactions between microorganisms and soil particles: An overview. In: Interactions between Soil Particles and Microorganisms: Impact on Terrestrial Ecosystem. John Wiley & Sons, Chichester, UK. 3-40. |
[6] | Dou S ( 2010). Soil Organic Matter. Science Press, Beijing. |
[ 窦森 ( 2010). 土壤有机质. 科学出版社, 北京.] | |
[7] |
Eynard A, Schumacher TE, Lindstrom MJ, Malo DD ( 2004). Aggregate sizes and stability in cultivated South Dakota prairie ustolls and usterts. Soil Science Society of America Journal, 68, 1360-1365.
DOI URL |
[8] |
Golchin A, Oades JM, Skjemstad JO, Clarke P ( 1994). Soil structure and carbon cycling. Australian Journal of Soil Research, 32, 1043-1068.
DOI URL PMID |
[9] |
Han XZ, Wang SY, Veneman PLM, Xing BS ( 2006). Change of organic carbon content and its fractions in black soil under long-term application of chemical fertilizers and recycled organic manure. Communications in Soil Science and Plant Analysis, 37, 1127-1137.
DOI URL |
[10] | Hao XX ( 2017). Change Characteristic of Soil Organic Matter in Mollisol Profile Under Different Ecosystems. PhD dissertation, University of Chinese Academy of Sciences (Northeast Institute of Geography and Agro-ecology, Chinese Academy of Sciences), Changchun. |
[ 郝翔翔 ( 2017). 不同生态系统下黑土剖面有机质变化特征. 博士学位论文, 中国科学院大学(中国科学院东北地理与农业生态研究所), 长春.] | |
[11] | Hao XX, Dou S, An FH, Li MM ( 2010). Humus composition and structural characteristics of humic acid in soil aggregates under different utilization of land. Journal of Soil and Water Conservation, 24(5), 248-252. |
[ 郝翔翔, 窦森, 安丰华, 李明敏 ( 2010). 不同利用方式下土壤团聚体腐殖质组成及胡敏酸结构特征. 水土保持学报, 24(5), 248-252.] | |
[12] | Hao XX, Dou S, Han XZ, Li MM, An FH ( 2014). Structure of humic acid in soil aggregates under different ecosystems in typical black soil region of northeast China. Acta Pedologica Sinica, 51, 824-833. |
[ 郝翔翔, 窦森, 韩晓增, 李明敏, 安丰华 ( 2014). 典型黑土区不同生态系统下土壤团聚体中胡敏酸的结构特征. 土壤学报, 51, 824-833.] | |
[13] |
John B, Yamashita T, Ludwig B, Flessa H ( 2005). Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 128, 63-79.
DOI URL |
[14] |
Lal R ( 2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 815-830.
DOI URL PMID |
[15] | Li HB, Han XZ, Xu YL, Hou XY ( 2008). Aggregate stability of rhizosphere soil as affected by land management in black soil. Journal of Soil and Water Conservation, 22(3), 110-115. |
[ 李海波, 韩晓增, 许艳丽, 侯雪莹 ( 2008). 不同管理方式对黑土农田根据土壤团聚体稳定性的影响. 水土保持学报, 22(3), 110-115.] | |
[16] | Li K, Dou S, Han XZ, Chen H, Zhou GY ( 2010). Effects of long-term fertilization on composition of humic substances in black soil aggregates. Acta Pedologica Sinica, 47, 579-583. |
[ 李凯, 窦森, 韩晓增, 陈辉, 周桂玉 ( 2010). 长期施肥对黑土团聚体中腐殖物质组成的影响. 土壤学报, 47, 579-583.] | |
[17] | Li N, Han XZ, You MY, Xu YZ ( 2013). Research review on soil aggregates and microbes. Ecology and Environmental Sciences, 22, 1625-1632. |
[ 李娜, 韩晓增, 尤孟阳, 许玉芝 ( 2013). 土壤团聚体与微生物相互作用研究. 生态环境学报, 22, 1625-1632.] | |
[18] | Li XY ( 2001). Soil Chemistry. Higher Education Press, Beijing. |
[ 李学垣 ( 2001). 土壤化学. 高等教育出版社, 北京.] | |
[19] | Liang Y, Han XZ, Ding XL ( 2012). Review of soil organic matter fractions and structure of black soil in northeast China. Soils, 44, 888-897. |
[ 梁尧, 韩晓增, 丁雪丽 ( 2012). 东北黑土有机质组分与结构的研究进展. 土壤, 44, 888-897.] | |
[20] |
Lugato E, Simonetti G, Morari F, Nardi S, Berti A, Giardini L ( 2010). Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment. Geoderma, 157(3-4), 80-85.
DOI URL |
[21] |
Oades JM ( 1984). Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, 76, 319-337.
DOI URL |
[22] |
Pérez MG, Martin-Neto L, Saab SC, Novotny EH, Milori DMBP, Bagnato VS, Colnago LA, Melo WJ, Knicker H ( 2004). Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy . Geoderma, 118(3-4), 181-190.
DOI URL PMID |
[23] |
Puget P, Angers DA, Chenu C ( 1998). Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology & Biochemistry, 31, 55-63.
DOI URL PMID |
[24] |
Seddaiu G, Porcu G, Ledda L, Roggero PP, Agnelli A, Corti G ( 2013). Soil organic matter content and composition as influenced by soil management in a semi-arid Mediterranean agro-silvo-pastoral system. Agriculture, Ecosystems & Environment, 167, 1-11.
DOI URL PMID |
[25] |
Six J, Bossuyt H, Degryze S, Denef K ( 2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research, 79, 7-31.
DOI URL PMID |
[26] |
Six J, Elliott ET, Paustian K, Doran JW ( 1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62, 1367-1377.
DOI URL |
[27] |
Six J, Elliott ET, Paustian K ( 2000). Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 32, 2099-2103.
DOI URL PMID |
[28] |
Six J, Gregorich EG, Kögel-Knabner I ( 2012). Commentary on the impact of Tisdall & Oades (1982). European Journal of Soil Science, 63, 1-21.
DOI URL |
[29] |
Spaccini R, Mbagwu JSC, Conte P, Piccolo A ( 2006). Changes of humic substances characteristics from forested to cultivated soils in Ethiopia. Geoderma, 132(1-2), 9-19.
DOI URL |
[30] |
Spaccini R, Piccolo A, Haberhauer GF, Gerzabek MH ( 2000). Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by 13C distribution and CPMAS-NMR Spectra . European Journal of Soil Science, 51, 583-594.
DOI URL |
[31] |
Stumpf L, Pauletto EA, Pinto LFS ( 2016). Soil aggregation and root growth of perennial grasses in a constructed clay minesoil. Soil & Tillage Research, 161, 71-78.
DOI URL PMID |
[32] |
Tisdall JM, Oades JM ( 1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33, 141-163.
DOI URL PMID |
[33] |
Wang T, Xu S, Zhao MY, Li H, Kou D, Fang JY, Hu HF ( 2017). Allocation of mass and stability of soil aggregate in different types of Nei Mongol grasslands. Chinese Journal of Plant Ecology, 41, 1168-1176.
DOI URL |
[ 王甜, 徐姗, 赵梦颖, 李贺, 寇丹, 方精云, 胡会峰 ( 2017). 内蒙古不同类型草原土壤团聚体含量的分配及其稳定性. 植物生态学报, 41, 1168-1176.]
DOI URL |
|
[34] | Yuan YR, Li N, Zou WX, You MY, Han XZ, Ma DL ( 2018). Distribution characteristics of organic carbon in aggregates of soils of three ecosystems in typical Mollisols of Northeast China. Acta Ecologica Sinica, 38, 6025-6032. |
[ 苑亚茹, 李娜, 邹文秀, 尤孟阳, 韩晓增, 马大龙 ( 2018). 典型黑土区不同生态系统土壤团聚体有机碳分布特征. 生态学报, 38, 6025-6032.] | |
[35] |
Zhu GY, Shangguan ZP, Deng L ( 2017). Soil aggregate stability and aggregate-associated carbon and nitrogen in natural restoration grassland and Chinese red pine plantation on the Loess Plateau. Catena, 149, 253-260.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn