Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (3): 288-296.DOI: 10.17521/cjpe.2017.0068
Special Issue: 碳储量
• Research Articles • Previous Articles Next Articles
YANG Hao-Tian,WANG Zeng-Ru*(),JIA Rong-Liang
Online:
2018-03-20
Published:
2017-06-16
Contact:
Zeng-Ru WANG
Supported by:
YANG Hao-Tian, WANG Zeng-Ru, JIA Rong-Liang. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China[J]. Chin J Plant Ecol, 2018, 42(3): 288-296.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0068
群落类型 Community type | 土壤深度 Soil depth (cm) | ||||||
---|---|---|---|---|---|---|---|
0-5 | 5-10 | 10-20 | 20-30 | 30-50 | 50-70 | 70-100 | |
AM | 1.014 ± 0.186de | 0.951 ± 0.183de | 0.846 ± 0.154fg | 0.913 ± 0.463de | 0.663 ± 0.140d | 0.591 ± 0.471e | 0.649 ± 0.470bc |
CLA | 3.440 ± 1.312bc | 2.411 ± 1.104bc | 1.962 ± 0.738de | 1.796 ± 0.922cd | 1.469 ± 0.443cd | 0.912 ± 0.199de | 1.288 ± 0.533b |
KF | 2.960 ± 1.050c | 3.700 ± 1.667a | 4.660 ± 1.228a | 5.460 ± 2.281a | 4.040 ± 1.504a | 4.080 ± 1.270a | 2.420 ± 1.240a |
NT | 1.200 ± 0.346de | 1.350 ± 0.311cde | 1.200 ± 0.245ef | 0.960 ± 0.288de | 0.880 ± 0.295d | 0.900 ± 0.361de | 0.760 ± 0.114bc |
OAL | 0.439 ± 0.113e | 0.278 ± 0.050e | 0.254 ± 0.057g | 0.300 ± 0.101e | 0.438 ± 0.122d | 0.323 ± 0.075e | 0.393 ± 0.157c |
PM | 1.720 ± 0.396d | 2.880 ± 0.814ab | 3.720 ± 0.444b | 3.780 ± 0.476b | 2.280 ± 0.228bc | 1.780 ± 0.311bc | 1.180 ± 0.476b |
RS | 0.838 ± 0.094e | 1.700 ± 1.144cd | 2.445 ± 1.094cd | 3.376 ± 0.255b | 2.959 ± 0.313ab | 2.227 ± 0.213b | 2.322 ± 0.200a |
RSK | 4.660 ± 0.720a | 3.760 ± 1.064a | 2.980 ± 0.268bc | 2.180 ± 0.192c | 2.580 ± 1.972bc | 1.180 ± 0.217cde | 1.080 ± 0.444bc |
SP | 3.860 ± 0.684ab | 2.880 ± 0.676ab | 3.180 ± 0.756bc | 2.800 ± 1.037bc | 2.400 ± 1.384bc | 1.400 ± 0.447cd | 1.100 ± 0.728bc |
ZX | 0.887 ± 0.265e | 1.301 ± 0.404cde | 1.511 ± 0.416ef | 1.703 ± 0.129cd | 1.571 ± 0.197cd | 1.352 ± 0.228cd | 1.166 ± 0.193b |
Table 1 Soil organic carbon content (g·kg-1) of different communities (mean ± SD)
群落类型 Community type | 土壤深度 Soil depth (cm) | ||||||
---|---|---|---|---|---|---|---|
0-5 | 5-10 | 10-20 | 20-30 | 30-50 | 50-70 | 70-100 | |
AM | 1.014 ± 0.186de | 0.951 ± 0.183de | 0.846 ± 0.154fg | 0.913 ± 0.463de | 0.663 ± 0.140d | 0.591 ± 0.471e | 0.649 ± 0.470bc |
CLA | 3.440 ± 1.312bc | 2.411 ± 1.104bc | 1.962 ± 0.738de | 1.796 ± 0.922cd | 1.469 ± 0.443cd | 0.912 ± 0.199de | 1.288 ± 0.533b |
KF | 2.960 ± 1.050c | 3.700 ± 1.667a | 4.660 ± 1.228a | 5.460 ± 2.281a | 4.040 ± 1.504a | 4.080 ± 1.270a | 2.420 ± 1.240a |
NT | 1.200 ± 0.346de | 1.350 ± 0.311cde | 1.200 ± 0.245ef | 0.960 ± 0.288de | 0.880 ± 0.295d | 0.900 ± 0.361de | 0.760 ± 0.114bc |
OAL | 0.439 ± 0.113e | 0.278 ± 0.050e | 0.254 ± 0.057g | 0.300 ± 0.101e | 0.438 ± 0.122d | 0.323 ± 0.075e | 0.393 ± 0.157c |
PM | 1.720 ± 0.396d | 2.880 ± 0.814ab | 3.720 ± 0.444b | 3.780 ± 0.476b | 2.280 ± 0.228bc | 1.780 ± 0.311bc | 1.180 ± 0.476b |
RS | 0.838 ± 0.094e | 1.700 ± 1.144cd | 2.445 ± 1.094cd | 3.376 ± 0.255b | 2.959 ± 0.313ab | 2.227 ± 0.213b | 2.322 ± 0.200a |
RSK | 4.660 ± 0.720a | 3.760 ± 1.064a | 2.980 ± 0.268bc | 2.180 ± 0.192c | 2.580 ± 1.972bc | 1.180 ± 0.217cde | 1.080 ± 0.444bc |
SP | 3.860 ± 0.684ab | 2.880 ± 0.676ab | 3.180 ± 0.756bc | 2.800 ± 1.037bc | 2.400 ± 1.384bc | 1.400 ± 0.447cd | 1.100 ± 0.728bc |
ZX | 0.887 ± 0.265e | 1.301 ± 0.404cde | 1.511 ± 0.416ef | 1.703 ± 0.129cd | 1.571 ± 0.197cd | 1.352 ± 0.228cd | 1.166 ± 0.193b |
Fig. 1 The relationships between soil organic carbon content and pH value, conductivity, sand content, clay and silt content, total nitrogen (N) and total phosphorus (P) content.
Fig. 2 Soil organic carbon density in different depth for different community types (mean ± SD). The abbreviations of community types are the same as in Table 1. Different superscript letters indicate significant difference of soil organic carbon density between different communities (p < 0.05).
群落类型 Community type | 土层 Soil layer | ||
---|---|---|---|
0-5 | 0-20 | 0-50 | |
AM | 0.071 | 0.256 | 0.562 |
CLA | 0.104 | 0.306 | 0.622 |
KF | 0.036 | 0.197 | 0.535 |
NT | 0.063 | 0.248 | 0.541 |
OAL | 0.062 | 0.174 | 0.500 |
PM | 0.046 | 0.284 | 0.674 |
RS | 0.018 | 0.151 | 0.520 |
RSK | 0.113 | 0.348 | 0.715 |
SP | 0.089 | 0.299 | 0.682 |
ZX | 0.033 | 0.193 | 0.543 |
平均值 Mean | 0.061 | 0.247 | 0.599 |
Table 2 The ratio of soil organic carbon density of 0-5, 0-20, and 0-50 cm soil profile to soil organic carbon density of 0-100 cm soil profile
群落类型 Community type | 土层 Soil layer | ||
---|---|---|---|
0-5 | 0-20 | 0-50 | |
AM | 0.071 | 0.256 | 0.562 |
CLA | 0.104 | 0.306 | 0.622 |
KF | 0.036 | 0.197 | 0.535 |
NT | 0.063 | 0.248 | 0.541 |
OAL | 0.062 | 0.174 | 0.500 |
PM | 0.046 | 0.284 | 0.674 |
RS | 0.018 | 0.151 | 0.520 |
RSK | 0.113 | 0.348 | 0.715 |
SP | 0.089 | 0.299 | 0.682 |
ZX | 0.033 | 0.193 | 0.543 |
平均值 Mean | 0.061 | 0.247 | 0.599 |
[1] | Bao SD ( 2000). Agricultural Chemistry Analysis of Soil. China Agriculture Press, Beijing. |
鲍士旦 ( 2000). 土壤农化分析. 中国农业出版社, 北京. | |
[2] |
Batjes NH ( 1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151-163.
DOI URL |
[3] |
Davidson EA, Trumbore SE, Amundson R ( 2000). Biogeochemistry: Soil warming and organic carbon content. Nature, 408, 789-790.
DOI URL PMID |
[4] |
Ding YK, Yang J, Song BY, Hu GJLT, Zhang L ( 2012). Effect of different vegetation types on soil organic carbon in Mu Us Desert. Acta Prataculturae Sinica, 21(2), 18-25.
DOI URL |
丁越岿, 杨劼, 宋炳煜, 呼格吉勒图, 张琳 ( 2012). 不同植被类型对毛乌素沙地土壤有机碳的影响. 草业学报, 21(2), 18-25.
DOI URL |
|
[5] |
Evans RD, Koyama A, Sonderegger DL, Chen X, Maisupova B, Madaminov AA, Han Q, Djenbaev BM ( 2014). Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nature Climate Change, 4, 394-397.
DOI URL |
[6] | Fang JY, Yang YH, Ma WH, Mohhamot A, Shen HH ( 2010). Ecosystem carbon stocks and their changes in China’s grasslands. Scientia Sinica Vitae, 40, 566-576. |
方精云, 杨元合, 马文红, 安尼瓦尔·买买提, 沈海花 ( 2010). 中国草地生态系统碳库及其变化. 中国科学: 生命科学, 40, 566-576. | |
[7] |
Gao YH, Li XR, Liu LC, Jia RL, Yang HT, Li G, Wei Y ( 2012). Seasonal variation of carbon exchange from a revegetation area in a Chinese desert. Agricultural and Forest Meteorology, 156, 134-142.
DOI URL |
[8] |
Hastings SJ, Oechel WC, Muhlia-Melo A ( 2005). Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. Global Change Biology, 11, 927-939.
DOI URL |
[9] | Hou XY ( 1982). Vegetation Map of the People’s Republic of China and Its Illustration. China Cartographic Publishing House, Beijing. |
侯学煜 ( 1982). 中华人民共和国植被图简要说明. 地图出版社, 北京. | |
[10] |
Janzen HH ( 2004). Carbon cycling in earth systems—A soil science perspective. Agriculture Ecosystems & Environment, 104, 399-417.
DOI URL |
[11] |
Jasoni RL, Smith SD, Arnone JA ( 2005). Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology, 11, 749-756.
DOI URL |
[12] |
Jobbágy EG, Sala OE ( 2000). Controls of grass and shrub aboveground production in the Patagonian steppe. Ecological Applications, 10, 541-549.
DOI URL |
[13] |
Kirschbaum MUF ( 2000). Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 48, 21-51.
DOI URL |
[14] |
Li C, Zhang C, Luo G, Chen X, Maisupova B, Madaminov AA, Han Q, Djenbaev BM ( 2015). Carbon stock and its responses to climate change in Central Asia. Global Change Biology, 21, 1951-1967.
DOI URL PMID |
[15] |
Li D, Huang Y, Wu Q, Ming Z, Jin DY ( 2010). Modeling dynamics of soil organic carbon in an alpine meadow ecosystem on Qinghai-Tibetan Plateau using the Century model. Acta Prataculturae Sinica, 19(2), 160-168.
DOI |
李东, 黄耀, 吴琴, 明珠, 靳代樱 ( 2010). 青藏高原高寒草甸生态系统土壤有机碳动态模拟研究. 草业学报, 19(2), 160-168.
DOI |
|
[16] | Li XR ( 2012). Eco-hydrology of Biological Soil Crusts in Desert Regions of China. Higher Education Press, Beijing. |
李新荣 ( 2012). 荒漠生物土壤结皮生态与水文学研究. 高等教育出版社, 北京. | |
[17] |
Li XR, He MZ, Duan ZH, Xiao HL, Jia XH ( 2007a ). Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert, northern China. Geomorphology, 88, 254-265.
DOI URL |
[18] |
Li XR, Kong DS, Tan HJ, Wang XP ( 2007b ). Changes in soil and vegetation following stabilisation of dunes in the southeastern fringe of the Tengger Desert, China. Plant and Soil, 300, 221-231.
DOI URL |
[19] | Li XR, Zhang ZS, Liu YB, Li XJ, Yang HT ( 2016). Fundamental Ecohydrology of Ecological Restoration and Recovery in Sandy Desert Regions of China. Science Press, Beijing. |
李新荣, 张志山, 刘玉冰, 李小军, 杨昊天 ( 2016). 中国沙区生态重建与恢复的生态水文学基础. 科学出版社, 北京. | |
[20] |
Luyssaert S, Ingliina I, Jung M, Richardson A, Reichstein M, Papale D, Piao S, Schulze ED, Wingate L, Matteucci G ( 2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509-2537.
DOI URL |
[21] | Ma WH ( 2006). Carbon Storage of Grasslands in Inner Mongolia. PhD dissertation, Peking University, Beijing. |
马文红 ( 2006). 内蒙古温带草地碳储量. 博士学位论文, 北京大学, 北京. | |
[22] | Men XH ( 2013). The Spatial Distribution Characteristics of Biomass and Carbon Density of Temperate Desert Grassland in Northern Xinjiang. Master degree dissertation, Xinjiang Agricultural University, ürümqi. |
门学慧 ( 2013). 北疆温性荒漠类草地生物量与碳密度空间分布特征. 硕士学位论文, 新疆农业大学, 乌鲁木齐. ] | |
[23] | Mohhamot A ( 2006). Carbon and Nitrogen Storage of Grassland Ecosystem in Xinjiang. PhD dissertation, Peking University, Beijing. |
安尼瓦尔·买买提 ( 2006). 新疆草地生态系统碳、氮储量的研究. 博士学位论文, 北京大学, 北京.] | |
[24] |
Post WM, Emanuel WR, Zinke PJ, Stangenberger AG ( 1982). Soil carbon pools and world life zones. Nature, 298, 156-159.
DOI URL |
[25] | Post WM, Peng TH, Emanuel WR, King AW, Dale VH, DeAngelis DL ( 1990). The global carbon cycle. American Scientist, 78, 310-326. |
[26] |
Rotenberg E, Yakir D ( 2010). Contribution of semi-arid forests to the climate system. Science, 327, 451-454.
DOI URL PMID |
[27] |
Schlesinger WH, Belnap J, Marion G ( 2009). On carbon sequestration in desert ecosystems. Global Change Biology, 15, 1488-1490.
DOI URL |
[28] |
Stone R ( 2008). Have desert researchers discovered a hidden loop in the carbon cycle? Science, 320, 1409-1410.
DOI URL PMID |
[29] | Wang M ( 2014). Vegetation Biomass and Soil Organic Carbon Storage in Desert Grasslands of Hexi Corridor. PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
王敏 ( 2014). 河西走廊荒漠草地生物量和土壤有机碳储量. 博士学位论文, 中国科学院大学, 北京. | |
[30] |
Wohlfahrt Q, Fenstermaker LF, Arnone JA ( 2008). Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biology, 14, 1475-1487.
DOI URL |
[31] |
Xie J, Li Y, Zhai C, Li C, Lan Z ( 2009). CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environmental Geology, 56, 953-961.
DOI URL |
[32] |
Yang HT, Li XR, Wang ZR, Jia RL, Liu LC, Chen YL, Wei YP, Gao YH, Li G ( 2014). Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China. Science of the Total Environment, 478, 1-11.
DOI URL PMID |
[33] | Yang TT ( 2013). Study on Biomass Dynamics and Carbon Storage Distribution in Desert Steppe. PhD dissertation, Inner Mongolia Agricultural University, Huhhot. |
杨婷婷 ( 2013). 荒漠草原生物量动态及碳储量空间分布研究. 博士学位论文, 内蒙古农业大学, 呼和浩特. ] | |
[34] | Yang YH ( 2008). Carbon and Nitrogen Storage in Alpine Grasslands on the Tibetan Plateau. PhD dissertation, Peking University, Beijing. |
杨元合 ( 2008). 青藏高原高寒草地生态系统碳氮储量. 博士学位论文, 北京大学, 北京. | |
[35] |
Zhao YY, Long RJ, Lin HL, Ren JZ ( 2008). Study on pastoral security and its assessment. Acta Prataculturae Sinica, 17(2), 143-150.
DOI URL |
赵有益, 龙瑞军, 林慧龙, 任继周 ( 2008). 草地生态系统安全及其评价研究. 草业学报, 17(2), 143-150.
DOI URL |
[1] | ZHANG Huan, ZHANG Yun-Ling, ZHANG Yan-Cai, YAN Ping. Main plant communities and characteristics of Desert Grassland Nature Reserve in Qitai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(8): 918-924. |
[2] | WU Xiu-Zhi, YAN Xin, WANG Bo, LIU Ren-Tao, AN Hui. Effects of desertification on the C:N:P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland [J]. Chin J Plant Ecol, 2018, 42(10): 1022-1032. |
[3] | Lu-Cun YANG, Chang-Bin LI, Yi NING, Xiu-Qing NIE, Wen-Hua XU, Guo-Ying ZHOU. Carbon density and its spatial distribution in the Potentilla fruticosa dominated alpine shrub in Qinghai, China [J]. Chin J Plant Ecol, 2017, 41(1): 62-70. |
[4] | Wen-Ting LIU, Zhi-Jun WEI, Shi-Jie LÜ, Shi-Xian SUN, Li-Juan JIA, Shuang ZHANG, Tian-Le WANG, Jing-Zhong DAI, Zhi-Hong LU. Response mechanism of plant diversity to herbivore foraging in desert grassland [J]. Chin J Plant Ecol, 2016, 40(6): 564-573. |
[5] | Huai YANG, Yi-De LI, Hai REN, Tu-Shou LUO, Ren-Li CHEN, Wen-Jie LIU, De-Xiang CHEN, Han XU, Zhang ZHOU, Ming-Xian LIN, Qiu YANG, Hai-Rong YAO, Guo-Yi ZHOU. Soil organic carbon density and influencing factors in tropical virgin forests of Hainan Island, China [J]. Chin J Plant Ecol, 2016, 40(4): 292-303. |
[6] | ZHAO Xin-Feng, XU Hai-Liang, ZHANG Peng, ZHANG Qing-Qing. Influence of nutrient and water additions on functional traits of Salsola nitraria in desert grassland [J]. Chin J Plant Ecol, 2014, 38(2): 134-146. |
[7] | ZHAO Xin-Feng, XU Hai-Liang, ZHANG Peng, TU Wen-Xia, ZHANG Qing-Qing. Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands [J]. Chin J Plant Ecol, 2014, 38(2): 167-177. |
[8] | WANG Min, SU Yong-Zhong, YANG Rong, YANG Xiao. Allocation patterns of above- and belowground biomass in desert grassland in the middle reaches of Heihe River, Gansu Province, China [J]. Chin J Plant Ecol, 2013, 37(3): 209-219. |
[9] | Xu Peng, An Sha-zhou. Principles and Ecologically Optimal Model for Desert Grassland Management [J]. Chin J Plan Ecolo, 1996, 20(5): 389-396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn