Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (3): 209-219.DOI: 10.3724/SP.J.1258.2013.00021
Previous Articles Next Articles
WANG Min, SU Yong-Zhong*(), YANG Rong, YANG Xiao
Published:
2014-02-12
Contact:
SU Yong-Zhong
WANG Min, SU Yong-Zhong, YANG Rong, YANG Xiao. Allocation patterns of above- and belowground biomass in desert grassland in the middle reaches of Heihe River, Gansu Province, China[J]. Chin J Plant Ecol, 2013, 37(3): 209-219.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00021
生物量 Biomass | 群落水平 Community level (g·m-2) | 个体水平 Individual level (g·株-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
样本量 Sample size | 最大值 Max | 最小值 Min | 平均值 Mean | 中值 Median | 样本量 Sample size | 最大值 Max | 最小值 Min | 平均值 Mean | 中值 Median | ||
地上生物量 Aboveground biomass | 215 | 559.20 | 3.20 | 153.60 | 135.46 | 99 | 489.03 | 6.13 | 112.85 | 82.89 | |
地下生物量 Belowground biomass | 83 | 188.20 | 3.28 | 58.01 | 62.01 | 99 | 244.23 | 2.40 | 41.53 | 30.03 | |
总生物量 Total biomass | 83 | 530.67 | 10.87 | 197.52 | 184.19 | 99 | 660.76 | 8.53 | 154.38 | 119.15 | |
R/S | 83 | 2.49 | 0.10 | 0.54 | 0.44 | 99 | 1.55 | 0.07 | 0.44 | 0.35 |
Table 1 Above- and belowground biomass and ratio of root to shoot (R/S) at community and individual levels of desert grassland in the middle reaches of Heihe River
生物量 Biomass | 群落水平 Community level (g·m-2) | 个体水平 Individual level (g·株-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
样本量 Sample size | 最大值 Max | 最小值 Min | 平均值 Mean | 中值 Median | 样本量 Sample size | 最大值 Max | 最小值 Min | 平均值 Mean | 中值 Median | ||
地上生物量 Aboveground biomass | 215 | 559.20 | 3.20 | 153.60 | 135.46 | 99 | 489.03 | 6.13 | 112.85 | 82.89 | |
地下生物量 Belowground biomass | 83 | 188.20 | 3.28 | 58.01 | 62.01 | 99 | 244.23 | 2.40 | 41.53 | 30.03 | |
总生物量 Total biomass | 83 | 530.67 | 10.87 | 197.52 | 184.19 | 99 | 660.76 | 8.53 | 154.38 | 119.15 | |
R/S | 83 | 2.49 | 0.10 | 0.54 | 0.44 | 99 | 1.55 | 0.07 | 0.44 | 0.35 |
Fig. 1 Frequency distribution of ratio of root to shoot (R/S) at community (A) and individual (B) levels of desert grassland in the middle reaches of Heihe River.
Fig. 2 Isometric relationships between aboveground biomass (AGB) and belowground biomass (BGB) at individual (A) and community (B) levels of desert grassland in the middle reaches of Heihe River.
水平 Level | 样本量 Sample size | R2 | p | 斜率(95%置信区间) Slope (95% confidence interval) | 截距 Intercept | p (H0:斜率=1) p (H0:slope=1) |
---|---|---|---|---|---|---|
群落水平 Community level | 83 | 0.714 | <0.001 | 1.100 1 (0.977 7-1.237 9) | 0.202 9 | 0.112 |
珍珠猪毛菜 Salsola passerina | 28 | 0.213 | <0.05 | 1.091 2 (0.768 6-1.549 2) | 0.259 0 | 0.620 |
合头草 Sympegma regelii | 10 | 0.400 | <0.05 | 1.659 8 (0.915 0-3.010 8) | -1.147 1 | 0.090 |
红砂 Reaumuria songarica | 13 | 0.521 | <0.01 | 1.137 3 (0.729 1-1.774 0) | 0.305 3 | 0.549 |
紫菀木 Asterothamnus alyssoides | 12 | 0.651 | <0.01 | 0.693 3 (0.462 4-1.039 3) | 0.896 3 | 0.073 |
个体水平 Individual level | 99 | 0.631 | <0.001 | 0.991 3 (0.877 3-1.120 1) | 0.448 2 | 0.887 |
珍珠猪毛菜 Salsola passerina | 19 | 0.468 | <0.01 | 0.793 3 (0.550 6-1.143 1) | 0.762 2 | 0.204 |
合头草 Sympegma regelii | 16 | 0.881 | <0.001 | 0.910 4 (0.747 8-1.108 5) | 0.296 2 | 0.326 |
红砂 Reaumuria songarica | 29 | 0.656 | <0.001 | 1.032 7 (0.820 9-1.299 2) | 0.456 6 | 0.778 |
紫菀木 Asterothamnus alyssoides | 35 | 0.731 | <0.001 | 1.022 3 (0.851 6-1.227 3) | 0.469 7 | 0.808 |
Table 2 Allocation patterns between aboveground biomass (AGB) and belowground biomass (BGB) at community and individual levels of desert grassland in the middle reaches of Heihe River
水平 Level | 样本量 Sample size | R2 | p | 斜率(95%置信区间) Slope (95% confidence interval) | 截距 Intercept | p (H0:斜率=1) p (H0:slope=1) |
---|---|---|---|---|---|---|
群落水平 Community level | 83 | 0.714 | <0.001 | 1.100 1 (0.977 7-1.237 9) | 0.202 9 | 0.112 |
珍珠猪毛菜 Salsola passerina | 28 | 0.213 | <0.05 | 1.091 2 (0.768 6-1.549 2) | 0.259 0 | 0.620 |
合头草 Sympegma regelii | 10 | 0.400 | <0.05 | 1.659 8 (0.915 0-3.010 8) | -1.147 1 | 0.090 |
红砂 Reaumuria songarica | 13 | 0.521 | <0.01 | 1.137 3 (0.729 1-1.774 0) | 0.305 3 | 0.549 |
紫菀木 Asterothamnus alyssoides | 12 | 0.651 | <0.01 | 0.693 3 (0.462 4-1.039 3) | 0.896 3 | 0.073 |
个体水平 Individual level | 99 | 0.631 | <0.001 | 0.991 3 (0.877 3-1.120 1) | 0.448 2 | 0.887 |
珍珠猪毛菜 Salsola passerina | 19 | 0.468 | <0.01 | 0.793 3 (0.550 6-1.143 1) | 0.762 2 | 0.204 |
合头草 Sympegma regelii | 16 | 0.881 | <0.001 | 0.910 4 (0.747 8-1.108 5) | 0.296 2 | 0.326 |
红砂 Reaumuria songarica | 29 | 0.656 | <0.001 | 1.032 7 (0.820 9-1.299 2) | 0.456 6 | 0.778 |
紫菀木 Asterothamnus alyssoides | 35 | 0.731 | <0.001 | 1.022 3 (0.851 6-1.227 3) | 0.469 7 | 0.808 |
Fig. 3 Vertical distribution of belowground biomass in desert grassland in the middle reaches of Heihe River (mean ± SE). A, Community level. B, Individual level.
水平 Level | 土层深度 Soil depth (cm) | 样本数 Sample size | 根系生物量累积百分率 Cumulative percentage of root biomass | ||
---|---|---|---|---|---|
最小值 Min | 最大值 Max | 中值 Mean | |||
群落水平 Community level | 0-20 | 20 | 48.78% | 100% | 89.81% |
0-30 | 20 | 61.88% | 100% | 96.95% | |
个体水平 Individual level | 0-20 | 99 | 44.20% | 100% | 81.42% |
0-30 | 99 | 61.02% | 100% | 93.62% |
Table 3 Cumulative distribution of root biomass in community and individual levels of desert grassland in the middle reaches of Heihe River
水平 Level | 土层深度 Soil depth (cm) | 样本数 Sample size | 根系生物量累积百分率 Cumulative percentage of root biomass | ||
---|---|---|---|---|---|
最小值 Min | 最大值 Max | 中值 Mean | |||
群落水平 Community level | 0-20 | 20 | 48.78% | 100% | 89.81% |
0-30 | 20 | 61.88% | 100% | 96.95% | |
个体水平 Individual level | 0-20 | 99 | 44.20% | 100% | 81.42% |
0-30 | 99 | 61.02% | 100% | 93.62% |
Fig. 4 Vertical distribution of root biomass of 20 sample plots at community level of desert grassland in the middle reaches of Heihe River. β, fitted parameter.
Fig. 5 Vertical distribution of root biomass at community and individual levels of desert grassland in the middle reaches of Heihe River. A, Individual level. B, Community level.
草地类型 Grassland type | 地上生物量 Aboveground biomass (g·m-2) | 地下生物量 Belowground biomass (g·m-2) | 总生物量 Total biomass (g·m-2) | 文献来源 Reference |
---|---|---|---|---|
草甸草原 Meadow steppe | 183.4 | 1 140.7 | NA | |
NA | 2 415.7 | NA | ||
122.4 | 643.8 | NA | ||
典型草原 Typical steppe | 103.4 | 590.3 | NA | |
NA | 1 777.7 | NA | ||
135.1 | 553.9 | NA | ||
高寒草原 Alpine steppe | 50.1 | 277.7 | 327.8 | |
荒漠草原 Desert steppe | 45.1 | 270.1 | NA | |
NA | 1 038.8 | NA | ||
34.2 | 855.0 | NA | ||
荒漠草地 Desert grassland | 153.6 | 58.01 | 197.57 | This study |
135.8 | NA | NA | ||
0.96-1.93 | NA | NA | ||
0.1-0.7 | 0.7-13.5 | 0.7-13.6 | ||
内蒙古温带草地 Temperate grassland of Inner Mongolia | 106.9 | 650.8 | NA | |
中国草地 Grassland of China | 97.0 | 604.2 | 701.2 |
Table 4 Comparison of above- and belowground biomass and total biomass in different grassland types
草地类型 Grassland type | 地上生物量 Aboveground biomass (g·m-2) | 地下生物量 Belowground biomass (g·m-2) | 总生物量 Total biomass (g·m-2) | 文献来源 Reference |
---|---|---|---|---|
草甸草原 Meadow steppe | 183.4 | 1 140.7 | NA | |
NA | 2 415.7 | NA | ||
122.4 | 643.8 | NA | ||
典型草原 Typical steppe | 103.4 | 590.3 | NA | |
NA | 1 777.7 | NA | ||
135.1 | 553.9 | NA | ||
高寒草原 Alpine steppe | 50.1 | 277.7 | 327.8 | |
荒漠草原 Desert steppe | 45.1 | 270.1 | NA | |
NA | 1 038.8 | NA | ||
34.2 | 855.0 | NA | ||
荒漠草地 Desert grassland | 153.6 | 58.01 | 197.57 | This study |
135.8 | NA | NA | ||
0.96-1.93 | NA | NA | ||
0.1-0.7 | 0.7-13.5 | 0.7-13.6 | ||
内蒙古温带草地 Temperate grassland of Inner Mongolia | 106.9 | 650.8 | NA | |
中国草地 Grassland of China | 97.0 | 604.2 | 701.2 |
草地类型 Grassland type | 群落水平 Community level | 个体水平 Individual level | |||||||
---|---|---|---|---|---|---|---|---|---|
样本量 Sample size | 最大值 Max | 最小值 Min | 中值 Mean | 样本量 Sample size | 最大值 Max | 最小值 Min | 中值 Mean | ||
全球 Global | 46 | 26 | 0.8 | 4.5 | 324 | 7.33 | 0.05 | 0.59 | |
高寒草甸 Alpine meadow | 73 | 13 | 0.8 | 5.2 | 65 | 17.72 | 0.21 | 0.47 | |
高寒草原 Alpine steppe | 39 | 12.7 | 1.4 | 6.8 | 36 | 10.23 | 0.26 | 1.68 | |
草甸草原 Meadow steppe | 18 | 14.7 | 1.9 | 5.2 | 34 | 5.36 | 0.30 | 1.11 | |
典型草原 Typical steppe | 54 | 19.9 | 0.4 | 5.3 | 47 | 8.16 | 0.29 | 0.67 | |
荒漠草原 Desert steppe | 44 | 32.2 | 0.4 | 6.3 | 25 | 12.48 | 0.25 | 1.40 | |
荒漠草地 Desert grassland | 83 | 2.5 | 0.1 | 0.5 | 99 | 1.55 | 0.06 | 0.44 |
Table 5 Ratio of root to shoot (R/S) for different grassland types at individual and community levels
草地类型 Grassland type | 群落水平 Community level | 个体水平 Individual level | |||||||
---|---|---|---|---|---|---|---|---|---|
样本量 Sample size | 最大值 Max | 最小值 Min | 中值 Mean | 样本量 Sample size | 最大值 Max | 最小值 Min | 中值 Mean | ||
全球 Global | 46 | 26 | 0.8 | 4.5 | 324 | 7.33 | 0.05 | 0.59 | |
高寒草甸 Alpine meadow | 73 | 13 | 0.8 | 5.2 | 65 | 17.72 | 0.21 | 0.47 | |
高寒草原 Alpine steppe | 39 | 12.7 | 1.4 | 6.8 | 36 | 10.23 | 0.26 | 1.68 | |
草甸草原 Meadow steppe | 18 | 14.7 | 1.9 | 5.2 | 34 | 5.36 | 0.30 | 1.11 | |
典型草原 Typical steppe | 54 | 19.9 | 0.4 | 5.3 | 47 | 8.16 | 0.29 | 0.67 | |
荒漠草原 Desert steppe | 44 | 32.2 | 0.4 | 6.3 | 25 | 12.48 | 0.25 | 1.40 | |
荒漠草地 Desert grassland | 83 | 2.5 | 0.1 | 0.5 | 99 | 1.55 | 0.06 | 0.44 |
[1] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
URL PMID |
[2] | Bloom AJ, Chapin FS, Mooney HA (1985). Resource limitation in plants--an economic analogy. Annual Review of Ecology and Systematics, 16, 363-392. |
[3] | Brown SL, Schroeder P, Kern JS (1999). Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 123, 81-90. |
[4] |
Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997). Root biomass allocation in the world’s upland forests. Oecologia, 111, 1-11.
DOI URL PMID |
[5] | Chapin FS, Bloom AJ, Field CB, Waring RH (1987). Plant responses to multiple environmental factors. BioScience, 37, 49-57. |
[6] | Cheng DL (2007). Plant Allometric Study of Biomass Allocation Pattern and Biomass Production Rates. PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract) |
[ 程栋梁 (2007). 植物生物量分配模式与生长速率的相关规律研究. 博士学位论文, 兰州大学, 兰州.] | |
[7] |
Cheng DL, Niklas KJ (2007). Above- and below-ground biomass relationships across 1534 forested communities. Annals of Botany, 99, 95-102.
URL PMID |
[8] | Deng JM, Wang GX, Morris EC, Wei XP, Li DX, Chen BM, Zhao CM, Liu J, Wang Y (2006). Plant mass-density relationship along a moisture gradient in Northwest China. Journal of Ecology, 94, 953-958. |
[9] |
Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520.
URL PMID |
[10] | Fan JW, Wang K, Harris W, Zhong HP, Hu ZM, Han B, Zhang WY, Wang JB (2009). Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. Journal of Arid Environments, 73, 521-528. |
[11] | Fang JY, Liu GH, Xu SL, Wang GC, Wen YP (2007). Carbon Library in Terrestrial Ecosystem in China, China Environmental Science Press. Beijing. 109-128. (in Chinese) |
[ 方精云, 刘国华, 徐嵩龄, 王庚辰, 温玉璞 (2007). 中国陆地生态系统的碳库. 中国环境科学出版社, 北京. 109-128.] | |
[12] | Gale MR, Grigal DF (1987). Vertical root distributions of northern tree species in relation to successional status. Canadian Journal of Forest Research, 17, 829-834. |
[13] | Houghton RA (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11, 945-958. |
[14] |
Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389-411.
URL PMID |
[15] | Jin Z, Dong YS, Qi YC, An ZS (2010). Soil respiration and net primary productivity in perennial grass and desert shrub ecosystems at the Ordos Plateau of Inner Mongolia, China. Journal of Arid Environments, 74, 1248-1256. |
[16] | Kuzyakov Y, Domanski G (2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 163, 421-431. |
[17] | Litton CM, Raich JW, Ryan MG (2007). Carbon allocation in forest ecosystems. Global Change Biology, 13, 2089-2109. |
[18] | Li B (2000). Ecology. Higher Education Press. Beijing. (in Chinese) |
[ 李博 (2000). 生态学 高等教育出版社, 北京.] | |
[19] | Ma WH (2006). Carbon Storage in the Temperate Grassland of Inner Mongolia. PhD dissertation, Peking University, Beijing. (in Chinese with English abstract) |
[ 马文红 (2006). 内蒙古温带草地的碳储量. 博士学位论文, 北京大学, 北京.] | |
[20] | Ma WH, Fang JY (2006). R:S ratios of temperate steppe and the environmental controls in Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 42, 774-778. (in Chinese with English abstract) |
[ 马文红, 方精云 (2006). 内蒙古温带草原的根冠比及其影响因素. 北京大学学报(自然科学版), 42, 774-778.] | |
[21] | Mokany K, Raison R, Prokushkin AS (2006). Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 12, 84-96. |
[22] | Ni J (2002). Carbon storage in grasslands of China. Journal of Arid Environments, 50, 205-218. |
[23] | Ni J (2004). Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecology, 174, 217-234. |
[24] |
Niklas KJ (2005). Modelling below- and above-ground biomass for non-woody and woody plants. Annals of Botany, 95, 315-321.
URL PMID |
[25] | Niklas KJ (2006). A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytologist, 171, 27-40. |
[26] |
Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013.
URL PMID |
[27] | Qi YC, Dong YS, Geng YB, Yang XH, Geng HL (2003). The progress in the carbon cycle researches in grassland ecosystem in China. Progress in Geography, 22, 342-352. (in Chinese with English abstract) |
[ 齐玉春, 董云社, 耿元波, 杨小红, 耿会立 (2003). 我国草地生态系统碳循环研究进展. 地理科学进展, 22, 342-352.] | |
[28] |
Sokal RR, Rohlf FJ (1995). Biometry: the Principles and Practice of Statistics in Biological Research. WH Freeman and Company, New York.
URL PMID |
[29] |
Southgate RI, Masters P, Seely MK (1996). Precipitation and biomass changes in the Namib Desert dune ecosystem. Journal of Arid Environments, 33, 267-280.
DOI URL |
[30] |
Wang L, Niu KC, Yang YH, Zhou P (2010). Patterns of above- and belowground biomass allocation in China’s grasslands: evidence from individual-level observations. Science China Life Sciences, 53, 851-857.
DOI URL PMID |
[31] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
DOI URL PMID |
[32] | Weiner J (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[33] | Wilson JB (1988). A review of evidence on the control of shoot: root ratio, in relation to models. Annals of Botany, 61, 433-449. |
[34] | Xia Y, Moore DI, Collins SL, Muldavin EH (2010). Aboveground production and species richness of annuals in Chihuahuan Desert grassland and shrubland plant communities. Journal of Arid Environments, 74, 378-385. |
[35] | Yang YH (2008). Carbon and Nitrogen Storage in Alpine Grasslands on the Tibetan Plateau. PhD dissertation, Peking University, Beijing. (in Chinese with English abstract) |
[ 杨元合 (2008). 青藏高原高寒草地生态系统碳氮储量. 博士学位论文, 北京大学, 北京.] | |
[36] | Yang YH, Fang JY, Ji CJ, Han WX (2009a). Above- and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science, 20, 177-184. |
[37] | Yang YH, Fang JY, Ma WH, Guo DL, Mohammat A (2010). Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecology and Biogeography, 19, 268-277. |
[38] | Yang YH, Fang JY, Pan YD, Ji CJ (2009b). Aboveground biomass in Tibetan grasslands. Journal of Arid Environments, 73, 91-95. |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[5] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[6] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[7] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[8] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[9] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[10] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[11] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[12] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[13] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[14] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[15] | LI Bian-Bian, ZHANG Feng-Hua, ZHAO Ya-Guang, SUN Bing-Nan. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus [J]. Chin J Plant Ecol, 2023, 47(1): 101-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn